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Abstract— Pilots operating aircraft in non-towered terminal
airspace rely on their situational awareness and prior knowl-
edge to predict the future trajectories of other agents. These
predictions are conditioned on the past trajectories of other
agents, agent-agent social interactions and environmental con-
text such as airport location and weather. This paper provides
a dataset, TrajAir, that captures this behaviour in non-towered
terminal airspace around a regional airport. We also present
a baseline socially-aware trajectory prediction algorithm, Tra-
jAirNet, that uses the dataset to predict the trajectories of all
agents. The dataset is collected for 111 days over 8 months and
contains ADS-B transponder data along with the corresponding
METAR weather data. The data is processed to be used as
a benchmark with other publicly available social navigation
datasets. To the best of the authors’ knowledge, this is the
first 3D social aerial navigation dataset, thus introducing social
navigation for autonomous aviation. TrajAirNet combines state-
of-the-art modules in social navigation to provide predictions in
a static environment with a dynamic context. Both the TrajAir
dataset and TrajAirNet prediction algorithm are open-source.
[Dataset]1 [Code]2 [Video]3

I. INTRODUCTION
General Aviation (GA) comprises all civil flights except

scheduled passenger airline services. More than 90% of
the roughly 220,000 civil aircraft registered in the United
States (US) are GA aircraft [1]. In contrast with airline
service aircraft, which operate with two pilots in a structured
higher-altitude operational envelope, GA aircraft are often
individually piloted in a more unstructured lower-altitude
environment. This makes the pilotage challenging in the
best of circumstances. According to the Federal Aviation
Administration (FAA), for every commercial airline accident
in 2015, there were approximately 36 accidents in GA, with
77 % of non-fatal accidents in terminal airspaces [2]. This
low altitude environment is also where a bulk of the next gen-
eration of Unmanned Aerial Vehicles (UAVs) are expected to
operate [3]. These UAVs are expected to seamlessly interact
with other UAVs and crewed air traffic operating in this
shared airspace. Nowhere is this interaction more pronounced
than in low-altitude terminal airspace around airports.

All flights typically begin and end in airspace surrounding
airports known as terminal airspace. Low altitudes, multi-
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Fig. 1: TrajAir dataset includes recorded ADS-B trajectories of
aircraft interacting in a non-towered general aviation airport and the
weather context from METAR strings. TrajAirNet predicts multi-
future samples (cyan) of trajectories for all agents by conditioning
each on the history (blue) of all the agents and the weather context.

agent close-proximity interactions, dynamically changing
conditions, and rapid decision making are hallmarks of
this type of airspace. As compared to en-route airspace,
where agents are typically well-separated, agents in terminal
airspace are at a higher collision risk. Out of the nearly
20,000 active airports [4] in the US, only around 4% are
towered, meaning that a control tower is present as a central-
ized authority ensuring separation. This indicates that most
GA airports are non-towered, implying that the pilots must
directly communicate with other pilots and take decentralized
actions. Pilots operating in non-towered airspace are solely
responsible for guiding aircraft to safety.

In the context of social navigation, where only implicit
rules are assumed [5], GA offers a unique case where all
aircraft operating within terminal airspace are expected to
self-organise to follow guidelines established by the FAA,
which act like rules-of-the-road for aircraft. These guidelines
ensure separation and smooth flow by standardising a rectan-
gular traffic pattern around the runways [6]. More details on
these guidelines are provided in future sections. While not
enforced, pilots are expected to adhere to the traffic pattern,
but deviations arise due to the lack of specificity, pilot’s
experience level, type of aircraft, weather, and position of
other agents. This design flexibility improves efficiency and
ensures safety while accommodating the needs of various
agents using the same infrastructure. Only the traffic pattern’s
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Fig. 2: Figure shows the dataset and its collection setup at the Pittsburgh-Butler Regional Airport (KBTP)—a non-towered GA airport
that serves as a primary location for the dataset. Lighter color indicates lower altitude. (a) Shown is a snippet of the processed dataset
with aircraft trajectories showing clear lobes for traffic patterns for both runways. (b) The left traffic pattern and nomenclature for the
runways at the airport. (c) Picture of the data-collection setup.

general shape, direction, and altitude are established. This
leaves room for each pilot to make their own decisions to
maintain separation while respecting personal minimums and
aircraft capabilities.

Airports can have multiple agents using the same airspace
where all agents are expected to follow socially-compliant
trajectories while loosely following the traffic pattern guide-
lines. Using a diverse set of inputs such as radio, transponder
data, weather, and vision, each pilot constructs their airspace
situational awareness to decide an entry or exit from the pat-
tern. To avoid collisions, therefore, it is critical for each pilot
to predict the future trajectory predictions of other agents
in that airspace. In this work, we address the problem of
learning how to predict the actions of other agents (aircraft)
in a static environment with the dynamic context needed to
navigate an aircraft in non-towered terminal airspace safely.

This work presents a novel dataset, TrajAir, that provides
recorded trajectories of multiple aircraft operating around
a standard non-towered airport while also providing the
weather conditions during these operations. While several
datasets exist for ground navigation or pedestrian trajectories,
few datasets are available for aerial navigation that imposes
unique challenges including the need to handle regulations
and weather conditions.

This work also provides a baseline trajectory predic-
tion method, TrajAirNet, to model agent-agent, agent-
environment, and agent-context interactions. The future tra-
jectories of agents around an airport are a function of the
history of all the participating heterogeneous agents, their
respective goals, the static airport environment, and the
dynamic weather context. The proposed method uses the
dataset to effectively capture all aspects of this behaviour
to predict aircraft trajectories.

The major contributions of this work are as follows:

1) We provide the first publicly-available large-scale pro-
cessed trajectory and weather data with multiple air-

craft socially interacting in a non-towered GA airport.
2) We provide an open-source end-to-end attention-based

baseline method to predict socially-aware multi-future
trajectories in a static environment with a dynamic
context.

The paper is organised as follows: Section II provides
details on prior work in datasets and methods in the aircraft
trajectory prediction domain, along with a brief background
on the pedestrian and autonomous vehicle domains. Section
III provides details on the TrajAir dataset, while Section
IV discusses the TrajAirNet method. Section V discusses
the metrics and provides qualitative and quantitative results.
Sections VI and VII discuss the future work and conclusions,
respectively.

II. RELATED WORK

A. Aircraft Trajectory Prediction

Previous work on aircraft trajectory prediction can be
split into macro-level predictions in high-altitude en-route
airspace and micro-level predictions for terminal airspace.
En-route long-range predictions are often a function of
weather conditions [7]–[10]. For terminal airspace, previous
work has focused on larger airports with commercial aviation
(CA) traffic. CA aircraft usually follow strict approach
procedures for entering and exiting terminal airspace and
are often guided by air traffic control, making the trajectory
prediction problem akin to learning the statistical variation in
following these procedures [11]–[13]. Non-towered terminal
airspace, on the other hand, while still following FAA
guidelines, has a much higher complexity and often expects
air traffic to follow socially compliant behaviour. The lack
of a centralised authority gives the pilots more freedom with
the choice of actions to achieve a particular goal. To the
best of the authors’ knowledge, no publicly available dataset
or open-source trajectory prediction methods exist for non-
towered GA traffic, which forms the bulk of the aviation



infrastructure.

B. Trajectory Prediction Datasets

The majority of the research in socially-aware human-
robot interaction has focused on pedestrians and autonomous
vehicles (AVs) [14]–[18]. The arena is often crowded spaces
like shopping malls, college campuses, or city streets. Pedes-
trian datasets like UCY [19], ETH [20], and the Stanford
Drone Dataset [21], among others [22], have long been
the dominant datasets for evaluating pedestrian trajectory
prediction tasks. Within the AV domain, Argoverse [23],
KITTI [24] and nuScenes [25] have been more popular.

With TrajAir, we introduce the new 3D domain of general
aviation within the paradigm of social navigation. The dataset
differs from previously published datasets due to the spatial
dependence of the agent trajectories within a static environ-
ment. TrajAir trajectories are conditioned not only on the
relative location of agents but also on their absolute locations.
In addition, trajectories are explicitly goal-directed. This en-
ables benchmarking models that use goal- or intention-driven
predictions. Due to the FAA guidelines, the trajectories
loosely follow the same semantic structure opening up the
field of structured predictions in social navigation. Another
point of difference is the presence of a global context in
the form of weather data directly affects the trajectories and
goals of all agents. This allows benchmarking algorithms that
can use contextual clues to aid social behaviour prediction.

C. Trajectory Prediction Algorithms

Social trajectory prediction algorithms typically use three
separable modules to generate trajectory predictions. A se-
quential module like recurrent units [26] or convolutions
[27] is first used to encode the observed trajectories of
each agent to generate a vector in latent space. A social
module then uses a method like pooling [28] or attention
[29] to encode the social context. A generative module
then decodes the socially-aware representation into an output
that is either the relative coordinates [26], a distribution on
the relative coordinates [30] or accelerations [31]. Due to
these algorithms’ the domain specific nature they do not
generalize well to GA aircraft. The use of relative or ego-
centric coordinate systems, suitable for pedestrians and AV
domains, renders these algorithms unsuitable for domains
like GA, where the decisions are a function of the absolute
spatial coordinates. While algorithms like Trajectron++ [17]
have been proposed to support domain independence with
support for dynamics, its extension to 3D space, airport
maps and double-integrator dynamics is non-trivial. The
proposed baseline method, TrajAirNet, which uses absolute
coordinates and global contexts, builds on similar structuring
to provide a trajectory prediction algorithm that combines the
state-of-the-art in each of the aforementioned modules.

III. TrajAir DATASET

The TrajAir dataset is collected at the Pittsburgh-Butler
Regional Airport (ICAO:KBTP), a single runway GA airport,
10 miles North of the city of Pittsburgh, Pennsylvania.

Additional information about KBTP is available online4.
Aircraft entering and leaving non-towered airspace need to
follow guidelines established by the FAA to ensure the
safety and efficiency of all participating agents. KBTP has
Left Traffic patterns for both runways, meaning the patterns
are rectangular-shaped with left-handed turns relative to
the direction of landing or take-off. Figure 2b shows the
traffic pattern for Runway 8 and 26 around KBTP with the
corresponding direction of traffic flow. Aircraft usually take-
off or land into the wind; hence the nomenclature follows
this sequence. When an aircraft takes off, it is on an upwind
leg. A left turn puts it on a crosswind leg, followed by
turns into downwind leg and base leg. The final left turn
puts the aircraft on the final leg for a touch-down. FAA also
establishes that an entry into the pattern should be at a 45-
degree angle to the downwind leg.

A. Dataset Overview

The trajectory data is recorded using an on-site setup
(see Figure 2c). Data is provided starting on 18 Sept 2020
and continues till 23 Apr 2021. It includes a total of 111
days of data discounting downtime, repairs and bad weather
days with no traffic. Data is collected from 01:00 AM local
time to 11:00 PM local time. The dataset can be accessed
at https://theairlab.org/trajair/. More information about the
dataset, including the file structure and dataloaders, is also
provided.

B. Trajectory Data

The dataset uses an Automatic Dependent Surveillance-
Broadcast (ADS-B) receiver [32] placed within the airport
premises to capture the trajectory data. The ADS-B In
receiver receives data directly broadcasted by other aircraft
with ADS-B Out. For aircraft that do not have an ADS-B
Out, the Traffic Information Service-Broadcast (TIS-B) takes
the position and altitude of aircraft using radar and converts
that information into a format that’s compatible with ADS-
B. It then broadcasts the information to our receiver. The
receiver uses both the 1090 MHz and 978 MHz frequencies
to listen to these broadcasts. The ADS-B uses satellite
navigation to produce accurate location and timestamp for
the targets, which is recorded on-site using our custom setup.

C. Weather Data

The weather data is obtained post-hoc using the METeo-
rological Aerodrome Reports (METAR) strings generated by
the Automated Weather Observing System (AWOS) system
at KBTP. We use the Iowa State METAR repository [33] to
gather all the weather data during the trajectory collection
time frame. The raw METAR string is then appended to the
raw trajectory data by matching the closest UTC timestamps.

D. Data Processing

The data obtained from the ADS-B receiver and the
METAR strings is processed to make it suitable for training
networks. The following steps are performed:

4http://www.airnav.com/airport/kbtp

https://theairlab.org/trajair/
http://www.airnav.com/airport/kbtp
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Fig. 3: Our proposed TrajAirNet baseline model for aircraft trajectory prediction in static environment with a dynamic context. The model
uses Temporal Convolutional Networks (TCNs) to encode the 3-D trajectory. The dynamic weather context (wind vectors) are encoded
using Convolutional Neural Networks (CNNs), which are appended to the encoded trajectory. To encode the social context, we use a Graph
Attention Network (GAT) that uses attention to combine data from different agents. Finally, we use Conditional Variational Autoencoders
(CVAEs) to produce multi-future acceleration commands, which are then used in a forward Verlet integration to produce future aircraft
trajectories for all agents.

• Removal of data points that have corrupt or no location
fields.

• Removal of duplicate data points with the same aircraft
identifier and location fields.

• Removal of data points where the altitude is more than
6000 feet MSL, and distance is more than 5 km from
one end of the runway.

• Transforming the data to a local Cartesian coordinate
frame in SI units. The origin is at the end of the runway,
with the horizontal x-axis pointing along the runway.

• Processing raw METAR strings to get wind velocity
and direction along and across the runway in the local
Cartesian frame in SI units.

• Interpolating trajectory data every second for all agents.
• Segmenting the data into scenes with at least one active

aircraft in the airport vicinity.
The raw data and processed data are provided as part of

the data release. A snippet of the processed data is shown
in Fig 2a. Lighter color indicates lower altitude. Both left-
hand patterns are visible as distinct lobes on both sides
of the runway. The variability in following the pattern is
also evident, as are the trajectories before entering and after
leaving the pattern.

IV. TrajAirNet PREDICTION NETWORK

We propose TrajAirNet, an end-to-end network to provide
aircraft trajectory predictions within the terminal airspace.
The proposed baseline method provides us with the ability
to do the following: 1) condition the prediction on ego
agent’s absolute position history in the static environment,
2) condition the prediction on the absolute position of other
agents within the terminal airspace weighted according to
their relative importance to the ego-agent, 3) condition the
prediction on the dynamic environmental context like wind,
4) predict multi-modal multi-future trajectories of all the
agents, and 5) operate invariant to the number of agents in

the scene without using zero-padding. To achieve this, the
method uses multiple components in an end-to-end fashion
using a combined loss function. Section IV-A defines the
nomenclature and provides a formal mathematical definition
of the problem. Section IV-B provides details on each
model component, and Section IV-C provides details on the
implementation and the loss function.

A. Problem Formulation
We consider the problem of predicting the multi-modal

distribution of future trajectories of all the agents given
the past history and environmental context. Let xa

t =
(xat , y

a
t , z

a
t ) and φat denote the position and context of the ath

agent at time t, respectively. While the context may include
terrain, maps, weather and wind conditions; for the purposes
of this work, we only focus on wind as the context. Let
x1:A
t1:t2 and φ1:At1:t2 denote the trajectories and context over a
{t1, . . . , t2} time-horizon for all {1, . . . , A} agents in that
scene. We then define our trajectory prediction problem as
finding distribution of future trajectories x̂1:A

tobs:tpred+tobs
con-

ditioned on the past trajectories x1:A
1:tobs

and context φ1:At:tobs
,

where, tobs is the observation time window, and tpred is the
prediction time horizon. Mathematically,

x̂1:A
tobs:tpred+tobs

∼ p(x̂1:A
tobs:tpred+tobs

| x1:A
1:tobs

, φ1:At:tobs
) (1)

B. Model Details
We propose a baseline trajectory prediction algorithm,

TrajAirNet, that takes as input the past trajectories of all
the agents, along with the weather context, to predict multi-
future trajectories of all agents. The network combines
elements from Temporal Convolutional Networks (TCNs),
Graph Attention Network (GATs), and Conditional Varia-
tional Autoencoder (CVAEs). Each component addresses var-
ious needs of the underlying problem. The entire architecture
is shown in Figure 3.



The TCN layers are used to encode the spatio-temporal tra-
jectory into a latent vector without losing the causal relations
in the underlying data. This latent representation can be used
for other downstream tasks like trajectory prediction. While
LSTMs have been a popular choice to encode the trajectory
space, our choice of TCNs is largely because they have been
shown to perform better or at least as good as LSTMs [34].

The GAT layer is used to encode the influence of other
agents on the predicted trajectory of a particular agent. While
max-pooling has been a traditional choice to incorporate the
effect of other agents, the lack of interpretability in the latent
encoded output makes max-pooling a rather black-box choice
[30]. Using an attention mechanism as in GATs, on the
other hand, has become a popular choice because attention
can be directed selectively at particular agents in a scalable
manner in terms of the number of agents [35]. This becomes
especially important in the shared-airspace domain, where
the relative importance of an agent is not only based on their
proximity to the ego agent but also on their absolute location
in space. Another advantage of using GATs is that it makes
the algorithm permutation-invariant as well as invariant to
the number of agents without a need to pad zeros.

The CVAE layer serves as the backbone of the multi-future
trajectory prediction. There is inherent stochasticity in the
data, and CVAEs are well suited to capture this distribution.
They have been used successfully in both pedestrian and AV
trajectory prediction networks [17]. The CVAEs encode the
underlying distribution in its latent space, which can then
be sampled at run-time to provide samples in the trajectory
space. In order to incorporate the dynamics of the vehicle, we
decided to a generalized dynamics formulations in the form
of a forward Verlet integration [31] that provides a constant
velocity model for a zero output. Instead of predicting the
positions directly, we predict the Verlet acceleration and then
calculate the absolute positions of each agent.

C. Implementation Details

TrajAirNet codebase is available open-source at
https://github.com/castacks/trajairnet. A modified dataloader
breaks the scene into sequences of length tobs + tpred with
a certain minimum number of agents constant across each
sequence. The number of agents can change from sequence
to sequence. For each agent in a given scene, the raw
trajectory in absolute coordinates is encoded using the same
TCN layers.

haobs = TCNobs(x
a
1:tobs

) ∀ a ∈ {1, . . . , A} (2)

To include the environmental context, wind velocities along
and across the runway in our case; the raw context is encoded
using a standard CNN layer and the output is concatenated to
the TCN encoded trajectories. The choice of CNN over MLP
was motivated to enable spatial contexts in later revisions of
the algorithm.

haenc = haobs ⊕ CNN(φa1:tobs) ∀ a ∈ {1, . . . , A} (3)

The concatenated encoded trajectories and encoded context
for all agents are then stacked together as the input to the

GAT layers. Each agent acts as a node in the GAT graph
structure. We use a standard GAT structure with multi-head
attention [36].

h1:Agat = GAT (h1:Aenc) (4)

The output for each agent from the GAT is then segregated
and concatenated with the full encoded output haenc for each
agent a. This concatenated vector then serves as a conditional
input to the CVAE layers. The CVAE is characterized by an
encoder Q(·) and a decoder P (·). For all a ∈ {1, . . . , A},

hapred = TCNpred(xa
tobs:tobs+tpred

)

z ∼ Q(z | hapred, haenc ⊕ hagat), for training
z ∼ N (0, I), for testing (5)

hacvae ∼ P (hacvae | z, haenc ⊕ hagat)
Finally, the sampled CVAE output is passed through a MLP
layer to get the correct dimension for the acceleration output.

satobs:tobs+tpred
= MLP (hacvae) (6)

The acceleration output is then converted to absolute posi-
tions for all t ∈ {tobs, . . . , tobs + tpred}, using,

x1:At+1 = 2x1:At − x1:At−1 + s1:At ∆t2 (7)

The entire pipeline uses a combination of loss functions.

Ltotal = Ltraj + Lcvae (8)

The Ltraj measures how close the predicted trajectory is to
the ground-truth trajectory using a mean squared error (MSE)
loss.

Ltraj = MSE(xa
tobs:tobs+tpred

, x̂a
tobs:tobs+tpred

) (9)

The Lcvae measures the KL-Divergence between the sam-
pling distribution of the latent variable, the easiest choice
being N (0, I), to the distribution of latent variable that we
learn during training.

Lcvae = Dkl(Q(z | hapred, haenc ⊕ hagat) || N (0, I)) (10)

For training, we use the Adam optimiser with a learning
rate of 1e− 4.

V. EVALUATIONS AND DISCUSSION

Algorithm 7Days-1 7Days-2 7Days-3 7Days-4
Const. Vel. [17] 1.79/4.08 1.90/4.31 1.92/4.30 1.82/4.16
Nearest Neigh. 3.13/2.70 1.92/1.99 3.41/2.69 2.59/2.58
STG-CNN [29] 1.19/2.35 1.36/2.70 1.33/2.67 1.17/2.29
TransformerTF [37] 1.58/3.85 1.69/4.10 1.97/4.36 1.79/4.19
TrajAirNet (ours) 0.73/1.42 0.81/1.63 0.86/1.72 0.71/1.41

TABLE I: Table shows the quantitative results ADE/FDE (in Km)
for TrajAirNet baseline along with comparative results.

Evaluations for the proposed network are carried out on a
28 day subset of data from the TrajAir dataset that contains
4-sets of 7 consecutive days of data in different months.
Results from our network along with comparative methods
are shown for all four sets. In order to focus on long-horizon
predictions, we use tobs = 11 sec and tpred = 120 sec. The

https://github.com/castacks/trajairnet


(a) (b) (c) (d)

Fig. 4: Figure shows the qualitative results for the TrajAirNet framework. Four independent scenarios are chosen to showcase the
performance. Blue is the observation trajectory (tobs = 11 sec). Green are the sampled trajectories from the TrajAirNet output. Black
shows the output closest to the ground truth (tpred = 120 sec), which is shown in Red. Also shown is the airport diagram to scale.

choice of the observation and prediction horizons are chiefly
motivated to match the scale of decision horizons in GA. We
compare our results with the following baselines:

1) Constant Velocity [17]: Trajectories are predicted by
setting acceleration to zero in the Verlet integration.

2) Nearest Neighbour: We use a nearest neighbour search
to find the closest absolute trajectory in the training set
to the queried trajectory using an L2 metric.

3) STG-CNN [29]: Uses a spatio-temporal graph convo-
lutional neural network for trajectory prediction.

4) Transformer-TF [37]: Standard transformer implemen-
tation for trajectory prediction.

We chose not to include extensive comparative results from
other social trajectory prediction algorithms. Our experi-
ments found that the top-performing algorithms for pedes-
trian and AV benchmarks either exploit the problem’s under-
lying structure or require non-trivial modifications, making
them unsuitable for a domain transfer. A simple change
in hyper-parameters very often did not provide optimal
performance as can be seen from the short comparative result
section. We use two popular metrics [30] for evaluating the
performance of the proposed network: Average Displacement
Error (ADE) and Final Displacement Error (FDE). Results
for the best of N trajectories are used where the network is
queried N times, and the best ADE/FDE scores are recorded.
We nominally use N = 5.

A. Results and Discussions

Figure 4 shows the qualitative results for the TrajAirNet
framework. Four independent scenarios are showcased to
highlight the various behaviours captured by TrajAirNet.
Figure 4a shows a scenario with two agents on the downwind
leg of the pattern. The algorithm correctly predicts a longer
turn to base for the trailing aircraft to improve spacing
between agents. Figure 4b shows three aircraft with one
aircraft trying to enter the pattern. While the algorithm
correctly predicts the entry, it fails to predict the entering
aircraft’s roundabout turn to improve spacing. This highlights
the diversity of maneuvers in the dataset and the difficulty
in predicting them. The third scenario shows an aircraft
entering downwind with another trailing aircraft already in
the pattern. The network predicts that the trailing aircraft
extends the crosswind leg and falls in line behind the aircraft
entering the pattern. Lastly, the fourth scenario in Figure
4d shows three aircraft in the traffic pattern around the

airport with the aircraft on downwind-to-base turning early
to improve spacing. Table I shows the quantitative results
for the TrajAirNet framework. As can be seen, TrajAirNet
dominantly outperforms prediction baselines across all the
sub-datasets.

VI. FUTURE WORK

One major drawback of the current work is the lack
of generalizability across airports. More datasets covering
multiple airports, including airports with control towers and
multiple runways, are needed to augment this dataset. Simi-
larly, the trajectory prediction network needs to generalize
across different runway geometries. While the proposed
trajectory prediction dataset and method provide a glimpse
into the pilot’s decision-making processes, pilots often use
multiple data sources like radio communication and vision
to supplement their situational awareness and predict other
agents’ behaviours. Future work involves collecting these
concurrent multi-modal datasets and include the priors on
terminal goals in the prediction framework. Transformers
[37] have shown promising results on various seq2seq tasks
and need to be explored more in the trajectory prediction
domain.

VII. CONCLUSIONS

This work presents a novel dataset for socially-aware
trajectory prediction in the aviation domain. Additionally, it
also presents a baseline trajectory prediction algorithm for
this static environment with a dynamic context. To the best
of the authors’ knowledge, this is the first publicly available
dataset and method in the domain of general aviation. A
major motivation of this work is to open up this domain to the
wider robotics and automation community. With the recent
advances in self-driving and social robotics, this publication
aims to encourage a more in-depth look into the similar
and unique problems faced by the autonomous aviation
community and propose solutions in this relatively under-
explored domain.
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