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Abstract— Efficient exploration is a long-standing problem
in reinforcement learning since extrinsic rewards are usually
sparse or missing. A popular solution to this issue is to feed an
agent with novelty signals as intrinsic rewards. In this work,
we introduce SEMI, a self-supervised exploration policy by
incentivizing the agent to maximize a new novelty signal: mul-
tisensory incongruity, which can be measured in two aspects,
perception incongruity and action incongruity. The former
represents the misalignment of the multisensory inputs, while
the latter represents the variance of an agent’s policies under
different sensory inputs. Specifically, an alignment predictor is
learned to detect whether multiple sensory inputs are aligned,
the error of which is used to measure perception incongruity. A
policy model takes different combinations of the multisensory
observations as input, and outputs actions for exploration. The
variance of actions is further used to measure action incon-
gruity. Using both incongruities as intrinsic rewards, SEMI
allows an agent to learn skills by exploring in a self-supervised
manner without any external rewards. We further show that
SEMI is compatible with extrinsic rewards and it improves
sample efficiency of policy learning. The effectiveness of SEMI
is demonstrated across a variety of benchmark environments
including object manipulation and audio-visual games.

I. INTRODUCTION

Efficient exploration is a major bottleneck in reinforcement
learning problems. In many real-world scenarios, rewards
extrinsic to an agent are extremely sparse or completely
missing, leading to nearly random exploration of states. A
common remedy to exploration is adding intrinsic rewards,
i.e., rewards automatically computed based on the agent’s
model of the environment. Existing formulations of intrinsic
rewards include maximizing “visitation count” [1], [2],
[3] of less-frequently visited states, “curiosity” [4], [5], [6]
where future prediction error is used as reward signal and
“diversity rewards” [7], [8] which incentivizes diversity in
the visited states. These rewards provide continuous feedback
to the agent when extrinsic rewards are sparse, or even
absent. However, it is challenging to deploy these methods
in practice. For “visitation count” based method, it is hard
to count in a continuous space. And for “predictive model”
based method, the key challenge is to model and interact
with a stochastic world where multiple futures are available.

As humans, we experience our world through a number of
simultaneous sensory streams, such as vision, audition and
touch. The novel sensory streams from different modality
motivate us to explore the world and gain knowledge actively.
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Fig. 1: SEMI: a self-supervised exploration policy by incentivizing
the agent to maximize multisensory incongruity, including per-
ceptual incongruity and action incongruity. Perceptual incongruity
indicates the misalignment between the multisensory perceptual
inputs, and action incongruity refers to the discrepancy of actions
under different perceptual inputs.

In modern robot design, sensors with different modalities
are ubiquitous in order to augment the performance of
the robot perception. However, few exploration policies
are designed around multimodal feedback for reinforcement
learning agents. The difficulties are mainly reflected in two
aspects: how to leverage multiple modalities with very dif-
ferent dimensions, frequencies and characteristics; and how
to measure novelty with multimodal feedback.

In this work, we introduce SEMI, a self-supervised ex-
ploration method by incentivizing the agent to maximize
multisensory incongruity, including perceptual incongruity
and action incongruity, as shown in Figure 1.

Perceptual incongruity is defined as the misalignment
between multisensory inputs. As humans, the coincidence of
senses gives us strong evidence that they were generated by a
common, underlying event [9], since it is unlikely that they
co-occurred across multiple modalities merely by chance.
Thus, the misalignment or incongruity between multisensory
streams can be used as a strong signal of novelty. Researches
in psychology suggested that this incongruity can attract
human’s attention and trigger further exploration [10], [11],
which has been widely used in product design [12], [13].
In SEMI, we use such novelty to guide robot exploration.
Specifically, an alignment predictor is trained to detect mis-
alignment between multisensory inputs. The model observes
raw sensory streams — some of which are paired, and some
have been shuffled — and we task it with distinguishing
between the two. This challenging task forces the model to
fuse information from multiple modalities and meanwhile
learn a useful feature representation. The prediction error
of the sensor fusion model serves as a metric of perceptual
incongruity, which is further used as an intrinsic reward to
guide the agent’s exploration.

ar
X

iv
:2

00
9.

12
49

4v
2 

 [
cs

.L
G

] 
 1

9 
M

ay
 2

02
2



Action incongruity is defined as the discrepancy of an
agent’s decisions when it perceives different senses of the
same underlying event. This is inspired from the fact that
humans are able to integrate multimodal sensory information
in a near-optimal manner for decision making [14], [15], and
are even robust to the loss of some senses [16], [17]. Sensory
compensation empowers humans to make similar decisions
when different senses are used [18], [19], [20]. In SEMI, a
policy network is learned with multi-modal dropout during
multisensory fusion. Concretely, we randomly drop one or
several modalities during multisensory fusion to imitate loss
of senses. The variance of actions suggested by the policy
network under different dropout states is used to measure
action incongruity, which is also used as an intrinsic reward
for better exploration.

SEMI is evaluated in two challenging scenarios: object
manipulation (vision and depth) and audio-visual games
(Gym Retro). We show that SEMI outperforms “predictive
model” based exploration policy by a large margin in both
scenarios.

The contributions of this paper can be summarized as
follows. Inspired by psychology, we propose SEMI, a novel
self-supervised exploration policy through discovering mul-
tisensory perceptual and action incongruity; SEMI enables
agents to learn compact multimodal representation from hard
examples; we demonstrate the efficacy of this formulation
across a variety of benchmark environments including object
manipulation and audio-visual games; furthermore, we show
that SEMI is complementary to other intrinsic and extrinsic
rewards.

II. RELATED WORKS

a) Explore with Intrinsic Rewards.: Consider an agent
that sees an observation, takes an action and transitions
to the next state. We aim to incentivize this agent with a
reward relating to how informative the transition was, so
that the agent can explore the complicated environment more
efficiently. One simple approach to encourage exploration
is to use state visitation counts [1], [21], [22], where one
maximizes visits on less frequent states. However, counting
in the continuous space is usually challenging. Recently a
more popular line of works are using prediction error [5],
[6], [23], [24], prediction uncertainty [25], [26], or improve-
ment [2] of a forward dynamics or value model as intrinsic
rewards. As a result, the agent is driven to reach regions of
the environment that are difficult to reason with the current
model. Our proposed method also follows these works, but
instead studies the exploration problem in a multisensory
perception setting, which is becoming more common for
modern robots.

A concurrent work from Dean et al. [27] has also demon-
strated the effectiveness of using multisensory signals as
intrinsic rewards. Specifically, they focus on the association
of audio and visual signals as intrinsic rewards for reinforce-
ment learning exploration. Different from them, our multi-
sensory incongruity contains both perceptual incongruity and
action incongruity.

b) Multimodal Self-supervised Learning.: Self-
supervised methods learn features by training a model
to solve a pretext task derived from the input data itself,
without human labeling. A variety of pretext tasks have been
proposed to learn representations from different modalities.
Several works leverage the natural correspondence [28],
[29] and synchronization [30], [31] between the audio
or tactile and RGB streams to learn representations. In
our work, we also used the natural correspondence and
synchronization of different modalities and we proposed the
novel method to utilize these relations and compute intrinsic
reward signal for the exploration algorithm. Recent works
have also found that multi-modal learning can lead to more
robust representations as they can partly account for the
different learning speeds of the different modalities [32].

c) Noise-contrastive Estimation.: Noise-contrastive es-
timation [33], [34], [35] measures the compatibility between
sample pairs in a representational space and is at the core of
several recent works on unsupervised feature learning [36],
[37], [33], [29], [38]. It reduces a density estimation problem
into a simpler probabilistic classification problem, circum-
venting the need to design handcrafted tasks in the raw
signal space. Contrastive learning has recently been shown to
yield good performance for image and video representation
learning [39], [37], [40]. Prominently, Chen et al. [38]
demonstrated that proper combination of data augmentation
strategies and noise-contrastive re-identification achieves su-
perior unsupervised learning results. In our work, we build
the positive-negative pair of data augmentation by utilizing
the temporal correspondence throughout the experience of
the agent.

III. METHOD

SEMI is a self-supervised exploration policy that in-
centivizes agents to maximize multisensory incongruities,
which we formulate as two aspects: perceptual incongruity
(Section III-A) and action incongruity (Section III-B). Both
incongruities are fed to the agent as intrinsic rewards to
encourage its exploration. Figure 2 gives an overview of the
pipeline of SEMI, and we will detail each sub-module in the
following.

a) Notation.: Given an agent’s current observation Ot
at time t, our goal is to generate intrinsic curiosity reward
rt so that the agent learns a policy π to explore unknown
and difficult environment. In this paper, we focus on the
multisensory setting, where the agent observes a set of
perceptual inputs Ot = {o1t , o2t , ..., oMt }, where M is the
number of modalities, which could represent vision, audio,
touch, etc. By executing an action at produced by the policy,
the agent further observes the next state, which we denote
as Ot+1 = {o1t+1, o

2
t+1, ..., o

M
t+1}.

A. Multisensory Perceptual Incongruity

The synchrony of multiple senses is a fundamental prop-
erty of natural event perception. We humans are extremely
sensitive to the incongruity between these senses, which
is a strong signal of novelty. For example, if a common



Fig. 2: SEMI pipeline overview: at time step t, an agent takes action at given a multisensory observation Ot as input and ends up in a
new state. The multisensory fusion model takes a new observation Ot+1 as input and predicts whether these sensory inputs are aligned.
The prediction loss is used as the measure of perceptual incongruity. The variance of actions suggested by the policy network given
different combination of multisensory inputs is used to measure action incongruity. Both incongruities are used as intrinsic rewards to
train the policy π.

object makes an uncommon sound, we are motivated to
further interact with this object to gain better knowledge
about it. Inspired by this observation, we aim to use such
novel association signals as curiosity to drive an RL agent
to explore unfamiliar states.

To guide an agent to explore novel states, we propose an
alignment predictor to discover the perceptual incongruity.
Alignment prediction can take various forms, one possible
design is to predict one sensory stream from other streams.
For example, we could generate sounds from a corresponding
visual input, or generate images from its sounds. However,
generating data in the raw signal space is proved to be
challenging, since (1) it does not handle the cases of multiple
possible targets, (2) it suffers from overfitting to trivial details
or noises [5].

A better idea is to predict the compatibility of multisensory
streams in the latent space. Along the idea of contrastive
learning [39], [38], our design of alignment predictor directly
maximizes the agreement between different modalities of the
same event. This is achieved by predicting positive (aligned)
modality streams from negative ones via a contrastive loss
penalty in the latent space. The predicted alignment score
can then be used as an indicator of perceptual incongruity.

Concretely, the alignment predictor comprises the follow-
ing two major components.
• A set of neural network base encoders (f1(·), ..., fM (·))

that extracts representation vectors from each modality. Our
framework is agnostic to the choices of neural network
architectures. In the following experiments, we use a 2D
ConvNet to extract RGB visual features, another 2D ConvNet
to obtain depth features, and a Short Time Fourier Transform
(STFT) followed by a 1D ConvNet to extract the audio
features.
• A contrastive loss function defined for a contrastive

learning. Given one sensory stream oj from a multisensory
observation O = {oi}|i=1,...,M (we omit time t in the
following for brevity), we define the other M − 1 simul-

taneous sensation streams {oi}|i 6=j as positive examples. In
a minibatch of N observations, there are M×(N−1) sensory
streams from other modalities, which can be used to build
misaligned examples. The contrastive prediction task aims
to identify aligned sensory streams from these misaligned
examples.

The similarity of a pair of multimodal observation (oi, oj)
are measured by the cosine distance, i.e.

sim(oi, oj) = cos(fi, fj) =
fTi · fj
||fi|| · ||fj||

, (1)

where fi = fi(o
i), fj = fj(o

j) are features from different
modalities. Then the contrastive loss function for a pair of
positive observation (oik, o

j
k) is defined as

L(oik, o
j
k) = −log

exp(sim(oik, o
j
k)/τ)∑N

n=1

∑M
m=1

exp(sim(oik, o
m
n )/τ)

, (2)

where τ denotes a temperature parameter.
The multisensory perceptual incongruity of an obser-

vation Ok is then defined numerically as the sum of
losses of all possible multisensory pairs from the same
timestep, which can be used as an intrinsic reward rp =∑M
i=1

∑M
j=i+1 L(oik, o

j
k).

B. Multisensory Action Incongruity

Congruity in actions is inspired from the fact that human
perception is robust to the partly loss of senses, and humans
have an exceptional ability to compensate for the loss with
other senses. For example, an experienced driver can predict
if cars are coming up from nearby lanes just from sound
noise, without turning his/her head to look. If we make
different decisions with different sensory inputs, it suggests
we have low confidence of the event we experienced, e.g.an
inexperienced driver might change lane recklessly without a
good understanding of the distance of cars from the sound
noise. Inspired by the above observation, we further aim to
use the action incongruity as an indicator of novelty in RL
exploration.



Here we implement the action incongruity via drop of
senses. Proposed by Srivastava et al. [41], dropout has been
widely used to prevent neural networks from overfitting [42],
[43]. Gal et al. [44], [45] further cast dropout training in deep
neural networks as approximate Bayesian inference in deep
Gaussian processes, which offers a mathematically grounded
framework to reason about model uncertainty.

We adopt a similar approach by taking a sensory-wise
dropout strategy during sensor fusion for the policy network.
Then multisensory action incongruity is defined as the di-
vergence of actions suggested by the policy network given
different combinations of multisensory observations.

Specifically, we combine features of different modalities
with dropout to obtain a fused perceptual feature z,

z =
1∑M
i=1 1

i
(

M∑
i=1

1ifi) (3)

where 1i ∈ {0, 1} indicates the existence of fi. Apparently,
different combinations of 1i will lead to different z. We
collect the action outputs from the policy network πr given
all possible inputs z’s (2M − 1 possible inputs in total),
and define the variance of these actions as the multisensory
action incongruity. The action incongruity is further used as
an intrinsic reward ra for exploration,

ra =
1

2M − 1

2M−1∑
k=1

||πr(zk)−
1

2M − 1

2M−1∑
k=1

πr(z
k)||22. (4)

C. Multisensory Incongruities as Intrinsic Rewards

To summarize, we use both multisensory perceptual in-
congruity and multisensory action incongruity as intrinsic
rewards. It is worth noting that the policy network πr used
to calculate intrinsic reward rat is different from that used for
exploration π. Inspired by Double Q-learning [46] and Dual
Policy Iteration [47], πr, with parameters θ being the same as
π except that its parameters are copied every τ steps from
the π. This simple strategy not only reduces the observed
overestimations, but also leads to better convergence.

At time step t, the agent takes action at given multisensory
observation Ot with modality dropout as input and receives
a new observation Ot+1 and intrinsic reward in calculated as
rt = rpt + γ × rat , where γ is a weight factor. The agent is
optimized using PPO [48] to maximize the expected reward
according to

max
θ

Eπ(Ot;θ)(
∑
t

rt). (5)

IV. EXPERIMENTS

We evaluate the performance of SEMI in two envi-
ronments, OpenAI Robotics and Atari. Three settings are
considered and discussed: exploration with multisensory
incongruity only (Section IV-A), combining multisensory
incongruity with extrinsic reward (Section IV-B), and com-
bining multisensory incongruity with other intrinsic rewards
(Section IV-C).

A. Exploration via Multisensory Incongruity

1) Environment and Setting:
a) OpenAI Robotics: We evaluate our method on Ope-

nAI Robotics [49], where robot receives RGB image and
Depth image as two modalities, and controls the gripper
Cartesian movement, gripper rotation as well as gripper open
or close.

b) Atari: We also evaluate our method on Atari games,
where vision and audio are considered as multi-modal inputs.
We use Gym Retro [50] in order to access game audio.

Further details for the two evaluation environments are
described in the supplementary materials.

2) Training Details: In general, we used 5 convolutional
layers to extract RGB features, a similar network to extract
depth features or 5 consecutive frames channel-wise spec-
trum to represent audio feature. We used a 4-layer multi-
layer perceptron (MLP) as our policy network and used PPO
to maximized the intrinsic reward with an Adam Optimizer.
During training, all rewards that are collected in trajectories
will be replaced or added by intrinsic reward. Further details
in training the agent in OpenAI Robotics and Atari Games
are described in supplementary materials.

3) Results:
a) OpenAI Robotics: Table I shows the exploration

performance of object manipulation using the multisensory
incongruity, which are measured by the frequency at which
our agent interacts (i.e., touches) with the object (i.e.. inter-
action rate). The interaction rate is defined as #trials robot
interact with object/#total trials.

We evaluate two different versions of our method. We first
use only the multisensory perceptual incongruity as our in-
trinsic reward, as described in Section III-A. Second, we use
both multisensory perceptual incongruity and multisensory
action incongruity as our intrinsic reward.

We compare SEMI to Curiosity [5], [23] and Disagree-
ment [51] as our baselines. Also, we compared with a
random policy as a sanity check, which samples its action
uniformly from the action space.

As shown in Table I, our method outperforms all of
these baselines. The method of Disagreement [51] has a
performance close to that of our method.

We perform an ablation analysis to quantify the per-
formance of each component of our system (4th and 5th
row in Table I). We see that both multisensory perceptual
incongruity and multisensory action incongruity contribute
to the robot exploration.

b) Atari: We also test out method in Atari MsPacman,
Assault, AirRaid, Alien, Space Invaders, Breakout, and Beam
Rider. Figure 3 shows the extrinsic reward of some Atari
games during exploration with SEMI in comparison of
intrinsic reward via RND, Curiosity and Disagreement. It
should be pointed that during training the agent only has
access to the intrinsic reward. As illustrated in Figure 3, our
method converges faster and achieves better performances
comparing with all baseline methods. The reason is that
audio signals are always triggered by significant events (e.g.
eating pellets). The highly temporal-aligned signal from



Exploration Strategy Interaction Rate (1
objects)

Convergence Itera-
tion

Interaction Rate (1
of 3 objects)

Uni-IR

Curiosity 2.7% 25 8.3%
Random 8.4% 0 22.6%

Disagreement 26.3% 23 64.3%
SEMI (P) 30.5% 20 81.4%

SEMI (PA) 34.4% 33 82.1%

Multi-IR
Curiosity + SEMI (PA) 35.8% 36 83.3%

Disagreement + SEMI (PA) 37.1% 35 83.8%

TABLE I: We measure the exploration quality by evaluating the object interaction frequency of the agent trained with different intrinsic
rewards (Row 1-5) and a combination of intrinsic rewards (Row 6-7).

Fig. 3: We compare different intrinsic reward formulations across different Atari games. We run three independent runs of each algorithm
and show the mean extrinsic reward during training. SEMI far outperforms curiosity-based baseline and disagreement-based baseline, and
also learns more efficiently.

different sensory modalities can be explicitly utilized when
we are computing the contrastive loss function. Thus, the
multisensory incongruity is more indicative compared with
curiosity and disagreement baselines, which are influenced
by the stochasticity of the environments.

B. Combining with Extrinsic Reward

Considering our proposed intrinsic rewards are designed
to guide the agent to explore the environment, will they allow
the agent to explore well when the extrinsic reward is sparse?
To verify this, we conduct additional experiments in OpenAI
Robotics and Atari Games. While the network architecture
and training schema are exactly the same as Section IV-A,
we use the sum of SEMI and extrinsic rewards as training
signal,

Rt = rt + β × r(e)t (6)

where r(e)t is the external reward provided by the environ-
ment. We set β to 1 in all the experiments.

Figure 4 shows the episodic extrinsic reward of the
FetchPush, Pickup and Place, FetchSlide task training with
multisensory incongruity against without using intrinsic re-
wards. The extrinsic rewards are sparse and binary: The agent
obtains a reward of 0 if the goal has been achieved (within
some task-specific tolerance) and −1 otherwise. Training
with SEMI significantly improves the learning efficiency
compared with training with only sparse extrinsic reward.
By adding action variance in SEMI paradigm (PA), the
performance improves further when policy model learns
meaningful mapping from observation to action.

We also tested the experiments on Atari MsPacman, Air-
Raid, Assault, and Alien. Figure 5 shows the effectiveness
of our method for efficient exploration in these Games.

Training with SEMI always leads to a faster convergence,
which indicates that it is able to speed up exploring the
environments. Besides, the final performance of the agent
does not deteriorate with faster convergence, showing the
compatibility of SEMI with any extrinsic rewards.

C. Combining with Other Intrinsic Rewards
We further show that exploration via multisensory incon-

gruity is complementary to some other self-supervised explo-
ration methods, e.g. prediction-based curiosity. To demon-
strate this, we simply sum the multisensory incongruity
with other intrinsic rewards, and use it to train the agents.
We evaluate this setup in both OpenAI Robotics and Atari
Games. The network architecture and training schema are
exactly the same as mentioned in Section IV-A.

Table I (5th and 6th row) shows the interaction rate of
object manipulation during exploration with a combination of
intrinsic rewards, which sums two intrinsic reward directly as
the total intrinsic reward for the agent. The agent maximizing
the sum of multiple intrinsic rewards explores better than an
agent maximizing single intrinsic rewards, which shows that
SEMI is complementary to many existing intrinsic rewards.

Similarly, We combine our method with other intrinsic
rewards on MaPacman, Assault and AirRaid. Figure 6 shows
the extrinsic reward of Atari during exploration with a
combination of intrinsic rewards. On environment such as
AirRaid, the extrinsic reward converge significantly faster
than trained with only visual prediction or SEMI method.
But on environments like Alien and Space Invaders, the
performance does not improve compared to the visual pre-
diction baselines no matter whether multisensory incongruity
outperforms curiosity. Since it is unclear how the intrinsic
rewards will affect each other when trained jointly, it is
possible that optimizing some rewards can bring negative



Fig. 4: Comparison of episodic extrinsic rewards of the agent trained with and without multisensory incongruity in the Fetch-Pushing
task. Training with SEMI significantly improves the learning efficiency compared with training with only sparse extrinsic reward.

Fig. 5: Comparing the performance of the agent trained with multisensory incongruity against without using intrinsic rewards across
different Atari games. We run three independent runs of each algorithm and show the mean extrinsic reward during training. Training
with SEMI always leads to a faster convergence.

Fig. 6: Comparing the performance of the agent trained with multisensory incongruity joint with other intrinsic rewards against trained
with multisenory incongruity alone across different Atari games. We run three independent runs of each algorithm and show the mean
extrinsic reward during training.

impacts on the others, which will lead to a worse exploration
efficiency.

D. Failure Cases
While SEMI generally shows improvement in exploring

the environment and is compatible with training with extrin-
sic reward, there are still some Atari environments where
it does not improve exploration efficiency. We dig into the
games and analyze the feature of them to explain why these
environments lead to failures.

a) The game presents constant sound patterns: For
example in Beam Rider, there is a fixed background sound
whenever the agent makes a move. Thus, the multisensory
incongruity method will not learn useful patterns to distin-
guish the incongruity even in the basic situations, therefore
the agent cannot learn from any meaningful intrinsic reward
signal.

b) The game shows trivial multisensory association:
In environments like Breakout, the audio is almost the same
when the agent is interacting with the environment, i.e. the

sound in Breakout only indicates the ball is making contact
with objects in the scene. The multisensory incongruity
module could easily distinguish the incongruity in almost
all cases in the game. A newly reached game situation will
not lead to high intrinsic rewards. Therefore, multisensory
incongruity method cannot motivate the agent to explore
unseen situations.

V. CONCLUSION

In conclusion, we proposed SEMI, a self-supervised ex-
ploration strategy by incentivizing the agent to maximize
multisensory incongruity. We showed that through the use of
multisensory perceptual incongruity and multisensory action
incongruity, our learned policy can explore the environment
efficiently. We also showed the compatibility of our proposed
method with extrinsic rewards and other intrinsic rewards.

We hope that our work paves the way towards to a
direction for intelligent agents to continually develop knowl-
edge and acquire new skills from multisensory observations
without human supervision.
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