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Abstract— Understanding decentralized dynamics from col-
lective behaviors in swarms is crucial for informing robot
controller designs in artificial swarms and multiagent robotic
systems. However, the complexity in agent-to-agent interactions
and the decentralized nature of most swarms pose a significant
challenge to the extraction of single-robot control laws from
global behavior. In this work, we consider the important task
of learning decentralized single-robot controllers based solely on
the state observations of a swarm’s trajectory. We present a gen-
eral framework by adopting knowledge-based neural ordinary
differential equations (KNODE) – a hybrid machine learning
method capable of combining artificial neural networks with
known agent dynamics. Our approach distinguishes itself from
most prior works in that we do not require action data for
learning. We apply our framework to two different flocking
swarms in 2D and 3D respectively, and demonstrate efficient
training by leveraging the graphical structure of the swarms’
information network. We further show that the learnt single-
robot controllers can not only reproduce flocking behavior in
the original swarm but also scale to swarms with more robots.

I. INTRODUCTION

Many natural swarms exhibit mesmerizing collective be-
haviors, and have fascinated researchers over the past decade
[1], [2], [3], [4], [5]. A leading question is how do these
global behaviors emerge from local interactions. Such fasci-
nation has led to much developments in artificial swarms and
multi-agent robotic systems to emulate the swarms in nature.
[6], [7], [8]. Central to these developments is the task of
single-robot swarm controller synthesis, which has enabled
deployment of robot swarms that respects task specifications
and real-world constraints.

Some of the earliest works on developing swarm con-
trollers rely heavily on physical intuitions and design con-
trollers in a bottom-up fashion. Boids was developed by
combining rules of cohesion, alignment, and separation to
mimic the flocking behavior in natural swarms [6]. Self-
driven particles were used to model the emergence of collec-
tive behaviors in biologically motivated swarms [9]. Flocking
controllers with provably correct stability guarantees have
also been developed for swarms with fixed and dynamic
communication network topologies [7], [10]. These early
works laid the foundation of decentralized swarm control and
offered a glimpse of the myriad of possible swarm behaviors
achievable using local single-agent controllers.
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In recent years, deep learning has enabled pattern discov-
ery from complex and high-dimensional data sets. The use
of neural networks (NNs) have shown promising results in a
wide range of applications owing to their expressive power.
This has opened up potential avenues for data-driven learning
of single-robot swarming control strategies in more efficient
and scalable ways. In this work, we leverage recent advances
in scientific machine learning and employ knowledge-based
neural ordinary differential equations (KNODE) [11] for
learning swarm controllers directly from observations of a
swarm. We demonstrate that through our top-down approach
to controller synthesis, global behaviors of different swarms
can be successfully reproduced based on the past observa-
tions of their evolution.

II. RELATED WORKS

Various data-driven methods have been used to model
local control policy in swarms. Feedforward neural networks
have been used to approximate decentralized control policies
by training on the observation-action data from a global
planner [12]. Furthermore, deep neural networks have been
used to model higher order residual dynamics to achieve
stable control in a swarm of quadrotors [13]. Recently,
graph neural networks (GNN) have been extensively used
in swarms, owing to their naturally distributed architecture.
GNN allows efficient information propagration through net-
works with underlying graphical structures [14], and have
been noted for their stability and permutation equivariance
[15]. Decentralized GNN controllers have been trained with
global control policies to imitate swarm behaviors [14], [16].
All these works pose the controller synthesis problem as an
imitation learning problem, and require knowledge of the
actions resulting from an optimal control policy for learning
or improving the local controllers. In practice, action data
can be difficult to access, especially when learning behaviors
from natural or adversarial swarms. In addition, GNNs can
potentially allow a robot to access the state information of
robots outside its communication range through information
propagation. The true extent of decentralization may there-
fore be limited when more propagation hops are allowed.

Deep reinforcement learning has also been applied to
swarms for various applications [17]. Early works like [18]
learn a decentralized control policy for maintaining distances
within a swarm and target tracking. An inverse reinforcement
learning algorithm was presented in [19] to train a decen-
tralized policy by updating the reward function alongside
the control policy based on an expert behavior. In addition,
GNNs have also been used within the reinforcement learning
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framework for learning connectivity for data distribution
[20]. However, reinforcement learning is usually employed
to solve task-specific problems with well-defined goals and
need to tackle the challenge of reward shaping. The specific
objectives of swarms may be difficult to discern from only
observations, and therefore reinforcement learning is often
not suitable for learning global behaviors from solely obser-
vational data.

The contribution of this work is three-fold. First, we
demonstrate the feasibility of learning single-robot con-
trollers that can achieve the observed global swarming be-
haviors from only swarm trajectory data. Second, we propose
a generalized model for incorporating known robot dynamics
to facilitate learning single-robot controllers. Lastly, we show
how to efficiently scale KNODE for learning from local
information in a multi-agent setting.

III. PROBLEM FORMULATION

We consider the problem of learning single-robot con-
trollers based on the observations of the trajectory of a
swarm. We assume that the swarm is homogeneous, i.e.,
all robots in the swarm use the same controller. Given a
swarm of n agents, we make m observations at sampling
times T = {t1, t2, ..., tm}, ti ∈ R given by

ZT (t1)
ZT (t2)

...
ZT (tm)

 =


z1 (t1) z2 (t1) · · · zn (t1)
z1 (t2) z2 (t2) · · · zn (t2)

...
...

. . .
...

z1 (tm) z2 (tm) · · · zn (tm)

 ,
where the matrix Z(ti) ∈ Rn×d is the observations of the
states of all n agents at ti, and the vector zi(tj) ∈ Rd is the
state of agent i observed at tj with dimension d. For instance,
in a first-order system, an agent modeled as a rigid body
in a 3-dimensional space has d = 6, where the first three
dimensions correspond to the positions and the last three the
orientations. Our goal is to learn a single-robot controller
solely from the observations Z. Notice that control inputs
are not assumed to be part of the observations.

The evolution of each individual robot’s state can be
described by the true dynamics given by

żi(t) = fi(zi, ui), (1)

where zi is the state of robot i, and ui is its control law.
The function fi(·, ·) defines the dynamics given the state
of robot and control law ui. It is assumed that all robots
in the swarm have the same dynamics and control strategy,
and therefore we can drop the subscripts and rewrite (1) as
żi(t) = f(zi, u) for all i. The control law u is a function
of the states of other robots in the swarm, and defines the
interaction between robot i. For example, a communication
radius may be enforced by the control law u to let each robot
only interact with its neighbors.

The dynamics of the entire swarm can be written as a
collection of the single-robot dynamics as

Ż(t) = [ż1(t), ż2(t), · · · , żn(t)]T . (2)

Given the initial conditions of all robots Z0 at t0, the states
of all robots at t1 is given by

Z(t1) = Z0 +

∫ t1

t0

Ż(t)dt. (3)

In practice, the integration in (3) is performed numerically.
Our task is to find a single-robot control law parameterized
by θ as part of the single-robot dynamics given by

żi(t) = f̂(zi, ûθ), (4)

where ûθ is the single-robot control law parameterized by
θ. The learnt controller should best reproduce the observed
global swarm behaviors. Note that the high dimensionality of
a swarming system means that similar collective dynamics
can be achieved with very disparate collections of single-
robot trajectories. This suggests that it may be impractical to
predict each individual trajectory in a swarm over long time
horizons. Instead, we focus on learning and reproducing the
global behaviors of swarms based on metrics, which we will
formalize in later sections.

IV. KNOWLEDGE-BASED NEURAL ORDINARY
DIFFERENTIAL EQUATIONS (KNODE)

KNODE is a scientific machine learning framework that
applies to a general class of dynamical systems. It has been
shown to model a wide variety of systems with nonlinear and
chaotic dynamics, with robustness to noise and irregularly
sampled data [11]. In our problem, we assume a single-
robot dynamics in the form of (4). From a dynamical systems
perspective, f̂(zi, ûθ) is a vector field. This makes KNODE a
suitable method to learn f̂(zi, ûθ) because it directly models
vector fields using neural networks [11]. To put KNODE
in the context of our learning problem, given some known
swarm dynamics f̃(Z) as knowledge, KNODE optimizes for
the control law as part of a dynamics given by

żi(t) = f̂(zi, ûθ, f̃(Z)), (5)

where the control law ûθ is a neural network, and f̂ defines
the coupling between the knowledge and the rest of the
dynamics. While the original KNODE linearly couples a
neural network with f̃ using a trainable matrix [11], we note
that the way knowledge gets incorporated is flexible. In later
sections we will demonstrate how to effectively incorporate
knowledge for learning single-robot controllers. Furthermore,
the ability to incorporate knowledge will require less training
data [21], [11].

We minimize the mean squared error (MSE) between the
observed trajectories and the trajectories predicted from the
estimate dynamics using ûθ for robot i. A loss function is
given by

L(θ) =
1

m− 1

m−1∑
j=1

n∑
i=1

‖ẑi(tj+1, zi(tj))− zi(tj+1)‖22, (6)

where ẑi(tj+1, zi(tj)) is the estimated state of robot i at
tj+1 generated using the initial condition zi(tj) at tj , and



it’s given by

ẑi(tj+1, zi(tj)) = zi(tj) +

∫ tj+1

tj

f̂(zi, ûθ, f̃(Z))dt. (7)

Intuitively, the loss function in (6) computes the one-step-
ahead estimated state of all robots from every snapshot in
the observed trajectory, and then computes the average MSE
between the estimated and observed states for the entire
trajectory from t1 to tm−1.

Our learning task can then be formulated as an optimiza-
tion problem given by

min
θ

L(θ), (8)

s.t. żi = f̂(zi, ûθ, f̃(Z)), for all i, (9)

which includes the dynamics constraint for all robots in
the swarm. The parameters θ can then be estimated by
θ = argminθ L(θ). The gradients of θ with respect to
the loss can be computed by either the conventional back-
propagation or the adjoint senesitivity method. The adjoint
sensitivity method has been noted as a more memory efficient
approach than backpropagation, though at the cost of training
speed [22]. In this work, we use the adjoint method for
training similar to that in [23] and [11].

V. METHOD

In this section, we walk through the process for construct-
ing f̂(zi, ûθ, f̃(Z)) in the context of learning to swarm and
the incorporation of knowledge in the form of known single
robot dynamics.

A. Decentralized Information Network

We assume a robot in a swarm can only use its local
information as inputs to its controller. To incorporate this
assumption, we impose a decentralized information network
on the swarm. Specifically, we assume robots have finite
communication radii as denoted by dcr. In addition, each
robot can only communicate with a maximum number of
neighbors, including itself, as denoted by k. We refer to the
robots within this radius as the active neighbors. If there
are more than k neighbors within a robot’s communication
radius, the closest k neighbors are considered to be active.

We leverage the communication graph of the swarm to
compute the local information for each robot at each time
step. The communication graph at time t can be described
by a graph shift operator S(t) ∈ Rn×n, which is a binary
adjacency matrix computed based on dcr and the positions
of all robots at each time step. In this work, we treat
the communication radius dcr as a hyperparameter. Note
that the communication graph is time-varying because the
information network changes as robots move around in a
swarm. Then Sij(t) = 1 if the Euclidean distance between
agents i and j is less than or equal to dcr, and Sij(t) = 0
otherwise. The index set of the neighbors of robot i at time
t is therefore given by

Ni(t) = {j|j ∈ I,Sij(t) = 1}, (10)

where I = 1, . . . , n is the index set of all robots. Note that
set of neighbors of robot i also includes itself. At time t,
the information kept by robot i is the matrix Yi(t) ∈ Rk×d
given by

Yi(t) = g({zj(t)|j ∈ Ni(t)}, k), (11)

where the function g(·, k) maintains the dimension of the
matrix Yi(t), and forms the rows of matrix Yi(t) using the
state information of robot i’s active neighbors in ascending
order of their Euclidean distance from robot i. Naturally,
robot i’s state is always in the first row because its distance
to itself is 0. If there are fewer than k active neighbors
within a robot’s communication radius, the remaining rows
in Yi(t) are padded with zeros. In this work, k is treated as
a hyperparameter.

The matrix Y(t) represents the local information accessi-
ble to each robot at time t and it completes the decentralized
information network of the swarm. In summary, (10) and
(11) enforces the assumptions of finite communication and
perception radii for each robot.

B. Information Time Delay

In addition to a decentralized information structure, we
further assume that each robot only gets delayed state
information from its neighboring robots by a time lag τ .
This is to emulate the latency in agent communication in
real swarms. With time delay, the information accessible to
robot i in (11) becomes

Yi(t) =

[
zTi (t)

g ({zj(t− τ)|i 6= j, j ∈ Ni(t− τ)} , k − 1)

]
.

(12)
Fig. 1 shows an example of the information structure

described by (12) using k = 3. The process of constructing
Yi(t) for all t ∈ T in (10), (11) and (12) leverages
the graphical structure of the swarm’s information network.
During training, the collection of delayed neighbor infor-
mation is done efficiently through the matrix multiplication
S(t − τ)Z(t − τ), which leaves for each robot only the
state information of its neighbors at t − τ . Then for robot
i we append the ith row of [S(t − τ)Z(t − τ)] to its own
state zTi (t). Finally we only keep k rows of the resulting
matrix to form Yi(t). Compared to some GNN approaches
[14], [15], the information structure Yi(t) in our work is
more explicit. A robot with GNN controllers can only access
the diffused state information from other robots, i.e. the
neighbors’ information has been repeatedly multiplied by
the graph operators before reaching this robot. In this work,
we directly let each robot access the state information of
its active neighbors. In real-world implementation of robot
swarms, our proposed information structure in (12) is more
realistic as each robot can easily subscribe to or observe
its neighbors’ states. In addition, the information structure
Yi(t) enables scalable learning as we can treat the robots
in a swarm as batches. As a result, training memory scales
linearly with the number of robots in the swarm, and training
speed scales sub-linearly.
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Fig. 1. Decentralized information network for robot 0 with time delay τ ,
and 3 active neighbors. The image shows robot 0’s egocentric view, where
8 neighbors are within its communication range dcr . Only the closest three
neighbors contribute to the information structure of robot 0. Their states
from t− τ are ordered based on their proximity to robot 0 to form Y0(t).

C. Knowledge Embedding

In this work, a potential-function-based obstacle avoidance
strategy similar to [24] is used as knowledge. Let the distance
between robot i and an obstacle O be dO(zi), where zi is
the state and includes the position of robot i. The potential
function is then given by

UO(zi) =

{
λ
2

1
d2O(zi)

if dO(zi) ≤ d0,
0 otherwise,

(13)

where λ is the gain, and d0 is the obstacle influence threshold
(i.e. the distance within which the potential function becomes
active). Based on this potential function, the repulsive force
to avoid the obstacle O is given by

FO(zi) =

{
−∇UO(zi) if dO(zi) ≤ d0,
0 otherwise,

(14)

When multiple obstacles are present, the repulsive forces
computed from each obstacle are summed for a resultant
repulsive force. For collision avoidance, we assume that each
agent will only actively avoid its closest neighbor within d0
at any given time.

Assuming that the robots in a swarm follow first-order dy-
namics, we combine the decentralized information network
in (11) and the knowledge in (14) into the dynamics given
by

żi = f̂(zi, ûθ(Yi, zi))−
∑
j

λj∇UOj
(zi), (15)

where uθ is a neural network, and λj is a trainable gain for
avoiding obstacle Oj . Note that Eqn. (15) further illustrates
how our framework differs from imitation learning. While
żi and ûθ are the learnt dynamics and control policy which
drive the system, they do not have to be part of the training
data.

VI. LEARNING TO FLOCK IN 2D

We first use a global controller proposed by [7] to generate
observations for our learning problem.

A. Simulation in 2D and training

This global controller achieves stable flocking, which
ensures eventual velocity alignment, collision avoidance and
group cohesion in a swarm of robots. The robots follow the
double integrator dynamics given by

ṙi = vi,

v̇i = ui, i = 1, ..., n,
(16)

where ri is the 2D position vector of robot i, vi is its velocity
vector. The full state of each robot is therefore x = [r,v] ∈
R4. The control law ui is given by

ui = −
∑
j∈Ni

(vi − vj)−
∑
j∈Ni

∇riVij , (17)

where Vij is a differentiable, nonnegative, and radially un-
bounded function of the distance between robot i and j
[7]. The first summation term in (17) aims to align the
velocity vector of robot i with those of its flockmates,
while the second summation term is the total potential field
around robot i responsible for both collision avoidance and
cohesion [7]. The set Ni is the set of all robots in the swarm
for the global controller.

We use the explicit fourth-order Runge-Kutta method to
simulate the dynamics in (17) with a step time of 0.01.
Given n robots, their locations are initialized uniformly on
a disk with radius

√
n to normalize the density within the

swarm. The velocities of robots are initialized uniformly
with magnitudes between [0, 3]. Additionally, a uniformly
sampled velocity bias with magnitude between [0, 3] is added
to the swarm. A total of 50 trajectories are simulated, each
with a total of 2000 steps. The lengths of the trajectories is
chosen such that the swarms will converge to stable flocking.
We use 30 trajectories as the training data, and the remaining
20 as the testing data. We added zero-mean Gaussian noise
with variance 0.001 to the training trajectories. This is known
as stabilization noise in modeling dynamical systems and has
been shown to improve model convergence [25].

The training model follows (15). There are no obstacles
to avoid in the 2D case, so the potential function is only
used to avoid collision among the agents. Specifically, we
let each robot avoid its closest neighbor at every time step.
For the controller ûθ, we use a one layer neural network
with 128 hidden units, and a hyperbolic tangent activation
function. The trainable gain for collision avoidance is defined
as λ = a + φ2, where a is a positive number for setting
the minimum amount of force to avoid collision. The single
parameter φ is trained together with the neural network. We
do not assume information delay in the 2D case.

B. Evaluating flocking in 2D

We evaluate 2D flocking behavior using two metrics:
Average velocity difference (avd) measures how well the
velocities of robots are aligned. It is given by

avd(t) =
2

n(n− 1)

∑
i6=j

||vi(t)− vj(t)||2. (18)



Average minimum distance to a neighbor (amd) measures
the cohesion between agents in both 2D and 3D when
flocking is achieved. It is given by

amd(t) =
1

n

n∑
i=1

min
j
||ri(t)− rj(t)||2. (19)

amd should decrease as the robots move closer together, but
it should not reach zero if collision avoidance is in place.
To generate trajectories using the learnt controller, we use it
to replace (17) in the dynamics described by Eqn. (16) for
acceleration control.

C. 2D Results

Fig. 2 shows four snapshots of the swarm trajectory gen-
erated using the trained single-robot controller, and provides
a qualitative comparison between the prediction and ground
truth. The controller used to produce these snapshots were
trained with dcr = 5 and k = 6. The robots are initialized
using the initial states from the testing trajectory. It can be
observed that the predicted swarm achieves velocity align-
ment while the robots stay apart from each other, indicating
the emergence of flocking behavior. This can be further
verified by the metrics for 2D flocking as shown in Fig.
3. The predicted swarm trajectory follows similar trends as
the ground truth under both metrics.

Furthermore, we deployed the trained controller on larger
swarms to test its scalability. Each of these swarms are uni-
formly initialized in a ball around the origin, with the same
robot density as the training data. Fig. 5 shows the controller
performance on swarms of sizes from 10 to 90. It can be
observed that amd remains largely consistent, demonstrating
that collision avoidance is effective and cohesion is in place
even as the swarm size increases. Although avd degrades as
the swarm size increases, it remains low enough that some
velocity alignment is achieved. As a qualitative illustration,
Fig. 4 shows six snapshots of a swarm of 100 robots using the
learnt controller. Although qualitatively velocity alignment
can be observed in the predicted trajectories from the snap-
shots, the global behavior is different from the simulation.
This is because the simulation uses the global controller
while our prediction uses the decentralized controller learnt
from the 10-agent data. In other words, the predictions are
the best effort to mimic the centralized 100-agent swarm
using the learnt decentralized controller. We do note that with
some initialization, the predicted 100-agent swarm tends to
split into subswarms. This is not unexpected since stability
of the original controller is only guaranteed under certain
conditions [7], [10].

We further conducted analysis on the hyperparameters
dcr and k with respect to 2D flocking. Grid searches are
performed on both avd and amd by varying dcr and k. For
each grid, the average of the last 10 steps of a 2000-step
trajectory are computed for 20 different initial conditions.
The average over these 20 different initial conditions is then
reported in the grid. It can be observed from Fig. 6 that the
avd is poor for both small values of dcr and k, while amd

(b) t=100

(c) t=600 (d) t=1200

(a) t=0

Fig. 2. Predicted trajectory of 10 robots using the learnt controller (dcr =
5, k = 6) with the same initial states as the testing trajectory (ground
truth). The subfigures (a)(b)(c)(d) show the snapshots of the swarm at t =
0, 100, 600, and 1200 respectively.

av
d

am
d

(a) (b)

Fig. 3. The metrics for the learnt 2D controller (dcr = 5, k = 6) show (a)
average velocity difference, and (b) average minimum distance to a neighbor.
The 95% confidence intervals are based on 20 sets of testing trajectories.

is largely affected by dcr only. This grid search result agrees
with intuition and can help with hyperparameter selection.

VII. LEARNING TO FLOCK IN 3D

Next, we apply our learning method on the 3D simulation
of boids. Boids was introduced to emulate flocking behaviors
and led to the creation of artificial life in the field of
computer graphics [6]. The flocking behavior of boids is
more challenging to learn because (1) they have higher
dimensionality, and (2) their steady state flocking behavior is
more complex than the 2D flocking in the previous section
when the swarm is confined within limited volume.

A. Simulation in 3D and training

Boids are simulated based on three rules:
• cohesion each boid moves towards the average position

of its neighboring boids.
• alignment each boid steer towards the average heading

of its neighboring boids.
• separation each boid steer towards direction with no

obstacles to avoid colliding into its neighboring boids.
While cohesion and collision avoidance are grouped into one
term in the 2D flocking case, boids use two separate terms.
Furthermore, the boids in simulation are confined in a cubic
space and are tasked to avoid the boundaries.



(a)
t = 0

(b)
t = 200

(d)
t = 800

(e)
t = 1000

(c)
t = 400

(f)
t = 1200

Fig. 4. Predicted trajectory of 100 robots using the learnt con-
troller (dcr = 5, k = 6) with uniformly initialized positions. The
subfigures (a)(b)(c)(d)(e)(f) show the snapshots of the swarm at t =
0, 200, 400, 800, 1000 and 1200 respectively.

(a) (b)

Swarm size Swarm size

av
d

am
d

Fig. 5. Box plot of (a) average velocity difference (avd), and (b) average
minimum distance to a neighbor (amd) on scaling to different swarm sizes
using a trained controller in 2D. For each swarm size, the box represents
the statistics of 15 runs using different initial conditions.

Boids are simulated in Unity [26]. We follow the default
settings with a minimum boids speed of 2.0, a maximum
speed of 5.0, a communication radius of 2.5 (ball), a collision
avoidance range of 1.0, a maximum steering force of 3.0, and
the weights of cohesion, alignment, and separation steering
force are all set to 1.0. For obstacle avoidance we set the
scout sphere radius as 0.27, the maximum search distance
as 5.0, and the weight of obstacle avoidance steering force
as 10.0. Boids are simulated in a cubic space with an equal
side length of 10, with each axis ranging from −5 to 5. The
boids’ positions are randomly initialized within a sphere of

(a) (b)

k

dc
r

dc
r

k

avd amd

Fig. 6. Grid search on (a) the average velocity difference (avd) and (b)
average minimum distance (amd) to a neighbor using different communi-
cation radii and number of active neighbors. The grid values are computed
as the average over trajectories using 20 different initial conditions.

radius 5 centered at origin, and their velocities vectors are
randomly initialized with a constant magnitude.

Unity can log both the positions and velocities of boids.
However, to make the learning task more challenging, we
only use the positions and orientations of the boids for train-
ing. For a swarm of 10 boids, we simulate 22 trajectories,
each with a total of 1700 steps. We discard the first 10 time
steps to remove simulation artifacts (There are ’jumps’ in the
first few steps of simulation) and only use the remaining 1690
steps. We use 2 trajectories for training and the remaining 20
as the testing data. Zero-mean Gaussian noise with variance
0.01 is added to the training trajectories.

The training model follows (15). The controller ûθ uses
a one layer neural network with 128 hidden units and a
hyperbolic tangent activation function. In addition to colli-
sion avoidance, we also include the knowledge for avoiding
the boundaries of the cubic space. This is implemented by
treating the closest point on each boundary as an obstacle
at any given time. Collision and obstacle avoidance use
different gains, both of which are defined as λ = φ2, where
φ is trained. We further assume an information delay of 1.

B. Evaluating flocking in 3D

Average minimum distance to a neighbor (amd) from
(19) is also used for 3D flocking to measure the cohesion
between robots. However, avd is not a good metric for
evaluating flocking in 3D for two reasons: (1) boids only
achieve velocity alignment with the local flockmates because
of the presence of obstacles, and (2) boids form subswarms.
As a result, global velocity alignment is often not achievable
at steady state flocking. We instead compare the Proper
orthogonal decomposition (POD) modes of the true and
predicted trajectory to check how similar the energy distribu-
tions are in their respective dynamics. Built on singular value
decomposition, POD is a model order reduction technique
for nonlinear high-dimensional dynamical systems. It first
decomposes the trajectory of a system into orthonormal
modes, and then truncates the system by selecting from these
modes to form a low-rank basis that captures the most energy
of the system [27]. Systems with similar dynamics should
have similar distributions of POD modes when their energies
are arranged in descending order. To measure the shift in
the distribution of POD modes between the predicted trajec-
tories and ground truth, we further employ the Kullback-
Leibler divergence (KLD), which measures the statistical
distance between probability distributions [28]. Together, we
first perform POD on trajectories to find the distribution
of their energies. Then we apply KLD on the normalized
POD distribution to quantitatively measure the shift in this
distribution from the ground truth. We name this metric
POD-KLD. To generate trajectory predictions, we directly
use the learnt controller for velocity control of the swarm.

C. 3D Results

Fig. 7 shows a qualitative comparison between the testing
data and the trajectory generated by a controller trained
with dcr = 2 and k = 6 using the same initial conditions.



(b.i)
t = 0

(b.ii)
t = 400

(b.iii)
t = 800

(a.i)
t = 0

(a.ii)
t = 400

(a.iii)
t = 800

Fig. 7. Predicted trajectories of 10 robots using the learnt controller (dcr =
2, k = 6) and the same initialization as the testing trajectory (ground truth).
The subfigures (a.i)(a.ii)(a.iii) show snapshots of the ground truth trajectory
at t = 0, 400, 800, and (b.i)(b.ii)(b.iii) show the eventual flocking and the
formation process of subswarms at t = 0, 400, 800. The light blue lines
connect the neighbors in the swarm.
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Fig. 8. The metrics for the learnt 3D controller (dcr = 2, k = 6).
(a) Average minimum distance to a neighbor of the predicted trajectory
converges, and (b) the distribution of the first 10 POD modes of the
predictions and ground truth are similar. The 95% confidence intervals of
amd are based on 20 sets of testing trajectories.

The predicted trajectory shows the formation of subswarms
during steady state flocking similar to that of the testing
trajectory. Empirically the robots are more likely to form a
single swarm at steady state when the robots are initialized
closer to each other. The metrics for the learnt controllers
are shown in Fig. 8. It can be seen that group cohesion is
achieved as both the predicted and true swarm show similar
trends for amd. Furthermore, the distributions of POD modes
between the prediction and testing data are similar, indicating
similar dynamics.

We also test the scaling ability of the learnt controller
on larger swarms of sizes ranging from 10 to 90. Each of
these swarms are uniformly initialized in a ball around the
origin, with the same robot density as the training data. Fig.
9 shows the metrics on trajectories of different swarm sizes
using the same learnt controller. It can be observed that the
trend for amd is better than the 2D case as swarm size
increases. This can be explained by the fact that robots are
confined in a cubic space and do not travel too far from
each other. Fig. 10 shows comparison between predictions
and simulation when there are 50 robots. Notice that our
prediction forms subswarms with this size. This may also
occur in simulations of 50 agents in Unity. Both qualitatively
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Swarm size

Fig. 9. Box plot of (a) average minimum distance to a neighbor (amd), and
(b) POD-KLD of trajectories generated by a learnt controller on swarms of
different sizes in 3D. For each swarm size, the box represents the statistics
of 15 runs using different initial conditions.

(c)
t = 400

(b)
t = 200

(a)
t = 0

(f)
t = 1900

(e)
t = 1600

(d)
t = 1300

Fig. 10. The flocking of 50 robots using the learnt controller (dcr = 2, k =
6) with uniformly initialized positions. The subfigures (a)(b)(c)(d)(e)(f)
show the snapshots of the swarm at t = 0, 200, 400, 1300, 1600, 1900
respectively. The light blue lines connect the neighbors in the swarm.

and quantitatively, the controller learnt in 3D scales better
than that in 2D. One possible reason is that the 3D simulation
itself is decentralized, while the ground truth controller in 2D
is centralized. Hence, the predicted trajectories of a larger
swarm in 3D is closer to that in simulation.

A grid search is also performed on the hyperparameters
dcr and k for 3D flocking. The results are shown in Fig.
11. While a small k leads to poorer metrics, communication
range dcr does not affect the metrics as significantly as in
the 2D case. This may be due to fact that the swarm in
3D are confined in a fixed volume, and therefore the higher

(a) (c)

k

dc
r dc
r

k

amd (mean) POD-KLD

dc
r

k

amd (median)(b)

Fig. 11. Grid search on (a) the mean of average minimum distance to a
neighbor (amd), (b) the median of amd, and (c) the mean of KL divergence
of the POD modes using different communication radii and number of active
neighbors. The grid values are computed over trajectories using 20 different
initial conditions. For amd, the grids in white represent values greater than
3. It can be observed that k, the number of neighbors to keep has large
influence on the metrics.



density of robots leads to higher chance for the robots to
come within each other’s communication range even if their
communication range is small. Additionally, it can be seen
that not all trained models converge. Especially for small
k, cohesion may not be achieved in the resulting swarm.
Visual inspections reveal that these instances correspond
to when robots overcome the obstacle avoidance potential
function and leave the cubic space. Since such singular cases
increase the average amd dramatically, to better assess the
performance we also plot the medians of amd in Fig. 11.
Another observation is that the performance degrades slightly
for large k. This can be explained by the increase in the
number of neural network parameters – an increment of 1 in
k correspond to an increase of 256 parameters as the input
size increases. Since the training data and training time are
unchanged, a larger neural network may tend to underfit.

VIII. DISCUSSION

Our experiments show that the model proposed in (15) is
able to learn flocking in both 2D and 3D using appropriate
hyperparameters dcr and k. The choices of dcr and k and the
corresponding learnt controllers can inform how the extent
of decentralization can affect flocking behavior in robot
swarms. Furthermore, we note that the collision avoidance
strategy which we used as knowledge does not guarantee
collision-free trajectories. This is evident in Fig. 11 where
robots using some trained controllers leave the confined
box. However, the use of this collision avoidance strategy
demonstrates the flexibility of our proposed framework for
embedding known knowledge about single-robot dynamics,
and users are free to incorporate any knowledge including
but not limited to collision avoidance strategies.

IX. CONCLUSION AND FUTURE WORK

We have introduced an effective machine learning algo-
rithm for learning to swarm. Specifically, we applied the
algorithm to flocking swarms in 2D and 3D respectively. In
both cases, the learnt controllers are able to reproduce global
flocking behavior similar to the ground truth. Furthermore,
the learnt controllers can scale to larger swarms to produce
flocking behaviors. We have shown the effectiveness of
knowledge embedding in learning decentralized controllers,
and demonstrated the feasibility of learning swarm behaviors
from state observations alone, distinguishing our work from
prior works on imitation learning. For future work, we plan
to learn from real-world data, and implement the learnt
controllers on physical robot platforms. In addition, we hope
to employ neural networks with special properties to derive
stability guarantees for the learnt controllers.
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