
SafePicking: Learning Safe Object Extraction via Object-Level Mapping

Kentaro Wada, Stephen James, Andrew J. Davison
Dyson Robotics Laboratory, Imperial College London
{k.wada18, slj12, a.davison}@imperial.ac.uk

Abstract— Robots need object-level scene understanding to
manipulate objects while reasoning about contact, support,
and occlusion among objects. Given a pile of objects, object
recognition and reconstruction can identify the boundary of
object instances, giving important cues as to how the objects
form and support the pile. In this work, we present a system,
SafePicking, that integrates object-level mapping and learning-
based motion planning to generate a motion that safely extracts
occluded target objects from a pile. Planning is done by learning
a deep Q-network that receives observations of predicted poses
and a depth-based heightmap to output a motion trajectory,
trained to maximize a safety metric reward. Our results show
that the observation fusion of poses and depth-sensing gives
both better performance and robustness to the model. We
evaluate our methods using the YCB objects in both simulation
and the real world, achieving safe object extraction from piles.

I. INTRODUCTION
6D manipulation of objects enables robots to alter ob-

ject poses to a target state, to achieve tasks such as part
assembly [28], [34], object extraction from clutter [32],
[38], and arrangement in a specific configuration [10], [22].
Traditionally, manipulation pipelines have been composed
of perception that builds explicit scene representation with
objects (e.g., 6D poses) followed by planning that searches a
collision-free arm trajectory using the representation. As an
alternative, a learning-based approach has emerged recently,
which directly infers actions from observations (usually raw
sensor information) with implicit scene understanding.

Although the traditional pipeline has been successful in
structured environments, robotic manipulation in cluttered
environments is still challenging due to close contacts and
occlusions among objects. Prior work tackled this by com-
bining state-of-the-art object pose estimation and collision-
based motion planning [32], [38]; however, this pipeline has
struggled to safely and efficiently extract occluded objects in
a single step, causing potentially destructive effects on the
objects, which is particularly important for fragile objects.

For this challenge in the traditional pipeline, we replace
the collision-based motion planning with learning-based
planning [7], [15], [21], which receives as input some obser-
vation (e.g., images, object poses) and predicts the next best
action to take. To avoid undesirable consequences on objects
in a pile, we train the model with reinforcement learning
while penalizing the translations of non-target objects during
the extraction of a target object (e.g., Figure 1).

Despite the use of raw sensor observation being common
in prior work, semantic information such as object poses
can give important cues as to how robots should manipulate

Fig. 1: SafePicking extracts target objects with minimum de-
struction by generating a safe end-effector trajectory given a raw
depth observation and object poses from an object-level map.

objects. Object extraction requires a proper understanding of
the occluded parts of objects, and we empirically observe
that a learned model given object poses as input generates
better motions even with errors in the pose estimate.

On the other hand, however, when the pose estimate has
errors such as misdetection and pose-difference, a model
that only uses object poses (as in the learning-based game
agents [1], [2]) would only deteriorate its performance. To
handle these errors, we introduce raw observation along
with object poses, which enables a model to gain high
performance from the pose information as well as robustness
from the raw observation.

Our system, SafePicking, shown in Figure 2 is composed
of 1) object-level mapping to build a map with object
poses while exploring a target object, and 2) learning-based
motion planning to generate an end-effector 6D trajectory
from raw (depth images) and pose observations (predicted
object poses). The grasp point is determined to be the
centroid of the visible surface of a target object, and the
observations are transformed into the grasp point coordinate
to be agnostic to the grasp point (canonicalization). This
combination of object-level mapping and canonicalization
makes the subsequent learned model general to the object
position in a workspace, enabling the model to learn faster.

ar
X

iv
:2

20
2.

05
83

2v
2

 [
cs

.R
O

]
 1

 M
ar

 2
02

2

N

RGB-D
camera

Target
object

Object-level mapping

Target object extraction

Learning-based motion planning

Observation
fusion

Action
selection

MLP
Heightmap

Target
flags

Object
poses

Object
classes

Target mask

Fig. 2: System overview, which consists of 1) object-level mapping with volumetric reconstruction and pose estimation of detected
objects with an on-board RGB-D camera, and 2) learning-based motion planning with a model that recursively generates end-effector
relative poses with N steps for object extraction using estimated object poses and a raw depth observation in the form of a heightmap.

To our best knowledge, this is the first work that tackles
safe object extraction, in which a robot picks occluded
target objects with a single grasp minimizing the destructive
effect to the surrounding objects. In the experiment, we
demonstrate our integrated system in the real world.

In summary, the main contributions of this paper are:
1) Introducing safe object extraction as a novel manip-

ulation task, where a robot extracts a target object with
a single grasp while minimizing destructive effects.

2) Fusion of a raw observation and object poses in
learning-based motion planning, achieving high per-
formance and robustness to estimation errors.

3) Integrated robotic manipulation system that demon-
strates safe object extraction in the real world.

II. RELATED WORK

A. Manipulation with visual scene understanding
Manipulation of a grasped object has been a long-standing

problem that dates back to the beginning of robotic research.
Traditionally, 6D object manipulation has been tackled via
collision-based motion planning in the configuration space
of a scene constructed by another perception system or
manual annotations [5], [8]. Although this approach has been
widely used in industry, the planning component requires
complete (i.e., no missing objects) and fairly accurate scene
understanding, which is challenging in a cluttered scene.
There have been several attempts to increase the robustness
of visual perception [30], [4], [29]; however, object detection
and pose estimation can still struggle with complex object
piles due to close contacts and occlusions. To handle im-
perfect perception, recent work [27], [32], [38] integrated
perception with heuristics-based motion generation, which
works with an uncertain estimate of object configurations.
Although promising, this heuristics-based approach strug-
gles to handle arbitrary object configurations and requires
restricting the scene and target object that can deal with (e.g.,
requiring exhaustive distractor removal before picking the
target). In this work, we use learning-based motion planning
to maintain robustness even with imperfect perception.

B. Learning robotic manipulation
Recently, the use of deep learning for robotic manipulation

has become prevalent with its progress in visual recognition

with convolutional networks and observation-to-action policy
learning [20], [35], [14]. With convolutional networks, prior
work [21], [25], [37] demonstrated robotic grasping from a
single view without explicitly modeling object geometry. For
optimizing the policy for a sequential motion, other work
has applied deep reinforcement learning for discriminate
(i.e., targeted) grasping [7], [9], indiscriminate grasping [15],
[36], and retrieval [19]. Our work is along the line with the
work on discriminative object manipulation [7], [9], [19],
but instead focusing on how to manipulate objects after
grasping, which has not been well explored in previous work.
Moreover, we exploit object-level scene understanding in
the learning-based manipulation model by feeding estimated
poses along with a raw depth observation.

III. OBJECT-LEVEL MAPPING

To build a map of objects and find a target object in a
scene using an RGB-D camera sequence, we use object-
level mapping similar to prior work, MoreFusion [32]. The
mapping process consists of 1) single-view object detection
with learning-based object detection; 2) occupancy-based
volumetric reconstruction for object tracking and multi-
view fusion, and 3) pose estimation using the volumetric
reconstruction. To find a specific object, we query the object
geometry from the map using the class ID of the object,
which provides its mask and estimated pose.

A. Object detection from a single view

We use a state-of-the-art object detection model, Mask R-
CNN [11], which receives an RGB image and predicts object
classes and masks. Using the detected mask, we extract
the visible surface of an object from a depth image and
accumulate it in the following multi-view volumetric fusion.

Like prior work, we train an object detection model for
the YCB objects [3] using existing datasets [32], [33], which
contains both real and synthetic images. Although this model
is fairly accurate, it can generate false positives with a low
threshold of the detection confidence, so we use a relatively
high confidence threshold of 75%, as per [32]. Although this
high threshold favors false negatives in detecting objects,
the multi-view mapping allows the model to run in different
frames to find objects with a confident prediction.

B. Volumetric reconstruction in multiple views

We use occupancy volumetric reconstruction to track
objects and accumulate their depth observation in multiple
views. For efficient accumulation, we use an Octree-based
occupancy volumetric fusion framework [12]. Octree struc-
ture efficiently queries the associated voxel v for a 3D query
point in a new observation zt, and the occupancy probability
of the voxel p(v|z1:t) at time t is updated with a new
observation p(v|zt) with Baysian update:

L(v|z1:t+1) = L(v|z1:t) + L(v|zt) (1)
where L(x) = logit(p(x)) = log(p(x)/(1− p(x))).

As we collect observations zt with a moving camera, we
fuse them into an Octree-based volume, which filters sensor
noises to build accurate reconstruction.

To associate the 3D point from an observation zt to the
corresponding voxel vo ∈ V o of an object o, we have
two tracking mechanisms for a camera and objects. Camera
tracking gives the transformation of an observation zt to
the global coordinate system (i.e., map frame), and object
tracking gives the corresponding octree map V o to which
a new observation is accumulated. For camera tracking, we
use forward kinematics of a robotic arm and the rigid trans-
formation from the robot to the attached camera. For object
tracking, we render the mapped objects in the live camera
frame Mo. This rendered mask is compared with the detected
masks Di by object detection with computing the intersection
over the union (IoU) between them: (Mo ∧Di)/(M

o ∨Di).
When the IoU is over a threshold of 0.4, Di is recognized
as another observation of the object o and accumulated into
its octree V o along with a observed depth, otherwise a new
octree is initialized to map the new object.

C. Pose estimation

Using the volumetric reconstruction of objects, we esti-
mate an object pose to replace it with a CAD model. This
CAD model replacement gives full geometry of an object,
whereas the volumetric reconstruction only gives partial
geometry of the visible surface. We use a state-of-the-art
pose estimation model in MoreFusion [32], trained for the
YCB objects [3]. Following [32], we exploit different views
from a moving camera to acquire confident pose estimates.
Given a set of estimated poses, we compute the point-to-
point distance among the CAD models transformed with the
poses. We replace the volumetric reconstruction with a CAD
model when this process finds several matches.

IV. LEARNING OBJECT EXTRACTION

To train the motion planning model, we use deep Q-
learning [23], an off-policy, model-free reinforcement learn-
ing algorithm. This algorithm learns a policy that maximizes
the cumulative reward in an episode, using the collected
episodes through exhaustive exploration in action space.
We use the translations of objects as the negative reward
(i.e., penalty) in this algorithm so that the model learns
manipulation that minimizes destructive effects.

A. Grasp point selection

We select the centroid of the visible surface of a target
object as the grasp point: p = [px, py, pz]

ᵀ. The surface
geometry and mask of a target object are extracted from the
object-level map created in the preceding process. For the
orientation, we compute a quaternion q = [qx, qy, qz, qw]

ᵀ

that gives the minimal transformation to align the axis of a
suction cup vg to the surface normal of the grasp point vs:

[qx, qy, qz]
ᵀ = vg × vs (2)

qw =

√∑
i

v2
g,i +

∑
i

v2
s,i + (vᵀ

g · vs). (3)

B. Fusing raw and pose observations

We take advantage of both raw and pose observations by
feeding them as input to the model. The raw observation
is formed as a heightmap generated from depth images,
and the pose observation is extracted from the object-level
map. These two observations provide different properties.
The raw observation has few processes before being fed into
the model, so it is less prone to estimation errors. In contrast,
pose observation gives complete semantic and geometry
(e.g., occluded parts of the objects), which is missing in
the raw observation. The fusion of these two observations
enables the model to achieve both high performance in object
extraction (less destructive effects on a pile) and robustness
to estimation errors (e.g., misdetection, pose-difference).

Raw observation

For raw observation, we build a heightmap from depth
images. The heightmap represents the heights of object
surfaces on a planar workspace and gives information about
the visible surface of objects. We build the heightmap
centering the XY coordinates of the grasp point px, py in
the image coordinate of the heightmap for canonicalization
regarding the grasp point. We use 0.004m as the size that
each pixel represents and 128 as the image height and width
dimensions, giving ±0.256m (= 0.004 · 128/2) XY bounds.

Pose observation

As for the pose observation at training time, we extract
the ground truth object poses and classes from the simulator
that we use to train the manipulation model. At test time,
we extract object poses from the object-level map, which we
build using an on-board camera on a robot. We represent the
pose observation with target flags (O,) with a binary vector,
object classes (O, C) with one-hot vectors, and poses (O, 7)
as a pair of position (3,) and quaternion (4,), where O is the
number of detected objects and C is the number of classes.

Before we feed the pose observation into the model, we
canonicalize it similarly to the heightmap by centering the
grasp point in the pose coordinate. We subtract the XY
coordinates of the grasp point px, py from each pose of the
object, which aligns the pose observation along to the raw
observation (heightmap).

C. Model design

The model represents a Q-function that predicts the dis-
counted return given an observation ot at time t. Once
trained, we evaluate this Q-function over a set of actions
a ∈ A to take the highest-valued one â (the next best action):

â = arg max
a

Q(a, ot). (4)

Action

We formulate the action as a relative 6D end-effector trans-
formation discretizing each axis of translation and rotation.
We discretize the translation space in increments of 0.05 m
and discretize the Euler rotation space in increments of 22.5
degrees. Each axis has either 0, positive or negative value,
and their combinations give 36 = 729 actions.

This relative end-effector action is taken N times to
construct a 6D arm trajectory. To give the information of
previously taken actions, we feed the previous end-effector
poses as input to the model along with the other visual
observations (a heightmap; object poses).

Network architecture

Figure 3 shows the network architecture. The input
heightmap is downsampled by a convolutional (Conv) en-
coder to a feature vector. This feature vector is concate-
nated with object poses, and processed by a transformer
encoder [31]. With this transformer encoder, the model can
handle an arbitrary number and order of object poses given
as input. The output features from this encoder are averaged
(similar to [1]) to predict Q-value with a linear layer.

Along with the observations, the model receives two
inputs: an evaluation action and a previous end-effector tra-
jectory. The evaluation action is fed as a relative translation
and rotation. The previous end-effector trajectory represents
the actions the model has taken with a list of 6D poses,
allowing it to generate a consistent next action.

Target
flags

Previous
end-effector trajectory

Action
Q-value

M
ean

Linear

Transformer
encoder

Conv
encoder

Object
poses

Object
classes

Evaluation
action

Heightmap Target mask

Fig. 3: Network architecture, which uses a heightmap and
object poses to predict Q-value of 6D end-effector actions. We feed
end-effector relative motions as evaluation actions, from which the
best-scored action is selected as the next action.

Reward

The destructive effects on surrounding objects during
manipulation can be classified as follows:

• Falling, which happens when overlapping objects are
mainly supported by a target object and they fall after
the extraction of the target;

• Sliding, which happens when surrounding objects have
to be displaced to create a space to extract a target.

Both of these two effects are undesirable. The falling effect
can damage objects, and the sliding effect can expand the
pile, which can make subsequent task continuation harder.

To cover both effects in the reward, we use the sum of
the translations of non-target objects in a pile as the metric.
When an object falls a large distance, not only does the
translation of the object itself become significant, but it
can also hit other objects causing chain effects. By using
the “sum” of translations, we can encourage the model to
minimize the number of objects affected as well as the
translations of individual objects.

D. Training the model

We compute the reward rt at each time step t, and train
a deep Q-network to maintain the Bellman equation:

qt,a = Q(ot, a) (5)

q̂t,a = rt + γmax
a

Q̃(ot+1) (6)

L = |q̂t,a − qt,a|, (7)

where γ is the time discount of the reward, Q is the live
network updated every training step, and Q̃ is the target
network, a copy of the live network updated less frequently.

We train the model in a physics simulation environment
since, in the real world, it is difficult to track the motions
of objects to compute the reward. It would be also time-
consuming and challenging to build various configurations
of objects for each trial of a robot learning in the real world
while maintaining the safety of the robot and objects.

To let a robot experience various configurations of objects,
we procedurally generate object piles by simulating feasible
pile configurations. We define a 3D bounding box where
object models can be spawned. Each step randomly selects a
model and its pose, and we apply physics simulation until the
spawned object stops moving. This process produces diverse
object configurations.

V. EXPERIMENTS

We evaluate our method by assigning a robot to grasp and
extract a target object from object piles in both simulation
and the real world. For training the learning model in
simulation, we use the YCB models provided by [3], [33].

A. Training detail

We implement the learning model with PyTorch [24] and
the simulation environment with PyBullet [6]. We run a
single process to update the model parameters using action-
state paired data. This data is collected by multiple processes
that asynchronously run the learned model to act in different
environments for exploration. For this asynchronous data col-
lection and training, we use an open-source framework [13].

As for the training hyperparameters, we use a batch size
of 128, and Adam [17] as the optimizer with a learning
rate of 0.001. From the start of training, we use epsilon
greedy exploration to collect data until 5000 iterations. We
use replay ratio 16 (number of updates per data collection),
and synchronize the model parameters every 100 iterations

(a) Scene 1 (b) Scene 2

R
aw

-o
n

ly
P

o
se

+
R

aw

Fig. 4: Qualitative results of the model ablation, in which we compare Raw-only, which uses only a heightmap observation, and
our full model Pose+Raw, which uses object poses along with a heightmap.

to allow the model in the exploration processes to collect
episodes with the new parameters.

B. Evaluation metrics in simulation

To evaluate the performance of the model, we define
metrics that represent how safely a robot extracted objects.
As we discussed in §IV-C, this metric should represent the
destructive effects on non-target objects caused by falling
and sliding, and for that, we use the followings:

• Sum of translations, which evaluates both falling and
sliding effects;

• Sum of max velocities, which primarily evaluates falling
effects, as a larger distance fall gives higher velocity.

C. Baseline comparison

1) Naive motion: As the simplest motion, we use joint
linear interpolation from a grasp pose to a reset pose where
the end-effector is located in free space and the suction cup
faces down. When a target object is overlapped by distractor
objects, this extraction motion introduces many collisions
and causes falling and sliding effects on the distractors, and
shows the lowest score in Table I.

2) Heuristic motion: As a simple heuristic for extracting
objects from a pile, we use a motion that extracts a grasped
object with a straight motion towards the +Z direction of the
world coordinate (the opposite direction of the gravity). This
motion gives better results than the naive motion (Table I).

3) Collision-based motion planning: As another baseline,
we use a collision-based motion planning, RRT-Connect [18],
which is a widely used motion-planning algorithm with esti-
mated object poses. Although this motion planning can give
non-destructive extraction motion when it finds a collision-
free path, it struggles to find relatively safe trajectories when
a complete collision-free path does not exist. In this case, the
motion planner can end up giving the naive motion, which
causes significant movement of surrounding objects. Table I
shows that RRT-Connect gives comparable results as the
heuristic motions (better in translation, worse in velocity), but
our learned model (SafePicking) gives a much better result.

TABLE I: Baseline comparison, in which we compare the
motion of our learned model with baseline methods using the safety
metric, in 600 unseen pile configurations in simulation.

Safety metric
Method Input Noise translation↓ velocity↓
Naive -

no

0.701 1.919
Heuristic - 0.578 1.624
RRT-Connect pose 0.520 1.643
SafePicking pose, heightmap 0.465 1.419
RRT-Connect pose

yes
0.532 1.645

SafePicking pose, heightmap 0.465 1.433

D. Model ablation

We evaluate 3 model variants with different inputs to com-
pare the effect of different observations given to the learned
model (Table II). To evaluate the robustness, we add noises
to the pose observation (misdetection, pose-difference) based
on the visibility of objects. Raw-only receives as input
only the heightmap generated from a depth image. Pose-
only uses object poses as input, which gives more complete
information about objects, and gives better results than Raw-
only even when noises are introduced in the input object
poses. The full model, Pose+Raw, receives both heightmap
and object pose as input, and compensates the noises in
object poses using the information about the object’s visible
surface from the heightmap. The results show that this fusion
of object pose and heightmap observations works best in the
presence of pose noises. As one would expect, when given
perfect pose information (no pose noises), there is no benefit
to having the additional heightmap information; however,
in reality, estimated object poses will always have errors.
Figure 4 shows qualitative results.

E. Real-world evaluation

We evaluate our system in the real world on a Franka
Emika Panda robot, integrating using the Robotic Operation
System (ROS) framework [26]. To capture the short-range
depth (∼0.1m), we used Realsense D435 [16] as the RGB-
D camera mounted on the wrist of the robotic arm.

TABLE II: Model ablation, in which we compare the variants
of the learned model with/without adding noises to the pose obser-
vation, and test in 600 unseen pile configurations in simulation.

Safety metric
Variant Input Noise translation↓ velocity↓
Raw-only heightmap

no
0.507 1.491

Pose-only pose 0.477 1.430
Pose+Raw pose, heightmap 0.465 1.419
Pose-only pose

yes
0.487 1.449

Pose+Raw pose, heightmap 0.465 1.433

1) Metric: In the real world, the safety metrics used in
the simulation (the translation and velocity of all objects)
are challenging to acquire. Therefore, we use the heightmap
difference between before and after a task as the metric
(Figure 5). The robot scans a pile and builds two heightmaps
(Figure 5a, b), in which the region of a target object is
excluded (since the target object is intentionally moved).
These heightmaps are compared (Figure 5c) to compute the
volume of the difference and the size of the mask at a
threshold of 0.01m.

(a) Heightmap (before) (b) Heightmap (after) (c) Difference

Fig. 5: Heightmap-based evaluation metric that compares the
heightmaps of a pile built before/after manipulation. The region of a target
object (blue pitcher in this case) is excluded from the comparison and is
filled with black color in the heightmap visualization.

2) Results: Using the heightmap-based metric, we evalu-
ate the variants of the learned models in the real world. As
for the task setting, we build similar object configurations
as the simulation, where objects are closely located in a pile
and a target object is partially occluded by other objects, and
the robot is tasked to extract the target object with a single
grasp. Table III shows the comparison of the two learned
models (Raw-only and Pose+Raw) in 20 configurations.
Some of their qualitative results are shown in Figure 6. These
comparisons show consistent results as the ablation study in
the simulation, showing that object pose information enables
the model (Pose+Raw) to generate efficient and safe motions
compared to the one with only raw observations (Raw-only).

TABLE III: Real-world model comparison, in which we
evaluate learned models comparing the heightmaps before/after each task.
The models are tested in the same 20 configurations.

Safety metric
Variant Diff mask [%]↓ Diff volume [litter]↓

Raw-only 7.1 3.2
Pose+Raw 4.4 2.1

(Initial state)

Sc
en
e
1

Sc
en
e
2

Sc
en
e
3

Raw-only
(Final state)

Pose+Raw
(Final state)

Fig. 6: Pile configurations out of 20 used in Table III, where we test
the two learned models. We measure the performance with the heightmap-
based safety metric. Consistently to the results in the simulation, the model
generates better motions when given a fused observation of object poses
and a heightmap (Pose+Raw).

VI. CONCLUSIONS

We have shown a 6D manipulation system to efficiently
and safely extract target objects from a pile with a trajectory
that minimizes destructive effects on the surrounding objects.
Our system integrates object-level mapping and learning-
based motion planning that uses raw observation from an
RGB-D camera and estimated object poses from the object-
level map. By fusing the raw and pose observations, the
motion model maintains both capabilities of safely extracting
objects and robustness to the errors in pose estimation.

In this work, we focused on post-grasp 6D manipulation of
household objects; however, it would be interesting to extend
this to long-term motion optimization with grasping and
placement, and more general objects including soft and high-
friction objects. Moreover, we believe there are still various
possibilities in integrating object-level scene understanding
with learning-based manipulation. This work has mainly ex-
ploited the completeness of pose estimates; however, object
pose information can also be used in different ways such as
for object placement in a specific pose.

ACKNOWLEDGEMENTS

Research presented in this paper has been supported by
Dyson Technology Ltd.

REFERENCES

[1] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn
Powell, Bob McGrew, and Igor Mordatch. Emergent tool use from
multi-agent autocurricula. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2020.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint:1606.01540, 2016.

[3] B. Calli, A. Singh, A. Walsman, P Srinivasa S. and, Abbeel, and A. M.
Dollar. The YCB object and Model set: Towards common benchmarks
for manipulation research. In International Conference on Advanced
Robotics (ICAR), pages 510–517, 2015.

[4] Xiaotong Chen, Rui Chen, Zhiqiang Sui, Zhefan Ye, Yanqi Liu,
R Iris Bahar, and Odest Chadwicke Jenkins. Grip: Generative
robust inference and perception for semantic robot manipulation in
adversarial environments. In Proceedings of the IEEE/RSJ Conference
on Intelligent Robots and Systems (IROS), 2019.

[5] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit! IEEE Robotics
and Automation Magazine, 2012.

[6] Erwin Coumans and Yunfei Bai. PyBullet, a python module for
physics simulation for games, robotics and machine learning. http:
//pybullet.org, 2016–2021.

[7] Coline Manon Devin, Eric Jang, Sergey Levine, and Vincent Van-
houcke. Grasp2Vec: Learning object representations from self-
supervised grasping. In Conference on Robot Learning (CoRL), 2018.

[8] Rosen Diankov and James Kuffner. Openrave: A planning architecture
for autonomous robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, 2008.

[9] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, and
Mrinal Kalakrishnan. Multi-task domain adaptation for deep learning
of instance grasping from simulation. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[10] Wei Gao and Russ Tedrake. kPAM-SC: Generalizable manipulation
planning using keypoint affordance and shape completion. arXiv
preprint arXiv:1909.06980, 2019.

[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN.
In Proceedings of the International Conference on Computer Vision
(ICCV), 2017.

[12] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Autonomous Robots, 2013.

[13] Stephen James. YARR: Yet another robotics and reinforcement learn-
ing framework for pytorch. https://github.com/stepjam/
YARR, 2021–2022.

[14] Stephen James, Kentaro Wada, Tristan Laidlow, and Andrew J Davi-
son. Coarse-to-fine q-attention: Efficient learning for visual robotic
manipulation via discretisation. arXiv preprint arXiv:2106.12534,
2021.

[15] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander
Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan,
Vincent Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation. In Conference on Robot
Learning (CoRL), 2018.

[16] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and
Achintya Bhowmik. Intel realsense stereoscopic depth cameras. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2017.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proceedings of the International Conference on
Learning Representations (ICLR), 2015.

[18] James J Kuffner and Steven M LaValle. RRT-connect: An efficient
approach to single-query path planning. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2000.

[19] Andrey Kurenkov, Joseph Taglic, Rohun Kulkarni, Marcus
Dominguez-Kuhne, Animesh Garg, Roberto Martı́n-Martı́n, and
Silvio Savarese. Visuomotor mechanical search: Learning to retrieve
target objects in clutter. arXiv preprint arXiv:2008.06073, 2020.

[20] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-
to-end training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1), Jan 2016.

[21] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and
Deirdre Quillen. Learning hand-eye coordination for robotic grasping
with deep learning and large-scale data collection. International
Journal of Robotics Research (IJRR), 37(4-5):421–436, 2018.

[22] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kPAM:
Keypoint affordances for category-level robotic manipulation. Pro-
ceedings of the International Symposium on Robotics Research (ISRR),
2019.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-
performance deep learning library. In Advances in neural information
processing systems, 2019.

[25] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learn-
ing to grasp from 50k tries and 700 robot hours. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
2016.

[26] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. ICRA workshop on open source software,
3(3.2):5, 2009.

[27] Max Schwarz, Anton Milan, Christian Lenz, Aura Munoz, Arul Sel-
vam Periyasamy, Michael Schreiber, Sebastian Schüller, and Sven
Behnke. Nimbro picking: Versatile part handling for warehouse
automation. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2017.

[28] Stefan Stevšić, Sammy Christen, and Otmar Hilliges. Learning to
assemble: Estimating 6D poses for robotic object-object manipulation.
IEEE Robotics and Automation Letters, 5(2):1159–1166, 2020.

[29] Zhiqiang Sui, Haonan Chang, Ning Xu, and Odest Chadwicke Jenkins.
Geofusion: Geometric consistency informed scene estimation in dense
clutter. IEEE Robotics and Automation Letters, 5(4):5913–5920, 2020.

[30] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang,
Dieter Fox, and Stan Birchfield. Deep object pose estimation for
semantic robotic grasping of household objects. arXiv preprint
arXiv:1809.10790, 2018.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Neural Information Processing Systems (NIPS),
2017.

[32] Kentaro Wada, Edgar Sucar, Stephen James, Daniel Lenton, and
Andrew J. Davison. MoreFusion: Multi-object reasoning for 6D
pose estimation from volumetric fusion. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[33] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A
convolutional neural network for 6D object pose estimation in cluttered
scenes. In Proceedings of Robotics: Science and Systems (RSS), 2018.

[34] Kevin Zakka, Andy Zeng, Johnny Lee, and Shuran Song. Form2fit:
Learning shape priors for generalizable assembly from disassembly.
In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[35] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and
Thomas Funkhouser. Tossingbot: Learning to throw arbitrary objects
with residual physics. IEEE Transactions on Robotics (T-RO), 2020.

[36] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Ro-
driguez, and Thomas Funkhouser. Learning synergies between pushing
and grasping with self-supervised deep reinforcement learning. In
Proceedings of the IEEE/RSJ Conference on Intelligent Robots and
Systems (IROS), pages 4238–4245, 2018.

[37] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R
Hogan, Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald
Romo, et al. Robotic pick-and-place of novel objects in clutter
with multi-affordance grasping and cross-domain image matching. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2018.

[38] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker,
Alberto Rodriguez, and Jianxiong Xiao. Multi-view self-supervised
deep learning for 6d pose estimation in the amazon picking challenge.
In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2017.

http://pybullet.org
http://pybullet.org
https://github.com/stepjam/YARR
https://github.com/stepjam/YARR

	I INTRODUCTION
	II Related Work
	II-A Manipulation with visual scene understanding
	II-B Learning robotic manipulation

	III Object-level Mapping
	III-A Object detection from a single view
	III-B Volumetric reconstruction in multiple views
	III-C Pose estimation

	IV Learning Object Extraction
	IV-A Grasp point selection
	IV-B Fusing raw and pose observations
	IV-C Model design
	IV-D Training the model

	V Experiments
	V-A Training detail
	V-B Evaluation metrics in simulation
	V-C Baseline comparison
	V-C.1 Naive motion
	V-C.2 Heuristic motion
	V-C.3 Collision-based motion planning

	V-D Model ablation
	V-E Real-world evaluation
	V-E.1 Metric
	V-E.2 Results

	VI Conclusions
	References

