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Abstract— Automatic laparoscope motion control is funda-
mentally important for surgeons to efficiently perform opera-
tions. However, its traditional control methods based on tool
tracking without considering information hidden in surgical
scenes are not intelligent enough, while the latest supervised
imitation learning (IL)-based methods require expensive sensor
data and suffer from distribution mismatch issues caused by
limited demonstrations. In this paper, we propose a novel
Imitation Learning framework for Laparoscope Control (ILLC)
with reinforcement learning (RL), which can efficiently learn
the control policy from limited surgical video clips. Spe-
cially, we first extract surgical laparoscope trajectories from
unlabeled videos as the demonstrations and reconstruct the
corresponding surgical scenes. To fully learn from limited
motion trajectory demonstrations, we propose Shape Preserving
Trajectory Augmentation (SPTA) to augment these data, and
build a simulation environment that supports parallel RGB-D
rendering to reinforce the RL policy for interacting with the
environment efficiently. With adversarial training for IL, we
obtain the laparoscope control policy based on the generated
rollouts and surgical demonstrations. Extensive experiments are
conducted in unseen reconstructed surgical scenes, and our
method outperforms the previous IL methods, which proves
the feasibility of our unified learning-based framework for
laparoscope control.

I. INTRODUCTION

Robot-assisted minimally invasive surgery (RMIS) nowa-
days is widely used in a variety of laparoscopic procedures,
which can reduce the patient’s trauma and postoperative
hospitalization [1]. A high-quality field of view (FoV) from
the laparoscope is crucial for providing surgeons with suit-
able real-time visual feedback throughout the duration of a
laparoscopic surgery. To help alleviate the burden of surgeons
on periodically adjusting the laparoscope FoV, thus assist-
ing them to improve surgical efficiency and performance,
automatic laparoscope control has recently become popular
for developing surgical automation techniques. However, this
task has two main challenges. First, the laparoscope needs to
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Fig. 1. Surgeons operate the laparoscope (ECM) by MTM to obtain the
best FoV. Based on these limited demonstrations, we propose an ILLC to
learn how to adjust FoV from raw recorded surgical videos.

be accurately controlled within a limited 3D space in body.
The second is intelligent perception of 3D surgical scenes for
deploying generalizable laparoscope control policies under
complex surgical scenarios [2].

To address these challenges, previous efforts concentrate
on the rule-based laparoscope control schemes with diverse
perception forms, such as tool tracking [3], [4], [5], eye
gaze [6], [7], etc. For example, Osa et al. [3] proposed a
visual servoing method that controlled the laparoscope to
keep the surgical tool at the center point of FoV. Li et al. [5]
further extended the center point into a domain knowledge
based area derived from procedural understanding of the
surgical videos. However, these hand-crafted rules have a
limited level of intelligence and can hardly be applied to
complex surgical environments. Another solution is learning-
based methods, which attempt to inject data-driven intel-
ligence into the laparoscope control. Heuristics model [8]
and Gaussian mixture models (GMM)-based method [9] are
proposed to explore the connection between laparoscope
motion and tool positions. Nevertheless, such methods re-
quire expensive extra sensory data as the state information
(e.g., recording poses of tools and laparoscope) for behavior
learning, which is typically unavailable in recorded surgical
videos in clinical routine.

Recent advances in imitation learning (IL) based on visual
states modelled by convolutional neural network (CNN) have
shown promise to imitate expert behaviors from raw image
observations. Some impressive success based on such image
features has been demonstrated on general robot tasks, such
as autonomous driving [10], [11], aerial filming [12], [13],
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virtual cinematography [14]. However, learning automatic
laparoscope view adjustment skills from surgical videos with
raw RGB-D images as the observation is largely unexplored.
Moreover, the limited expert demonstration data extracted
from the recorded videos poses challenges to learned models’
generalizability to unseen scenarios. Although some online
IL methods such as DAgger [15] can alleviate this problem,
it still requires expensive labeling with the surgeon’s efforts,
which is inefficient. Very recently, another solution is to
combine IL with reinforcement learning (RL) to achieve
better generalizability through self-exploration, where the
reward or policy can be recovered from expert demonstra-
tions. Chi et al. show a GAIL-based approach for catheteri-
zation [16], and we also show that the bimanual peg transfer
task can be learned with demonstrations [17]. Nonetheless,
these vanilla IL methods may still result in policies that
suffer from low performance and generalizability with image
observations. Therefore, it is critical to design an efficient
IL method using limited surgical expert data to learn the
laparoscope control in realistic surgical environments.

In this paper, we propose a novel imitation learning
framework for laparoscope control (ILLC), which to the best
of our knowledge is the first to use IL with RL to effectively
learn the laparoscope motion skills from limited real-world
surgical videos, as shown in Fig. 1. Specifically, we first
reconstruct 3D surgical scenes from surgical videos as the
interactive RL environment and extract laparoscope motion
trajectories as the expert demonstration data. To efficiently
learn from the limited demonstration, we propose a shape-
preserving trajectory augmentation (SPTA) to augment the
expert data and use a prior policy to bootstrap the learning
process. Afterward, the policy is reinforced using the adver-
sarial learning approach through augmented demonstrations
and continuous interactions in our simulated realistic surgical
environment. Our main contributions are three folds:
• We propose a novel ILLC framework with RL to

achieve intelligent autonomous laparoscope control by
learning the joint information between the laparoscope
motion and surgical scenes from raw surgical videos.

• We introduce a shape-preserving trajectory augmen-
tation (SPTA) scheme and prior policy to overcome
the limited demonstration problem in surgical field and
bootstrap the training process to improve the perfor-
mance of autonomous laparoscope control.

• We conduct validation experiments on controlling the
laparoscope under unseen realistic surgical scenes to
show the feasibility of our proposed framework and its
superiority compared with previous IL baselines.

II. PROBLEM FORMULATION

We aim at building a learner that can imitate surgeons’
behavior for laparoscope view adjustment based on the
observed surgical scene. Formally, we model the laparoscope
control problem as a Markov Decision Process (MDP),
represented by (S,A,R,P, p(s0), γ), with state space S,
action space A, reward function R, transition probability P ,
initial state distribution p(s0), and discount factor γ. The

objective of the learner is to find a policy πφ∗(a|s) that can
generate an action a ∈ A given the observed state s ∈ S ,
and maximize the discounted sum of the rewards rθ(s, a):

max
πφ

Eπφ

[
T∑
t=1

γtrθ (st, at)

]
(1)

where the parameter θ is recovered from expert demonstra-
tion trajectories D = {τ1, . . . , τN}: maxθ Eτ∼D [log pθ(τ)],
pθ(τ) ∝ p (s0)

∏T
t=0 p (st+1|st, at) eγ

trθ(st,at).
In this paper, we propose an adversarial imitation learning

based approach [18] to learn the laparoscope control policy.
Specifically, we use a state-of-art RL method to train the
learning agents, which collect rollouts within the environ-
ment by observing surgical scenes and generating actions.
Simultaneously, we train a discriminator to classify whether
the trajectory is from expert demonstrations or agent rollouts.
In this way, the discriminator can recover the reward function
rθ from two different collected data sources, maximizing
the reward for RL agents that imitate surgeons’ behaviors.
Therefore, We obtain the IL policy by optimizing the RL
agents and the discriminator alternatively until convergence,
which is able to automate the laparoscope control and mimic
the surgeon at the same time.

III. METHODS

This section describes our proposed ILLC framework
for intelligent autonomous laparoscope control in detail,
including 3D simulation environment construction, expert
demonstration augmentation, and policy learning strategy, as
shown in Fig. 2.

A. 3D perception-based surgical scene rendering

The first step is to build realistic surgical scenes based on
the collected videos as the environment for RL agents to con-
trol laparoscope and interact within. Meanwhile, the expert
trajectories are estimated from their corresponding videos as
demonstrations. Specifically, the surgical environment is first
reconstructed as the 3D object representation. Afterward, the
scene image viewed by the laparoscope is rendered via a 3D
projection with the knowledge of the camera pose.

In the scene reconstruction, as the laparoscope and surgical
tools cannot be manipulated simultaneously in the da Vinci
surgical system [19], we assume the surgical environment
remains static when the laparoscope moves, which allows
us to reconstruct the 3D scene based on the rigid body
assumption. For each frame, we first estimate the dense
depth information based on the hierarchical deep stereo
matching (HSM) [20] and calculate the camera pose using
the iterative closest point (ICP), with the stereo calibration
parameters [21]. Finally, the 3D reconstructed scene for each
video clip is obtained by jointly merging the object from
all frames. You can refer to our previous work [22] for
more details. The laparoscope motion clips are extracted
from our HKPWH dataset [23] containing real-world stereo
prostatectomy videos performed by experienced surgeons.

Based on the reconstructed scene, we build our ECM
Simulation environment ECMSim for laparoscope control,



Fig. 2. The proposed ILLC framework for laparoscope control. (a) Our ILLC framework comprises 3D scene reconstruction, expert data augmentation,
and policy training. (b) The RL policy network consists of a shared CNN encoder, MLP feature extractor, and two separate policy and value heads. (c)
Prior policy generated from expert demonstrations with likelihood loss.

which can render realistic RGB-D images when the laparo-
scope moves within the environment at any position, with
PyTorch3D [24] as our rendering engine. The dynamic phys-
ical interaction between the laparoscope and the tissue is not
considered in this work. To maximize the rendering realism,
we compared two commonly-used 3D object representations,
i.e., origin point cloud and its corresponding polygonal mesh,
as illustrated in Fig. 3.

Although the polygonal mesh is theoretically superior to
the point cloud, it needs to be generated from the high-quality
point cloud. Due to the short duration of the video clips and
subtle estimation errors of the depth maps, the quality of
the reconstructed point cloud is enough for rendering but
suboptimal for high-quality mesh generation. As in Fig. 3,
the rendered images from the point cloud is almost the same
with the original video images, which shows the accurate
estimated trajectory and reconstructed environment scene.
Moreover, we can observe that the visualization performance
from point cloud is superior than the rendered images with
smearing effects from the generated mesh. Therefore, we
adopt the reconstructed point cloud as the 3D object repre-
sentation of the scene for rendering.

B. Demonstration augmentation with SPTA

The expert state-action trajectories τE extracted during 3D
scene reconstruction is of limited number, which may hinder
the generalization of the learned model. To solve this prob-
lem, we propose a shape-preserving trajectory augmentation
(SPTA) method to augment the collected expert data and
build an enriched expert demonstration database τ+E .

Raw expert trajectory preprocessing: For raw expert
trajectories extracted during the 3D scene reconstruction,
we observe that there exist local jittering fluctuations and
inconsistent speeds. Thus, we use the first-order Savitzky-
Golay filter to smooth the raw expert trajectories, both

Fig. 3. Reconstructed surgical scene. Left: Screenshots of the recon-
structed surgical scenes in the point cloud modality (up) and the mesh
modality (bottom). Right: The sequences are origin video image (up),
rendered image at estimated camera positions in point cloud scene (middle)
and mesh scene (bottom).

in position (x, y, z) and orientation (α, β, γ). To acquire
consistent speed during motion, the smoothed trajectory
of m points Pi∈{1,...,m} is then generated into n equally-
distributed waypoints Wj∈{1,...,n} at a fixed separation dis-
tance dfixed, based on the linear interpolation as follows:

W
(·)
j = W

(·)
j−1 +

dfixed∥∥∥P (·)
i∗ −W

(·)
j−1

∥∥∥
2

(P
(·)
i∗ −W

(·)
j−1),

i∗ = arg min
i∈{1,...,n}

(
∥∥∥P (·)

i −W
(·)
j−1

∥∥∥
2
> dfixed).

(2)

where the initial waypoint W (·)
0 =P (·)

0 , and (·) can be any
of {x, y, z, α, β, γ}. Then we calculate the jth waypoint’s
camera pose relative to the initial camera pose T0, repre-
sented by a transformation matrix T j0 with rotation matrix
R(α, β, γ) and translation vector t(x, y, z). Its observed state
sj as an RGB-D image is rendered by our ECMSim. The
corresponding action aj is calculated as: aj → T j+1

j =

inv(T j0 ) · T j+1
0 , and the action a is defined as the transfor-

mation (x, y, z, α, β, γ) relative to the current camera pose.



Shape Preserving Trajectory Augmentation (SPTA):
To augment surgeons’ demonstrations and mimic the expert
behavior, we consider two criteria:
Criterion 1: The augmented laparoscope motion trajectory
should maintain a similar movement pattern to the expert
trajectory for each surgical scene.
Criterion 2: The laparoscope needs to stop near the endpoint
in the expert trajectory to obtain a desirable view similar to
the expert for any sampled start positions.

To enable this, we first generate a 3D cubic workspace
WS from the trajectory τ = Wj∈{1,...,end}: WS =
Cube{W1:k}, where k is randomly chosen and slightly larger
than 1, so the generated WS is near the starting point W1.
Then the starting point S is uniformly sampled within WS
for diversity. Afterward, we generate an augmented trajectory
from S to Wend of a similar movement pattern with the
original expert demonstration.

To achieve a balance between the local and global simi-
larity, we acquire the waypoint point Wj∗ closest to sampled
start point S and use the trajectory segment from this
point to the trajectory endpoint Wj∗:end as the reference
for augmentation. Therefore, the influence of unused motion
pattern in the initial part W1:j∗ far from the start point can
be avoided, which is similar to the idea of reward-to-go [25].
Next, we treat it as a non-linear fitting problem that use the
exponential decay to gradually reduce the initial distance e0
between S and Wj∗ as follows:

dist = ‖S −Wj∗‖2 , j
∗ = arg min

j∈{1,...,end}
(‖S −Wj‖2) (3)

W ′j′ = Wj∗+j′ + (1− ε) ·∆ej′ ,
∆ej′ = k1 · eγ·j

′
+ k2, j

′ = 0, 1, ..., end− j∗.
(4)

where the coefficients k1, k2 are solved with two boundary
conditions: e0 = dist and eend = ε, ε is a random
small tolerance; γ is the hyper-parameter which tunes the
approaching speed, and W ′j′ is the augmented waypoint.

C. Policy learning via prior policy

Inspired by [18], we use adversarial learning approach for
policy learning with RGB-D image input in the ILLC frame-
work. The RL laparoscope agent policy πφ (·) parameterized
by φ is modeled as the generator and is trained against the
discriminator adversarially. The discriminator Dθ is trained
to classify surgeon demonstration trajectories (st, at) ∼ τ+E
and agent rollouts (s′t, a

′
t) ∼ τ , with the cross-entropy loss:

Lθ(D) = − Eτ+
E

[log (Dθ (st, at))]

− Eτ [log (1−Dθ (s′t, a
′
t))]

(5)

With the following form for discriminator: Dθ(s, a) =
πφ(a|s)

exp{rθ(s,a)}+πφ(a|s) = f(log πφ(a|s)− rθ(s, a)), where f(·)
is the softmax function, rθ(·) is the reward function to be
recovered. Meanwhile, the policy πφ is trained to minimize
the entropy-regularized discriminative reward: r̂(s, a) =
log πφ(a|s)− rθ(s, a). The entropy-regularized RL objective
is obtained by summing r̂(st, at) over entire trajectories:

Eπφ [
∑
r̂ (st, at)] = Eπφ [

∑
log πφ (at|st)− rθ (st, at)] (6)

And the global optima of the discriminator objective is
achieved when πθ = πE , as the learned policy πθ converges
to the expert policy πE .

Considering that the current view alone can determine the
next action in the laparoscope control, we assume that the
ground truth reward is only related to the current state (RGB-
D image), which meets the basis of the algorithm [18]. The
stochastic Gaussian policy is used for continuous laparoscope
actions, πφ(a|s) = µφ(s) + σφ(s) � ε, where mean and
variance are generated by deterministic functions µφ, σφ,
ε ∼ N (0, 1), and � denotes the element-wise product.

During training, all training scenes are loaded into multiple
threads simultaneously to accelerate the data collection, and
each scene acts as an independent scene-agent environment.
We collect the agents’ rollout trajectories from all training
environments and combine them with expert demonstrations
to optimize the discriminator Dθ. The accordingly updated
rewards with rθ in the previous rollouts are then used to
update the agent policy πφ using Eq. 6.

Bootstrapping with prior policy: Generally, the adversar-
ial training will gradually optimize the agent policy and the
discriminator. However, as laparoscope control requires high
precision, if the policy starts from random, a large amount
of valueless rollout in the early stage will make policy and
discriminator get stuck with low performance. To bootstrap
the training process and sidestep the exploration challenge,
we utilize the augmented expert demonstration π+

E to pre-
train the policy and get a stable prior policy πφinit , inspired
by [26], followed with the adversarial training to further fine-
tune the parameters. Formally, with the expert state-action
tuples {(si, ai)} ∈ τ+E , our objective is to find the parameters
φinit, which best fit the expert state-action pairs:

φinit = arg max
φ

∏
πφ (ai|si) (7)

where πφ(ai|si) represent the probability of each expert ac-
tion ai in the trained policy’s Gaussian distribution πφ(·|si).
Therefore we can use Adam to solve φinit based on the
gradient to seek the maximum-likelihood.

D. Implementation

The RL policy πφ is realized by a deep neural network,
which consists of a shared component of 6 CNN layers, MLP
layers, and a separate policy head and value head of output
size 6 and 1, respectively, as shown in Fig. 2 (b). Considering
the balance of training speed and accuracy, the input size are
scaled to 160 × 128 and the proximal policy optimization
(PPO) [27] is used. Actions are scaled to [-1,1] by the tanh
layer in the PPO policy network and then rescaled to their
appropriate range [-1.5, 1.5] mm and [-3◦, 3◦] to move the
laparoscope. The learning rate of PPO agent is 1e-5.

For discriminator Dθ, the reward fuction rθ is released by
a basic reward network rb(·) and shaping term h(·) with the
same network structure but separate weights, consisting of 2
CNN layers followed by [32,32,1] MLP layers. The learning
rate for the discriminator is 3e-4. The batch size is 64, and
the rollout buffer size is 4096.



IV. EXPERIMENT RESULTS

A. Experiment setup

Since the 3D reconstruction may fail in severe conditions,
such as lens contamination, bleeding, we manually check
and collect 95 high-quality reconstructed surgical scenes as
our dataset. Among them, 80 scenes are randomly chosen for
training and the rest 15 scenes for the test, as shown in Fig. 4.
The statistics of video clips and reconstruction details (scene
point cloud, trajectory) are shown in Table I. On average, the
laparoscope moves 8.23 mm distance within 0.49 s, which
shows the challenge of this task because it requires precise
laparoscope control in a short time.

We built our proposed simulation environment based on
the gym interface [28] and use PyTorch3D as the render en-
gine. To improve the generality, the initial laparoscope posi-
tion is randomly sampled in the origin trajectory workspace,
also with the orientation variation. An episode is terminated
when the deviations of both the position and orientation
from the expert endpoint are below particular thresholds,
or when the episode steps reach a maximum length. In our
experiments, we set thresholds of position and orientation as
2 mm and 5◦, and the maximum length to be 16.

TABLE I
STATISTICS OF LAPAROSCOPY VIDEO CLIPS AND 3D RECONSTRUCTION

Split num duration
/ sec

point number
/ 1e5

distance
/ mm steps

Train 80 0.50±0.30 1.92±0.53 8.35±4.24 7.79±5.80
Test 15 0.42±0.11 1.85±0.28 7.57±4.22 6.33±3.17
Total 95 0.49±0.28 1.91±0.50 8.23±4.25 7.56±5.50

B. Evaluation metrics

Success rate (SR) is used as the main metric to assess the
performance of different policies. Besides, we observe the
motion pattern is not efficient in some successful episodes,
e.g., the zig-zag movement. Hence, we propose another met-
ric action efficiency (aeff ) to measure the motion efficiency
in successful episodes. These metrics are calculated as:

SR =

∑N
i sri
N

, sr = 1(∆pT < εp ∩∆rT < εr),

∆p =
∥∥Pxyz − P ∗xyz∥∥2 , ∆r = cos−1(

tr(Rαβγ ·R∗αβγ)

2
)

(8)

aeff =

∑N
i

(
sri ·

∥∥P 1
xyz − PTixyz

∥∥
2
/Ti

)
∑N
i sri

(9)

where N is the episode number, 1(·) is the indicator func-
tion, P (∗) and R(∗) are the endpoint position and orientation
in rollouts (∗ represent in demonstrations), εp and εr denote
the corresponding thresholds, tr(·) is the trace of a matrix,
T is the total steps within one episode.

C. Results on validation

1) Comparison with IL baselines: We run 50 episodes
for policies with random initialization under each unseen
test scene, and report the mean and the standard deviations
for 15 test scenes. The experimental results are listed in

Fig. 4. Screenshots of some typical training and test scenes.

TABLE II
EVALUATION RESULT OF DIFFERENT POLICIES ON TEST SCENES

Metrics steps
(↓)

aeff
/ mm (↑)

SR
/ % (↑)

Expert policy 5.63±3.45 1.44±0.25 100
Random policy 16.00±0.00 0 0
BC policy [29] 10.98±6.06 0.90±0.78 39.73±43.25

GAIL policy [30] 9.70±5.77 0.86±0.53 43.86±36.22
ILLC (ours) 8.57±5.37 1.04±0.34 66.47±25.62

Table II. We choose the random policy with random actions
to serve as a lower bound. Two learning-based methods, i.e.,
behavior cloning (BC) [29] and GAIL [30] are selected and
trained with our augmented expert data for a fair comparison.
From the result, BC policy only achieves a success rate
of 39.73% with a large variance of 43.25%, since it only
remembers the actions in the training scenes and cannot
generalize well to the test scenes. GAIL policy has achieved
a higher success rate of 43.86%, however, it still fails in
many cases as it is difficult to deal with unknown dynamics
in various unseen scenes. By contrast, our ILLC policy
achieves the highest success rate of 66.47% with the smallest
variance and succeeds under a majority of unseen scenes,
which demonstrates that the ILLC policy can learn the
expert motion pattern with generality. By illustrating the
typical laparoscope trajectories generated by the random,
expert, and our policy in Fig. 5(a), we can observe that our
method can output similar laparoscope trajectories compared
to the expert ones, and can also terminate with the same
target view. Moreover, even in some positions that deviated
from the expert trajectories, our policy can still correct its
direction and move to the corresponding ideal endpoint. The
screenshots in Fig. 5(b) also indicate that the learned policy
tend to achieve an appropriate FoV that is consistent with
expert, e.g., making tools located in the middle region, and
making the depth appropriate for the whole scene, etc.

2) Ablation study: We design experiments to analyze the
impact of three factors: 1) SPTA, 2) prior policy, 3) observed
state. The policy performance with SPTA under different
augmentation rates R (SPTA@Rx) is compared in Table III
and also visualized in Fig. 6. Results show that SPTA can
largely improve the success rate, e.g., from 48.27% without
SPTA to 66.47% with SPTA@32x, of a smaller variance
and improved action efficiency. The reason is that SPTA can
generate more expert-like data, which enables the IL agent to



Fig. 5. (a) Examples of laparoscope motion trajectories with different policies under test scenes: random, expert, trained policy are colored by red, green,
blue respectively. (b) Screenshots of the #steps in the two test scenes running with expert (first row), ILLC (second row), random policies (last row).

TABLE III
ABLATION STUDY ON POLICY TRAINING

Metrics steps
(↓)

aeff
/ mm (↑)

SR
/ % (↑)

ILLC (SPTA@32x) 8.57±5.37 1.04±0.34 66.47±25.62
w/o SPTA 10.26±5.32 1.00±0.63 48.27±38.38

w/ SPTA@8x 9.78±4.70 1.23±0.44 54.00±31.73
w/o prior policy 10.57±5.37 0.89±0.32 46.21±39.20

w/o depth 9.83±5.12 0.98±0.56 54.29±39.34

Fig. 6. Policy performance with SPTA under different augmentation rates.

fully explore the environment and achieve a better generality.
Table III also compares the policy trained without the prior
policy, we can observe that the prior policy can improve the
success rate by 20.26% since it can provide more meaningful
rollouts in the early stage and bootstraps the overall training
process, hence proving its importance in our policy. Finally,
we discuss the impact of depth in the state representation
on the learned policy. Results show that including the depth
in the input can improve the success rate by 12.18%, which
demonstrates its benefits to the FoV control.

3) Visualization analysis: To explore the hidden knowl-
edge learned by our proposed ILLC policy when performing
the laparoscope control task and intuitively illustrate such
information, we use t-SNE [31] to visualize the embedding
features in the last hidden layer of the ILLC policy network.
The input observed states to the network are collected in test
scenes for evaluation with random, expert, and ILLC policy,
respectively. As shown in Fig. 7(a), the distributions of ILLC
policy and expert policy are thoroughly mixed and far away
from the random policy ones, which indicates that to same
extent the ILLC policy controls the laparoscope in a similar

Fig. 7. (a) 2D t-SNE embeddings of policy network features for data
collected by different policies: random, expert, and our ILLC policy. (b)
Visualization of predicted values by trained policy; the color surrounding
the image represents the state values from lowest (blue) to highest (red).

way to the experts. We also visualize the estimated values
from the policy network with observed images in Fig. 7(b),
where high values indicate the observed states are promising
outcomes. As expected, the ILLC policy maps the proper
laparoscopic views to high estimated values across different
test scenes. For example, in Fig. 7(b), the top row with
appropriate views has higher state values, and the bottom
row far from the ideal viewpoints has low values.

V. CONCLUSIONS

In this paper, we propose a novel ILLC framework to
achieve intelligent autonomous laparoscope control. Unlike
conventional tracking-based control approaches, the learned
policy generates actions considering the RGB-D surgical
scene context. Meanwhile, the policy can capture the joint
connection between the laparoscope motion and observed
scenes from raw surgical videos. The learned policy shows
superior laparoscope control performance and generality to
unseen test scenes compared with previous IL baselines.

In the future, we will enrich the surgical scenes from
surgical videos and improve the 3D reconstruction quality to
make the interactive environment more realistic. In addition,
we will optimize the policy network, such as adding temporal
information to further improve performance.
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