
Coordinate Invariant User-Guided Constrained Path Planning with
Reactive Rapidly Expanding Plane-Oriented Escaping Trees

Riddhiman Laha∗,1, Ruiai Sun∗,1, Wenxi Wu∗,1, Dasharadhan Mahalingam2,
Nilanjan Chakraborty2, Luis F.C. Figueredo∗,1, and Sami Haddadin1

Abstract— As collaborative robots move closer to human
environments, motion generation and reactive planning strate-
gies that allow for elaborate task execution with minimal
easy-to-implement guidance whilst coping with changes in the
environment is of paramount importance. In this paper, we
present a novel approach for generating real-time motion plans
for point-to-point tasks using a single successful human demon-
stration. Our approach is based on screw linear interpolation,
which allows us to respect the underlying geometric constraints
that characterize the task and are implicitly present in the
demonstration. We also integrate an original reactive collision
avoidance approach with our planner. We present extensive
experimental results to demonstrate that with our approach,
by using a single demonstration of moving one block, we can
generate motion plans for complex tasks like stacking multiple
blocks (in a dynamic environment). Analogous generalization
abilities are also shown for tasks like pouring and loading
shelves. For the pouring task, we also show that a demonstration
given for one-armed pouring can be used for planning pouring
with a dual-armed manipulator of different kinematic structure.

I. INTRODUCTION

We are interested in the problem of a robot manipulating
objects in highly constrained, unstructured, possibly cluttered
and dynamic environments, in a real-time fashion, and the
transfer of the task expertise and constraints to different
robotic systems. Take for instance, the shelving task in Fig. 1
where the robot needs to generate a sequence of plans to grasp
books from a user and place them in different available spaces
in the cupboard while avoiding collision with the cluttered
cupboard and dynamic objects in the scene. Designing plans
for elaborate tasks such as this requires experienced roboticists
to conceptualize and preprogram the robot [1], [2]. It is even
more time consuming and limiting when we want to integrate
safety aspects, make changes in the environment, structure
and/or transfer the task(s) to different robots as seen Fig. 1.

A convenient solution is to teach the robot from human
demonstrations. However, existing solutions require multiple
demonstrations—which can be cumbersome in cluttered and
constrained scenarios—and often have limited capability to
generalize to different structure and robots. Furthermore,
practical applicability in industry and service robotics, calls
for the development of a framework which requires minimal
time from demonstration (preferably single) to deployment
on the robot [3]. In this work, we propose a reactive planner
guided by a single-demonstration that enables the robot to
solve such elaborate tasks and that can be straightforwardly

∗All authors contributed equally
1The authors are with Munich Institute of Robotics & Machine Intelli-

gence, Technische Universität München (TUM), Germany. This work was
funded by the Lighthouse Initiative Geriatronics by StMWi Bayern (Project X,
grant 5140951), LongLeif GaPa gGmbH (Project Y, grant 5140953), “Centre
for Tactile Internet with Human-in-the-Loop” (CeTI, grant 390696704) and
KI.FABRIK Bayern (grant DIK0249). S. Haddadin has a potential conflict
of interest as shareholder of Franka Emika GmbH.

2The authors are with the Department of Mechanical Engineering at Stony
Brook University (SBU), Stony Brook, USA. The work was partially funded
by the grant NSF CMMI 1853454, and a SBU OVPR seed grant.

↷
↷

O
bs
ta
cl
e

Demonstration

Demonstration

Execution

Execution Task Transfer 

Reactive obstacle 
avoidance 

Fig. 1. Overview of our framework with a shelving task with a single-
demonstration and executed in clutter with reactive response to obstacles
(top figures), and the generalization of the pouring task towards different
placements with collision avoidance and task transfer from a single-arm
Panda to a dual-arm Baxter.
transferred to even multiple-arm systems.

These are the key problems that our planning framework
solves: First, our planner produces paths through screw linear
interpolation (ScLERP) that implicitly maps—and therefore
satisfies—all geometric constraints embedded in the single-
demonstration. For instance, while pouring a glass of water,
the orientation transformations related to the angle deflection
along the axis of rotation is coupled with the specific
translation position. Our planner explores this information
allowing autonomous transfer to new conditions, scenes, new
initial or final pose, and even to a completely different robotic
system. Note, the user requires no knowledge about the
constraints as they are embedded in the topology. Second, our
planner shifts interpolated points that can lead to collision
through a novel reactive approach ensuring feasibility of
the motion. Finally, our planner provides motion generation
in real-time with an additional safety layer for guaranteed
collision avoidance within the low-level controller.

To the best of our knowledge, this is the first work to
integrate this level of reactiveness, collision avoidance and
generalization in real-time from a single user demonstration.
Furthermore, we demonstrate through real robot experiments
the efficiency of our approach and that the coordinate invariant
motions generated by our algorithm can be seamlessly trans-
ferred to multiple robots with different kinematic structure.
A. Related Work

The basic approach to make robots autonomous for a
particular task is hand-engineering of a controller. Yet the
generalization of this task across the workspace (different
instances) is extremely hard [1]. A well known strategy, in
this regard, is learning from demonstrations (LfD) [4], [5]
which is often acquired through teleoperation, kinesthetic
or passive observation. A convenient way to encode the

ar
X

iv
:2

20
3.

10
64

9v
1 

 [
cs

.R
O

] 
 2

0 
M

ar
 2

02
2



trajectory information is by means of motion primitives,
e.g., DMPs [6], [7]. However, adapting DMPs to reach via-
points is not straightforward [8] and they need multiple
demonstrations to encode the mean trajectory which can be
challenging for rotation. Taking a probabilistic approach such
as ProMPs improves generalization [8], yet their convergence
is still only guaranteed within the demonstration region.
Furthermore, often constraints are embedded in joint-space
[9], [10], which limits applicability to variations of the
joint to task space mapping, e.g., single changes in the
kinematics to changing the robot. Moreover, most of existing
approaches have limited generalization capability as well as
reactiveness in the presence of dynamic obstacles, and they
often require a reasonable amount of demonstrations, which
is cumbersome in highly constrained scenarios. To avoid
multiple demonstrations, recent focus has been given to one-
shot learning or learning from a single example [11]–[13].
Nevertheless, studies in this area often assume the existence
of an optimization criterion that defines the tasks [14] or make
strong distributional assumptions about the means of task
motion generation [13]. Also, previous works in animation
and robotics have incorporated user inputs in the configuration
space [15]–[19] where handling obstacles in a reactive fashion
is not usually the case [20]. Our method on the other hand
introduces user kinesthetic guidance in task-space planning.

Overall, we take a fundamentally different approach. We
explore the one-time kinesthetic demonstration not to learn the
trajectory, imitate the human motion, learn a cost function or a
policy, but rather to encode and follow the implicit geometric
features underlying the path. Our approach is hinged on
the observation that from a given set S ⊆ Spin(3) n R3,
the set of all rigid body motions, proper subsets can be
drawn from geometric structures of interest which are then
implicitly captured by the human demonstration and preserved
by ScLERP. In other words, we differ from the literature
in the sense that our algorithms embed the constraints in
the topology of the rigid-body transformations rather than
learning the region of attraction of the dynamical system
approximation [6], [21]. In this work, we also exemplify
the use of one single demonstration to different instances
of tasks, constraints, topologies, and even kinematic chains
(such as single-arm to multi-arm system). Also, the resulting
deterministic path is safe in the sense that it always mimics
part of the demonstration thereby producing paths which are
intuitive and predictable for human co-workers.

II. PROBLEM FORMULATION

This section presents the definitions and fundamentals of
the planning problem. We first briefly recap core concepts
regarding the algebra of dual quaternions (DQ) and geometric
first-order interpolation properties using screw linear theory.
These are the backbone of the proposed approach and rely
on unit dual quaternion algebraic and geometric properties.
Computational advantages include, e.g., Riemannian geome-
try, translation and orientation coupling [22]–[25], singularity-
free representation, with global convergence controllers [26],
[27], that embeds wrenches, twists and primitives, being the
universal cover of SE(3) with a simply-connected topology
(in contrast to SE(3)), and higher efficiency [28]–[31].
A. Problem and Mathematical Background

Our aim is to explore, adapt or define a path, which
consists of a sequence of rigid-body transformations, to
complete a geometric constrained task—a motion planning
problem. To connect the spatial transformations and generate

a smooth curve in SE(3), we must (i) define the rigid body
transformation in the Lie group of Spin(3)nR3, (ii) describe
its Riemannian geometry and geodesics, and finally (iii) define
the screw linear interpolation based on the geodesic direction.

An arbitrary rigid body transformation can be repre-
sented by the unit dual quaternion x ∈ Spin(3)nR3,

x = r +
1

2
εpr, (1)

where r = cos(φ/2) + sin(φ/2)n represents a rotation with
angle φ around the axis n, in unit quaternions Spin(3) [32],
p is a pure quaternion that represents the translation, and
ε is such that ε 6=0 but ε2=0, [33]. Unit dual-quaternion,
Spin(3) n R3, is a Lie group with inverse element being
x∗ = r∗+ 1

2εr
∗p∗, and identity 1. Dual quaternion elements

can also be described by x = P (x) + εD (x) , where P (x)
and D (x) are the primary and dual components.

From its differentiable Riemannian geometry, it is en-
dowed with a collection of inner products on the tangent
space at Spin(3) n R3, which in turn builds a Riemannian
metric [34], [35]. Once a Riemannian metric is assigned to
the manifold—e.g., the length of the path [36]—we explore
the minimum curve length, i.e., the geodesics [35], see
[34], [36]–[38]. In such manifolds, actions in the geodesics
can be expressed by means of the exponential map expx :
TxSpin(3) n R3 → Spin(3) n R3. The expx locally maps
a vector in the tangent space TxSpin(3) n R3 (at x ∈
Spin(3) n R3) to a point on the manifold following the
geodesic through x, [39], [40]. The inverse mapping (from
manifold to tangent space at the point x) is the logarithm
map logx : Spin(3)nR3 → TxSpin(3)nR3.

The mappings expx and logx are non-trivial to obtain. A
solution is to compute them by parallel transport [35], [39],
[41]. The parallel transport exploits the exponential function
that maps vectors from the tangent space (at the identity) to
the manifold [37],

expx(y) = x exp(x∗y),

logx(z) = x log(x∗z), (2)
where z ∈ Spin(3)nR3 and y is defined in the tangent space
at x—notice that y is not an unit DQ. The exp and log maps
from the tangent space, at the identity, i.e., T1Spin(3)nR3

are given by the dual vector representing the axis of screw
motion and the dual angle containing both the translation
length and the angle of rotation, see further details in [35],
[40], [42], [43].

Finally, to describe the screw linear interpolation that
connects two points x1 and x2, and to find points in the
path x(τ) : [0, 1] → Spin(3) n R3 with x(0) = x1 and
x(1) = x2, we exploit (2). First, we map x2 following
the geodesic on Spin(3)n R3 through x1 onto the tangent
space at x1. Naturally, this mapping yields a vector in the
Tx1

Spin(3)nR3 corresponding to the geodesic direction of
x2 with respect to x1. Hence,

logx1
(x2) = x1 log(x

∗
1x2), (3)

where logx1
is computed using parallel transport. Notice that

(3) is defined in the tangent space of a Riemannian manifold,
hence it is a vector space with basis defined by a vector field.
Thus, we can linearly interpolate points and compute any point
between along the geodesic direction starting from logx1

(x1)
towards logx1

(x2), as (logx1
(x2)−logx1

(x1))τ+logx1
(x1).

Note, however that logx1
(x1) = 0. Hence, using parallel

transport to map the vector in Tx1
Spin(3)nR3 back to the



unit DQ manifold following the geodesics through x1 yields
x(τ) = expx1

(x1 log(x
∗
1x2)τ)

=x1 exp (log(x
∗
1x2)τ) . (4)

Lemma 1 (ScLERP – [44]): Given two rigid body trans-
formations, x1 and x2, the ScLERP function,

ScLERP (τ,x1,x2) = x1(x
∗
1x2)

τ , (5)
returns any rigid pose transformation along the geodesic
direction from x1 to x2 scaled linearly along τ ∈ [0, 1].
Taking equally spaced values within τ yields, therefore, a
screw linear interpolation from x1 to x2.

Notice the ScLERP function (5) is the same as the one
derived in (4). This can be shown by geometrical exponential
[22], [45], and from the scaling of the dual rotation angle
about the screw axis—hence the name [44].

Remark 1: The ScLERP interpolation explores the natural
parametrization of screw coordinates in terms of 6-DoF
displacements [42], [46]. They are particular attractive for
coordinate-invariant interpolation which is not possible when
decoupling orientation and translation [47], as detailed in
[46]. Similar interpolation scheme nonetheless could also be
derived from SE(3), and other covering groups that satisfy
left-invariance and are based on non-minimal representation
of rigid displacements. Hence, it is by no means restricted to
the choice of Spin(3)nR3. Still, a matrix-based solution is
non-attractive due to the additional computational cost—that
can possibly restrict real-time implementation—and due to
the efficiency, compactness and intuitiveness of Spin(3)nR3

which can depict wrenches, twists, geometric primitives,
constraints and its tangent space with the same algebra.
B. Overview of Problem

In this work, we are interested in the motion planning
problem that completes a geometric constrained task reactively
in a real-time fashion, while responding to unforeseen
events, such as dynamic obstacles with guaranteed avoidance
behaviour—also in real-time.

The proposed motion generation scheme takes as prior
knowledge a single successful task demonstration—defined
by a sequence of poses expressed as unit dual quaternion

DP = {d1,d2, · · · ,dn}, di ∈ Spin(3)nR3 (6)
Since the task demonstration is a successful one, it satisfies the
task-constraints, and this knowledge is implicitly embedded
in the demonstration. As an example, during pouring, the axis
and angle of rotation is implicitly present in the demonstration.
We can obtain the demonstration, DP , either by directly
sensing the end-effector pose or by recording the joint-space
path from the joint encoders and using the forward kinematics
map for the manipulator. Kinesthetic teaching along with joint
space path recording is used in this paper. A key point here
is that no other information, or knowledge, about the task or
its constraints are required or needs to be provided.

Given such implicit constraints, our planner aims at
finding a sequence of rigid body transformations—herein
named the final path and the corresponding robot joint-space
actions that takes the manipulator end-effector from an initial
configuration x0 to a final goal xf while satisfying the
constraints observed in DP . Formally, our problem can be
defined as follows:
Problem Definition: Given a single user-demonstrated path
DP , and the new initial and final pose x0 and xf , respectively,
find a path from x0 to xf such that

1) All constraints that are implicit in DP are satisfied;
2) Obstacles that prevent motion feasibility are avoided;

3) Motion generation is achieved in real-time with an addi-
tional safety-layer for low-level controller guaranteeing
collision avoidance.

III. TASK SPACE IMITATION ALGORITHM (TSIA)
In this section, we present a solution to satisfy the first

condition in the problem definition.
Problem Statement 1: Compute a path in Spin(3) n R3

starting at an initial pose x0 and ending at a goal pose xf
while still maintaining the task relevant motion constraints
implicit in the user demonstration.

From the human demonstration we obtain a series of unit
dual quaternions that encode the rigid body constraints along
the path, i.e., DP as in (6), where d1 corresponds to the
starting pose of the demonstration and dn, the final pose.

Let d′n (= xf ) be the new goal pose. To ensure that the
relative transformations between the poses in the demonstrated
path are preserved on the path to the new goal we want to
reach, we replicate the demonstrated motion with respect to
the new goal and call this path the imitated path (IP). The
IP reflects the constraints present in the demonstration.

To compute IP , we first obtain the transformation, δi,
between the last pose on the demonstrated motion (dn∈DP)
and every other pose on the demonstrated motion, i.e.,

δi = d
∗
i−1dn, i = 2, . . . , n. (7)

Then, the imitated path IP = {d′1,d
′
2, · · · ,d

′
n} can be

calculated using,
d′i−1 = d′nδi

∗, i = 2, . . . , n. (8)
Final Path: The calculation of the final path FP =
{d′′1 ,d

′′
2 , · · · ,d

′
n} from a new initial pose d′′1 (= x0) to the

new goal pose d′n is performed using ScLERP [48]. Intuitively
speaking, our goal is to find a path that blends into the IP
and after blending just follows the IP to obtain the same
geometric constraints during motion as in the DP .

Let d′i be a guiding pose (in this regard there are various
possibilities to explore depending on the scenario) on the IP
and dc be the current task space pose of the manipulator—
starting from x0. We now compute a target pose dt using
ScLERP in dual quaternion space, that is,

dt(τ) = dc ·
(
d∗c · d

′
i

)τ
, (9)

where τ ∈ [0, 1] is the time primitive. Different choices of
the parameter τ give different target poses in task space.
Note that τ = 0 corresponds to dc and τ = 1 corresponds
to d′i. We then select an interpolation pose1 and use that
pose as a reference (xd) for our kinematic controller. With
the resulting joint velocities q̇—from the closed-loop—the
robot takes a new configuration closer to xd which is
thereafter set as the new current pose. The process continues
taking d′i+1 as the new guiding pose on IP . This follows
until the goal is reached (we define the error e(dc,d

′
n) =∥∥vec (dc), vec (d′n)∥∥ > a tolerance). Building our user-guided

motion generation approach based on ScLERP is crucial
in order to ensure constraint satisfaction during blending,
i.e., during approach through interpolation to the desired
imitated path. Since ScLERP is based on exponential and
logarithmic maps (see (2)), it is clear that translation and
orientation of interpolated poses between key-points remain
bounded by both boundary pose. Hence, if both d′i and d′i+1
satisfy a constraint, then the interpolated motion also concurs.
Note that any projected subset can also make use of the
exponential and logarithm mapping and constraints would

1As an heuristic, we suggest deploying guiding poses within 20% to 70%
of the IP length.



Algorithm 1 Reactive Imitation Algorithm
1: procedure GET FINAL PATH:(d′n, DP,O)
2: δi ← Compute spatial difference with DP (7);
3: IP ← Get imitated path with (δi,d

′
n) (8);

4: while e(dc,d
′
n) >tol and i ≤ n do

5: dc ← Get current pose;
6: oc ← Compute closest obstacle point (dc,O);
7: if inside detection shell (dc,oc) then
8: T ← Escape Tree Generation (dcnew, oc);
9: dc ← Set new current pose (T );

10: d′i ← Set guiding pose;
11: dt ← ScLERP (dc,d

′
i);

12: q̇ ← Compute reactive control action (dt) (12);
13: i← i+ 1;

also be satisfied. Hence, it is a property intrinsic of our
method to implicitly satisfy all geometric constrains defined
in the task demonstration without having to explicitly define
it—which would require a roboticist with good expertise and
geometric reasoning to design.

Finally, note that such constraints cannot be guaranteed
without a proper screw linear interpolation. A simple example
is the usual approach based on decoupling translation and
attitude. Even when using proper attitude spherical interpola-
tion, different key points in a rigid body leads to different
unpredicted trajectories, see details in [46].

Remark 2: Note that we are not learning the trajectory
itself, but rather we are automatically and implicitly transfer-
ring the rigid body displacements which naturally embeds
the desired task constraints. This facilitates generalization to
different initial and end-goals, topologies, slightly different
tasks, and even to different kinematic-chains, such as from
single-arm to dual-arm—as seen in Section VI.

IV. REACTIVE OBSTACLE AVOIDANCE

During the real-time motion generation, unforeseen events
such as the presence of obstacles may make the path planned
by TSIA infeasible. We now present a reactive approach for
real-time obstacle avoidance that we use to modify the path
generated by TSIA and hence ensure task success. More
formally, we present a solution to the following problem:
Problem Statement 2: Compute a collision-free path in
Spin(3)nR3 while still respecting the constraints embedded
in the path in the last step.
For didactic reasons, let us consider a sphere of influence
around an obstacle with a radius larger than the obstacle. The
robot path is deflected only when it is inside this detection
shell. To enable integrated real-time collision-free path during
planning we introduce the Rapidly Expanding Plane-oriented
Escaping Trees (REPET) algorithm.
Escape Tree Generation: As the robot moves along the
real-time generated path from the current pose xc towards
the detection shell of the closest obstacle, centred at Oobs,
we start devising the avoidance scheme. First, we obtain the
normal vector η(T (xc) , Oobs), given by η : R3×R3 → R3

based on the current position T (xc) : Spin(3) n R3 → R3

and the closest point to the surface of the obstacle described
by the shell centre. Then, a tangent plane pt is computed
using the normal information, which is thereafter used to
build a vector v orthogonal to η (e.g., using unit vector î),

v = î× η

‖η‖
·
(kη
2

)
, (10)

where kη denotes the length of the diagonal of the plane. In
the same fashion, we define u = P (pt)× v which is used

0.45

1.7

0.5

0.55

0.6

-0.8

0.65

0.7

-0.7

0.75

1.6-0.6 1.5-0.5 -0.4 1.4-0.3

Escape Path
Root Node
Child Nodes
Chosen Final Path

Escape Tree

Direction of 
Motion

Obstacle

Tangent 
Planes

Fig. 2. Fast Obstacle avoidance using REPET showing all the tangent
planes. This collision avoidance path is generated for the stacking problem.

along with v to obtain points on sides and edges of the plane.
For efficient collision avoidance, we seek to explore poses

along the normal vector in the tangent space of the surface—
ensuring guaranteed collision free points surrounding convex
obstacles or good exploration along non-convex ones. Herein,
for brevity, we are focusing on convex ones. The core
idea is to integrate such key avoidance points into our
motion generation scheme, which is based on a sequence of
transformations interpolated through ScLERP. Hence, the key
points shift2 a sequence of transformations within the FP
building a collision-free path along the tangent space of the
closest obstacle’s detection shell.

As shown in Alg. 2, we first set a root (based on current
pose xc) in the tangent plane, and keep exploring vectors
along the orthogonal plane (10) with distance κη from the
shell intersection point for fast building of subsequent planes.
The length of κη defines the avoidance strategy. Large κη
ensures good avoidance but larger deviations from the path,
while smaller κη provide smoother motions yet may not be
enough to avoid within one single step. Next, we use the rapid
plane generation scheme to grow multiple planes iteratively,
thus generating numerous paths exploring different avoidance
possibilities which we check for end-effector collisions at
each step. This leads to a tree that grows along the new
plane-key-points generation, which we call the escape tree.

The tree is expanded until either a limited level is reached
(stop criterion) or one leaf finds a free Cartesian path towards
a free pose within the final path—located after the obstacle
shell (exception being if the final goal is within). If we have
multiple free path leafs in the breadth, we select the optimal
one % in terms of a heuristic cost function. Herein, we are
taking the points closer to the goal. If the limited level is
reached, we sample random new points in the plane with
larger kη . The resulting path follows the tree with our TSIA
path generation scheme with new key avoidance poses. An
example of REPET is shown in Fig. 2 (Alg. 2) for the real-
robot experiment in Section VI.A. Alg. 1 illustrates TSIA
combined with the reactive collision avoidance.

V. DQ BASED KINEMATIC CONTROLLER

As stressed in the problem definition, the motion generation
needs to be achieved in real-time with an additional layer
for low-level controller that guarantees collision avoidance.
Essentially, the idea is to have a feedback controller with
exponential convergence to a desired reference pose in

2The deflection along the path is deployed in Cartesian coordinates only
as we want to disturb the least the constraints. Still, the integrated path
remains connected through ScLERP ensuring the remaining constraints are
satisfied during avoidance.



Algorithm 2 REPET Algorithm
1: procedure BUILD PLANE:(origin xc, kη , obstacle o)
2: η ← Get normal vector (xc, o);
3: v ← Orthogonal vector defining plane (η, kη) (10);
4: procedure ESCAPE TREE GENERATION:(xc, d′n, oc)
5: while stopping criteria is not satisfied do
6: xr ← Set root (xc);
7: for Each leaf j of the decision tree level; do
8: p

c
← Build plane (xr, kη,oc);

9: cj ← Get child from root;
10: ccj ← Check for collisions;
11: c∗j ← Select best based on criteria (ccj,d

′
n);

12: %,do ←Select path, pose (c∗j );

Spin(3)nR3 without decoupling the translational and rota-
tional components. First, we can define the spatial difference
xe as, xe = x

∗
mxd , where xm denotes the measured current

pose and xd the desired pose of the end-effector. The error
metric e can then be defined as e = 1 − xe. This can
be rewritten and mapped back into R8 using the Hamilton

operator
−
H (as in [22], [23], [49]) and differentiated as,

vec ė=
−
H (xd)C8 vec ẋm , (11)

where C8 is a diagonal matrix and vec : H → R8 as defined
in [22], [50]. Now, replacing ẋm with the robot Jacobian
mapping leads and pseudo-inverse controller leads to

q̇ = −(
−
H (xd)C8J)

+ vec ė = −N+λe vec e, (12)
where q̇ is the joint velocities, N+ is extended Jacobian
pseudoinverse and λe is a positive gain. This controller shows
coordinate left-invariance which matches our framework. Due
to space limits, we will omit further details or proofs but they
can be found in [50]. In this work, we also include additional
nullspace tasks such as joint-limit avoidance.

For ensuring avoidance motion only along the constrained
obstacle surface within the low-level controller, we contin-
uously modify the desired pose—as it reaches the obstacle
detection shell—by means of

xdobs = xm exp

(
log(x∗mxd)−

1

2
T (x∗mxd)

)
+ vee (I − P(ηobs)) vec

(
1

2
T (x∗mxd)

) (13)

where T (x∗mxd)) is the translation element of the spatial
difference, vee represents the current linear velocity of the
end effector and ηobs denotes the normal vector, viewed from
the rigid body frame, of the nearest point on the obstacle
surface. P(ηobs) is the orthogonal projection for which ηobs
belongs to its range space. The last term makes sure that no
action will violate the constrained surface, that is, any action
along the obstacle normal belongs to the nullspace of the
solution. Notice that similar strategy has been used before for
SE(3) collision avoidance [36], [51]. However, to the best
of the authors’ knowledge, this is the first work to extend it
to dual quaternion algebra for real-time deployment.

VI. EXPERIMENTS AND ANALYSIS

In this section, we present a set of experiments to evaluate
our proposed framework. We show that our reactive user-
guided motion generation scheme can successfully generalize
tasks to different initial and final conditions while ensuring
embedded constraints from demonstration are satisfied. Our

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.6 0.60.50.40.30.20.10-0.1-0.2-0.3

Demonstrated Path

Starting Pose

End of
Demonstration

Pouring Location

Obstacle

Imitated Path Final Path without obstacle avoidance
Final Path with obstacle avoidance

Starting Pose
Demonstration

Fig. 3. Paths for the pouring task as seen in Fig. 1. Successful generalization
for different initial and final conditions without obstacles (magenta curve)
and reactive real-time deflection (blue).

-0.4
-0.20.2 0

0.3

0.4

0.8

0.5

0.7

0.6

0.6 0.20.5 0.4 0.3 0.40.2

Starting Pose

Reactive Avoidance Path

Final Pose

Demonstrated Path
Stacking Path for 3rd Box
Stacking Path for 3rd Box with obstacle avoidance

Fig. 4. Demonstrated path (blue), final computed path without collision
avoidance (magenta), collision free path (cyan) for the stacking task (Fig. 6).
Note the integration of the pre-grasp path for placing the blocks even in the
presence of obstacles.

planner is able to evade unforeseen obstacles3 in real-time
while satisfying task constraints. Finally, task demonstrations
given on one manipulator (Franka Emika Panda)4 can be
transferred to generate motion plans for a different robot,
Baxter,5 with distinct kinematic structure. Demonstrations
given for a one-armed task can also be used to generate a
plan for the same task done in a bimanual fashion.

Experiments were performed with the Panda arm, in the
first three tasks: stacking, pouring, and shelving books. For
showing generalization across different types of robot arms,
we used the pouring demonstration on the Panda arm to
generate dual-armed pouring motion plan with the Baxter.
Note that for all experiments, a single demonstration was
used, without any need for adjustments or corrections.
A. Analysis and generalization under different conditions

First, to better understand and validate the proposed
framework, we performed two different tasks:6 (i) Pouring
water from one glass to another with shifting positions of
the glasses; (ii) Stacking rectangular wooden cuboids. Both
tasks were demonstrated only once, and executed (τ = 0.01)
under different conditions as shown in Figs. 1 and 6.

For pouring, the challenge was to embed the angle
transformations around a specific axis of rotation—while
executing the task in a completely different location with
obstacles in the scene. Manually designing the task would

3Herein, we assume full knowledge about obstacle poses, as detection is
out of scope for this work which is agnostic to the detection strategy.

4Experiments executed at the Technical University of Munich.
5Experiments conducted at Stony Brook University.
6The guiding pose was set to be 20% of IP length.



Without obstacle avoidance
With single obstacle avoidance

-0.7
-0.65

0.5

-0.6
-0.55
-0.5

-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

-0.3-0.2-0.100.10.20.30.40.50.60.7

1
With multiple obstacles

Shelving

Placement

Starting Pose

Fig. 5. Top view of the shelving task paths showing in Fig. 1. Deflection
of the final computed path (blue, green) is crucial for this complex scenario.
Note that the plan without collision avoidance (red) is inside the blue obstacle.

Fig. 6. Overview of our approach from single-demonstration (top-left) to
generalization and sequential manipulation to reactive collision avoidance
(bottom figures)

be challenging, yet our algorithm embeds such constraints
in the demonstrated path which is ensured by the imitated
path and deployed for the final path through ScLERP. All
the trajectories are shown in Fig. 3, which depicts that our
reactive framework ensures feasibility of the task while, at
the same time, satisfying the demonstrated constraints.

The stacking task is a sequential manipulation problem,
where a single demonstration is given but five sequence of
motions, from grasping the first block to releasing the last
bock needs to be executed. The only additional information
is the different end-goals (the height of the blocks). During
real-time execution, we included a dynamic obstacle in front
of the third, and last, block. The demonstrated path and the
executed path for this condition are shown in Fig. 4.
B. Reactive user-guided motion planning in clutter

To highlight the performance and robustness of our ap-
proach, we devised a cluttered scene where the objective was
to shelve books handed by a human in a cluttered cupboard
with a specific attitude transformation. In addition to static
obstacles, the robot also avoids two unforeseen obstacles that
appear during the placing of the second and the third book.
Notice the demonstration was provided in a different shelf
(lower shelf) as shown in Fig. 6. Regardless, the proposed
framework enabled real-time collision-free solution directly
with one single new information: the new goal pose. The
resulting trajectory for the three book placements are shown
in Fig. 5. The red, blue and green curves depict the paths
to place three books in a line. The first path is without any
obstacle, the second one is with one obstacle (the larger one)
and the third is with two obstacles of different size.
C. Analyze the real-time capabilities

The average computation time to complete all the afore-
mentioned tasks 7 are shown in Table I. Notice that for some

7The average time refers to the complete task and not to the motion-
generation and control loop which were running under 0.1 ms for all cases.

TABLE I
THE AVERAGE COMPUTATION TIME FOR A COMPLETE PATH

Pouring Stacking Shelving
w/o REPET. 16.464± 2.909 6.448± 0.934 5.185± 1.313

REPET 16.364± 3.004 4.287± 0.800 5.792± 0.644

0.8
0.9

-0.4 -0.3
-0.05

-0.2 -0.1 0

0

0.1 0.2 0.3

0.05

0.4

0.1

0.15

0.2

0.25

0.3

x

yz

x

y
z

x

y

z

y
x

z

Starting Pose

Pouring Pose

Left-arm

Right-arm

Fig. 7. Transfer generalization between user-guided demonstration from
single-arm to the Baxter dual-arm robot for pouring/transfer task. The
screenshots on the top depicts different moments of the task from right
to left. The yellow and red poses depict the path for the left and right
end-effectors whereas planned path using the single-arm guidance is shown
in blue. Notice that both end-effectors need to combine coupled attitude
and translation motion to ensure the final pouring path consists of mostly
rotation as shown in the single-arm demonstration.

tasks, the collision avoidance led to less computational time.
This was due to the deflected trajectory being closer to the
goal and highlights the heuristic designed in Section IV.
This also highlights the real-time capability of our approach.
The computation for each rapidly expanding plane-oriented
escaping tree level took approximately 0.0429± 0.01094 ms,
therefore having the potential to evade dynamic obstacles
in real-time. Algorithms were implemented in C++ (not
optimized) using the DQ Robotics [52] library.
D. Transfer to different kinematics: Bi-manual System

The final experiment that we conduct validates one inter-
esting feature of our work – generalizing to multiple robots
with different hardware architecture and kinematic chain. As
our user guidance based planning is done in Spin(3)nR3, it
implies that the same user demonstration can be used again
for roughly same constrained tasks and/or for different robotic
systems. Therefore, we used the demonstration provided on
the Panda robot for the pouring task and used the final
generated path to a new goal location as an input for the
dual-arm Baxter transfer task (Fig. 7) which also inherently
had different initial and final poses.

VII. CONCLUSION

This paper presents a novel framework for using human
demonstration to generate real-time motion plans for complex
tasks that satisfy the embedded implicit constraints. Our
approach includes a reactive collision-avoidance algorithm
that allows execution in the presence of obstacles that were not
present during demonstration. Our technical approach exploits
the group structure of rigid body motion and also utilizes
the computational efficiency of Spin(3)nR3 representation
of rigid body configuration. This allows real-time execution.
Extensive experimental studies were performed to highlight
the generalization capability of our approach. In future
works, we plan to integrate vision feedback for unknown
environments [53], improve smoothness to C1 trajectories



[46], and introduce multi-modal strategies and human-factors
for safe online trajectory adaptation in HRI scenarios as in
[54].

REFERENCES

[1] D. Kragic, J. Gustafson, H. Karaoguz, P. Jensfelt, and R. Krug,
“Interactive, collaborative robots: Challenges and opportunities.” in
IJCAI, 2018.

[2] R. Laha, L. F. Figueredo, J. Vrabel, A. Swikir, and S. Haddadin,
“Reactive Cooperative Manipulation based on Set Primitives and
Circular Fields,” in IEEE International Conference on Robotics and
Automation, Xi’an, China, May 2021.

[3] R. Laha, “Task-specific motion planning using user-guidance, imitation,
and self evaluation,” Master’s thesis, Stony Brook University, New
York, 2018.

[4] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, pp. 297–330, 2020.

[5] S. Calinon, “Learning from demonstration (programming by demon-
stration),” Encyclopedia of robotics, pp. 1–8, 2018.

[6] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[7] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with non-
linear dynamical systems in humanoid robots,” in IEEE International
Conference on Robotics and Automation (ICRA), 2002.

[8] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013.

[9] J. Silvério, S. Calinon, L. Rozo, and D. G. Caldwell, “Learning task
priorities from demonstrations,” IEEE Transactions on Robotics, vol. 35,
no. 1, pp. 78–94, 2019.

[10] J. Silvério, S. Calinon, L. Rozo, and D. G. Caldwell, “Learning
competing constraints and task priorities from demonstrations of
bimanual skills,” arXiv preprint, 2017.

[11] Y. Wu and Y. Demiris, “Towards one shot learning by imitation for
humanoid robots,” in ICRA. IEEE, 2010.

[12] M. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. Caldwell,
“An approach for imitation learning on Riemannian manifolds,” RA-L,
2017.

[13] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine,
“One-shot imitation from observing humans via domain-adaptive meta-
learning,” in Robotics:Science & Systems, 2018.

[14] C. Atkeson and S. Schaal, “Learning tasks from a single demonstra-
tion,” in Proceedings of International Conference on Robotics and
Automation, vol. 2, 1997, pp. 1706–1712 vol.2.

[15] P. Praveena, D. Rakita, B. Mutlu, and M. Gleicher, “User-guided offline
synthesis of robot arm motion from 6-dof paths,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
8825–8831.

[16] J. Denny, J. Colbert, H. Qin, and N. M. Amato, “On the theory of
user-guided planning,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 4794–4801.

[17] C. B. Phillips, J. Zhao, and N. I. Badler, “Interactive real-time
articulated figure manipulation using multiple kinematic constraints,”
in Proceedings of the 1990 Symposium on interactive 3D Graphics,
1990, pp. 245–250.

[18] M. Gleicher, “Retargetting motion to new characters,” in Proceedings
of the 25th annual conference on Computer graphics and interactive
techniques, 1998, pp. 33–42.

[19] F. Islam, O. Salzman, and M. Likhachev, “Online, interactive user
guidance for high-dimensional, constrained motion planning,” in
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 2018, pp. 4921–4928.

[20] Q.-C. Pham, S. Caron, and Y. Nakamura, “Kinodynamic planning
in the configuration space via admissible velocity propagation.” in
Robotics: Science and Systems, vol. 32, 2013.

[21] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of biped lo-
comotion with dynamical movement primitives,” in Workshop on Robot
Programming by Demonstration, IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2003.

[22] B. V. Adorno, “Robot Kinematic Modeling and Control Based on Dual
Quaternion Algebra – Part I: Fundamentals - hal-01478225,” p. 47,
2017.

[23] B. V. A, “Two-arm manipulation: From manipulators to en-
hanced human-robot collaboration,” Ph.D. dissertation, Laboratoire
d’Informatique, de Robotique et de Microélectronique de Montpellier
(LIRMM) - Université Montpellier 2, Montpellier, France, 2011.

[24] Y. Wu, X. Hu, D. Hu, T. Li, and J. Lian, “Strapdown inertial navigation
system algorithms based on dual quaternions,” IEEE Transactions On
Aerospace And Electronic Systems, vol. 41, no. 1, pp. 110–132, 2005.

[25] L. F. C. Figueredo, “Kinematic control based on dual quaternion algebra
and its application to robot manipulators,” Ph.D. dissertation, University
of Brasilia, Brazil, 2016.

[26] H. T. Kussaba, L. F. Figueredo, J. Y. Ishihara, and B. V. Adorno,
“Hybrid kinematic control for rigid body pose stabilization using dual
quaternions,” Journal of the Franklin Institute, vol. 354, no. 7, pp.
2769–2787, 2017.

[27] P. P. Magro, H. T. Kussaba, L. F. Figueredo, and J. Y. Ishihara, “Dual
quaternion-based bimodal global control for robust rigid body pose
kinematic stabilization,” in American Control Conference (ACC), 2017.
IEEE, 2017, pp. 1205–1210.

[28] J. Funda and R. Paul, “A computational analysis of screw transfor-
mations in robotics,” IEEE Transactions on Robotics and Automation,
vol. 6, no. 3, pp. 348–356, 1990.

[29] E. Özgür and Y. Mezouar, “Kinematic modeling and control
of a robot arm using unit dual quaternions,” Robotics and
Autonomous Systems, vol. 77, pp. 66 – 73, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889015301184

[30] X. Yang, H. Wu, Y. Li, S. Kang, and B. Chen, “Computationally
efficient inverse dynamics of a class of six-dof parallel robots: Dual
quaternion approach,” Journal of Intelligent & Robotic Systems, vol. 94,
pp. 101–113, 2019.

[31] N. A. Aspragathos and J. K. Dimitros, “A Comparative Study of Three
Methods for Robot Kinematics,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 28, no. 2, pp. 135–145,
1998.

[32] J. Kuipers, Quaternions and Rotation Sequences: A Primer with
Applications to Orbits, Aerospace, and Virtual Reality. Princeton
University Press, 1999.

[33] J. M. Selig, Geometric Fundamentals of Robotics, 2nd ed. Springer-
Verlag New York Inc., 2005.

[34] W. M. Boothby, An Introduction to Differentiable Manifolds and
Riemannian Geometry, 2nd ed. Academic Press, 2002.

[35] B. Busam, T. Birdal, and N. Navab, “Camera pose filtering with local
regression geodesics on the riemannian manifold of dual quaternions,”
in 2017 IEEE International Conference on Computer Vision (ICCV),
2017, pp. 2436–2445.

[36] F. C. Park, “Distance Metrics on the Rigid-Body Motions with
Applications to Mechanism Design,” Journal of Mechanical Design –
Transactions of ASME, vol. 117, no. 1, pp. 48–54, 1995.

[37] E. Zacur, M. Bossa, and S. Olmos, “Left-Invariant Riemannian
Geodesics on Spatial Transformation Groups,” SIAM Journal on
Imaging Sciences, vol. 7, no. 3, pp. 1503–1557, jul 2014.

[38] Y. L. Sachkov, “Control theory on Lie groups,” Journal of Mathematical
Sciences, vol. 156, no. 3, pp. 381–439, 2009.

[39] J. Gallier and J. Quaintance, Notes on Differential Geometry and Lie
Groups. Department of Computer and Information Science University
of Pennsylvania, 2016.

[40] B. Busam, T. Birdal, and N. Navab, “Camera Pose Filtering
with Local Regression Geodesics on the Riemannian Manifold
of Dual Quaternions,” ArXiv e-prints, 2017. [Online]. Available:
http://arxiv.org/abs/1704.07072

[41] M. Lorenzi and X. Pennec, “Geodesics, parallel transport & one-
parameter subgroups for diffeomorphic image registration,” Interna-
tional Journal of Computer Vision, vol. 105, pp. 111–127, 2013.

[42] A. Sarker, A. Sinha, and N. Chakraborty, “On screw linear interpolation
for point-to-point path planning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 9480–9487.

[43] X. Wang, D. Han, C. Yu, and Z. Zheng, “The geometric structure of
unit dual quaternion with application in kinematic control,” Journal
of Mathematical Analysis and Applications, vol. 389, no. 2, pp. 1352–
1364, May 2012.

[44] L. Kavan, S. Collins, C. O’Sullivan, and J. Zara, “Dual quaternions
for rigid transformation blending,” Trinity College Dublin, Tech. Rep.,
Trinity College Dublin 2006.

[45] M.-j. Kim, M.-s. Kim, and S. Y. Shin, “A compact differential formula
for the first derivative of a unit quaternion curve,” The Journal of
Visualization and Computer Animation, vol. 7, no. 1, pp. 43–57, 1996.

[46] F. Allmendinger, S. Charaf Eddine, and B. Corves, “Coordinate-
invariant rigid-body interpolation on a parametric C1 dual quaternion
curve,” Mechanism and Machine Theory, pp. 731–744, March 2018.

[47] R. Grassmann, L. Johannsmeier, and S. Haddadin, “Smooth point-
to-point trajectory planning in se(3) with self-collision and joint
constraints avoidance,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[48] R. Laha, A. Rao, L. Figueredo, Q. Chang, S. Haddadin, and
N. Chakraborty, “Point-to-point path planning based on user guidance
and screw linear interpolation,” in Proceedings of the ASME Interna-
tional Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (IDETC/CIE), August 2021.

[49] O. P. Agrawal, “Hamilton operators and dual-number-quaternions in
spatial kinematics,” Mechanism and machine theory, vol. 22, no. 6, pp.
569–575, 1987.

http://www.sciencedirect.com/science/article/pii/S0921889015301184
http://arxiv.org/abs/1704.07072


[50] L. Figueredo, B. Adorno, J. Ishihara, and G. Borges, “Robust kinematic
control of manipulator robots using dual quaternion representation,” in
IEEE International Conference on Robotics and Automation (ICRA),
2013, pp. 1949–1955.

[51] Y. Han and F. Park, “Least squares tracking on the Euclidean group,”
IEEE Transactions on Automatic Control, vol. 46, no. 7, pp. 1127–1132,
2001.

[52] B. V. Adorno and M. M. Marinho, “Dq robotics: A library for robot
modeling and control,” IEEE Robotics Automation Magazine, 2020.

[53] C. De Farias, M. Adjigble, B. Tamadazte, R. Stolkin, and N. Marturi,
“Dual quaternion-based visual servoing for grasping moving objects,”
in 2021 IEEE 17th International Conference on Automation Science
and Engineering (CASE), 2021, pp. 151–158.

[54] L. Chen, L. F. Figueredo, and M. R. Dogar, “Planning for muscular and
peripersonal-space comfort during human-robot forceful collaboration,”
in 2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids), Nov 2018, pp. 1–8.


	I Introduction
	I-A Related Work

	II Problem Formulation
	II-A Problem and Mathematical Background
	II-B Overview of Problem

	III Task Space Imitation Algorithm (TSIA)
	IV Reactive Obstacle Avoidance
	V DQ Based Kinematic Controller
	VI Experiments and Analysis
	VI-A Analysis and generalization under different conditions
	VI-B Reactive user-guided motion planning in clutter
	VI-C Analyze the real-time capabilities
	VI-D Transfer to different kinematics: Bi-manual System

	VII Conclusion
	References

