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Grounding Predicates through Actions

Toki Migimatsu and Jeannette Bohg

Abstract— Symbols representing abstract states such as
“dish in dishwasher” or “cup on table” allow robots to reason
over long horizons by hiding details unnecessary for high-level
planning. Current methods for learning to identify symbolic
states in visual data require large amounts of labeled training
data, but manually annotating such datasets is prohibitively
expensive due to the combinatorial number of predicates
in images. We propose a novel method for automatically
labeling symbolic states in large-scale video activity datasets
by exploiting known pre- and post-conditions of actions. This
automatic labeling scheme only requires weak supervision
in the form of an action label that describes which action
is demonstrated in each video. We use our framework to
train predicate classifiers to identify symbolic relationships
between objects when prompted with object bounding boxes,
and demonstrate that such predicate classifiers can match the
performance of those trained with full supervision at a fraction
of the labeling cost. We also apply our framework to an
existing large-scale human activity dataset, and demonstrate
the ability of these predicate classifiers trained on human data
to enable closed-loop task planning in the real world.

I. INTRODUCTION

Enabling robots to perform long horizon tasks such as
preparing meals or assembling furniture is a widely studied
problem. Long horizon planning is rooted in early Al work
that studied how to give robots the ability to reason through
symbols [1]. Symbols allow robots to abstract away low-level
details of the environment and perform logical reasoning
at a higher level [2-5]. However, giving robots the ability
to perceive symbols in real-world environments is still an
unsolved problem. Without some form of sensory grounding,
propositions such as “drawer is open” are simply a set of
symbols that lack any actionable meaning for the robot. Thus,
robots often execute symbolic plans without closed-loop
visual feedback—if a robot fails to open a drawer, it has no
way of knowing, because it does not know what “drawer is
open” looks like. State-of-the-art methods for learning visual
groundings of symbols require large amounts of annotated
data [3, 6—8]. However, obtaining annotations of symbolic
states is prohibitively expensive due to the sheer number of
propositions in a single image. Furthermore, densely-labeled
datasets cannot easily be transferred between domains, since
different planning problems often require different symbols.

Rather than learning visual groundings from direct labels
of symbolic state, we propose to learn them indirectly
from visual examples of symbolic actions. Actions change
the symbolic state in a predefined manner according to
their pre- and post-conditions (e.g. the action “pick up cup
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Fig. 1: Example predictions of a predicate classifier trained on data labeled
with our proposed method. The top two rows show how the predicate
classifier can be used to determine whether the pre- or post-conditions of
an action are satisfied for closed-loop task planning—the first row shows
predictions on a 20BN video, and the second row shows predictions in our
real robot domain. Each entry shows the predicate probability predicted
by the classifier and the resulting binary classification. The red color
indicates that the desired pre/post-conditions have not yet been satisfied,
while green indicates that they have. The bottom shows a selection of
the 151 propositions output by the predicate classifier for one image.
More examples can be found on our project website: https://sites.
google.com/stanford.edu/groundingpredicates.

from table” changes the propositions “hand is empty” and
“cup is on table” to “hand is holding cup” and “cup is
not on table”). Labeling a dataset with actions is easier
than with symbolic states: it requires first defining the pre-
and post-conditions once for each action class, and then
annotating each visual example with only its action. Then,
partial labels of symbolic state come for free with the action
pre- and post-conditions. For task planning applications, the
action pre- and post-conditions will already be defined in
the task planning domain.

With this novel partial labeling scheme, we train networks
to infer symbolic states in images in 20BN Something Some-
thing v2 (20BN) [9], a large-scale human activity dataset.
The result is a system that can identify symbolic states
in real-world environments for robot manipulation (Fig. 1).
These classifiers open up many opportunities for long hori-
zon planning in the real world, such as closed-loop task plan-
ning or learning from demonstrations of sequential actions.

The main contributions of this paper are three-fold. 1) We
provide a framework for automatically labeling symbolic
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states in real-world image frames through actions, using
the logical formalism of Planning Domain Description
Language (PDDL) [10]. 2) We evaluate this framework
on two domains, 20BN and Gridworld, and analyze its
advantages and disadvantages. 3) We demonstrate the ability
of predicate classifiers that are only trained on human
demonstrations in 20BN to be used for closed-loop task
planning in a real-world robot environment.

II. RELATED WORK
A. Visual Relationship Detection

The computer vision community has a recently growing
body of work on symbolic state detection, under the names
visual relationship detection and scene graph generation
[3, 6-8, 11-15]. A scene graph represents image scenes
as graphs where nodes are objects or attributes like grass
and green, and edges are relationships between nodes,
e.g., {grass — green)[16]. The aim of visual relationship
detection is to enable semantic scene understanding and to
connect visual concepts with natural language. The three
most common datasets for visual relationship detection
are CLEVR (100k synthetic images with 3 objects and
16 predicates) [16], VRD (5k real world images with 100
objects and 70 predicates) [6], and Visual Genome (100k
real world images with 34k objects and 110k predicates)
[17]. A key challenge of visual relationship detection (i.e.,
symbolic state detection) is the immense number of possible
states. Even for the relatively small VRD dataset, 70 binary
predicates with 100 objects results in 70 * 100 = 99 = 693k
possible propositions. VRD and Visual Genome both rely on
manual annotation, and thus obtaining fully labeled symbolic
states is infeasible. Our method for labeling symbolic states
requires defining the pre- and post-conditions once for
each action class, and then partial symbolic state labels are
automatically generated for all examples in the dataset.

It is important to note that our method only works when
before and after images of the actions being performed are
provided; VRD and Visual Genome do not meet this require-
ment. Furthermore, learning from pre- and post-conditions
of actions only works in domains where the symbolic state
can be manipulated by actions. Propositions such as “sky is
blue” may be difficult to learn through actions, for example.
The Action Genome dataset [18] introduces spatio-temporal
scene graphs with the purpose of using symbolic state
changes across actions to improve action recognition in
videos. However, Action Genome, like VRD and Visual
Genome, relies on manual annotations, and furthermore does
not include negative propositions. Action Genome is based
on the Charades dataset for video activity recognition [19].
Charades is one of numerous activity recognition datasets,
like ActivityNet [20], Epic-Kitchens [21], and Atomic
Visual Actions (AVA) [22], where labeling symbolic states
with our method could be possible. However, we choose to
evaluate our method on the 20BN Something Something v2
dataset [9], a video activity recognition dataset that focuses
on the manipulation of everyday objects and has been shown
to be useful for learning robotic manipulation skills [23, 24].

The focus of this work is providing an alternative
framework for labeling symbolic states, not proposing a
novel model architecture for visual relationship detection.
To evaluate our labeling method, we therefore train a model
whose architecture is based on a state-of-the-art model for
visual relationship detection [25]. However, our approach is
agnostic to the specific model architecture.

B. Visual Grounding for Planning

A long-term goal for this work is to help bridge the gap
between perception and long horizon planning in robotics.
A majority of task planning methods operate solely at
the level of symbolic abstractions, assuming that in a real
world application, there would be some way to perceive
symbols in the environment. Some works attempt to learn
the symbols themselves, so that perception and planning
can work together in an end-to-end fashion [2, 26]. In these
works, the learned symbols are not easily interpretable,
and guaranteeing correct behavior over a long horizon for
complex domains is therefore difficult. Our labeling method
benefits frameworks that rely on direct supervision of sym-
bols to learn to plan over long horizons, such as [4, 27-30].
These systems contain submodules that require annotations
of predicates in images. This dependency restricts these
systems to simulated environments where symbolic states
are easily obtainable or to real-world domains small enough
that manually annotating symbolic states is feasible.

The work most directly related to ours is perhaps an
imitation learning system that learns to ground predicates
associated with the pre- and post-conditions of demonstrated
actions [31]. With grounded predicates, their system can then
generalize to new tasks using classical planning. Specifically,
their Visuospatial Skill Learning module learns to classify the
predicate far(a) for a cuboid block a using demonstrations
from two actions: push(a) : —far(a) — far(a) and
pull(a) : far(a) — —far(a). While they learn to ground
predicates from actions, the complexity of their problem is
much simpler: one predicate. Our method enables learning
to ground any number of predicates simultaneously from
actions with arbitrarily complex pre- and post-conditions.

C. Weak Supervision

Our framework might be considered a form of weak
supervision, which deals with classification problems
where humans define annotation functions (e.g. pre- and
post-conditions of actions) that provide noisy labels for
unlabeled datasets to alleviate the effort of full labeling.
Although our dataset is not strictly unlabeled (we assume
action labels are available), methods from this relatively
new field could be applied to our framework in future work
[32, 33]. In Appx. A, we provide back-of-the-envelope
calculations to demonstrate how much annotation time weak
supervision can save. Our weak supervision framework
makes it easier to train predicate classifiers for custom
task planning domains, which often contain symbols not
transferable from other domains.



III. PLANNING DOMAIN DESCRIPTION LANGUAGE

This paper uses the Planning Domain Description Lan-
guage (PDDL) [10] to describe symbolic domains. A PDDL
domain can be specified with a tuple (®,.4), where @ is the
set of predicates and A is the set of actions. A PDDL prob-
lem is a tuple (O, S;nit, g), where O is the set of environment
objects, S;;+ 1S the initial state, and g is the goal—specified
as a first-order logic formula—to be satisfied.

A. Predicates and Propositions

A predicate has a fixed number of parameters, each of
which can be instantiated with an object in O to form
a proposition. For example, the predicate in(a, b) has
two parameters a and b, and instantiating the parameters
with arguments box and hand results in the proposition
in(box, hand). In this paper, we use “positive proposition”
to refer to atomic formulas (e.g., in(box, hand)) and
“negative proposition” to refer to negations of atomic
formulas (e.g., ~in(box, hand)). Let P be the set of all
possible positive propositions and /N be the number of these
propositions (N = |P|).

P ={¢(o1,...,om) | Vo € ®,Y(01,...,0n) € OM} (1)

B. States

Symbolic states are conjunctions (A) of propositions, e.g.,
in(box, hand) N above(box, table) A —on(box, table).
PDDL follows the closed-world assumption, which means
that propositions that are not explicitly specified are assumed
to be false. Thus, we can also represent states as the set of
all true propositions, where propositions not in the set are
false by default. Let s denote closed-world states, and let S
be the set of all possible states. Note that |S| = 27V,

s={peP|pistrue} €S (2)

Under the open-world assumption, propositions that are
not explicitly specified in the state are unknown—neither
true nor false. Here, symbolic states can be represented as a
pair of signed states (s, s7), where sT is the set of positive
propositions, s~ is the set of negative propositions, and
propositions that are excluded from s+ and s~ are unknown.
Let s denote open-world states represented in this manner.

$= (5+, 57) €s?
st={peP|pistrue} €8 (3)
sT={qeP|—gistrue} €S
In practice, we represent closed-world states as boolean
vectors s € {0,1}" and open-world states as boolean

matrices § € {0,1}2*"N, where the first and second row
correspond to positive and negative states, respectively.

C. Actions

Actions are defined by their pre-conditions—a first-
order logic formula that must be true before performing the
action—and post-conditions—a formula that is applied to the
symbolic state after the action. These formulas can include
universal (forall), existential (exists), and conditional

(when) quantifiers in PDDL. A symbolic planner aims to
find a sequence of actions that starts at the initial state S;,;;
and ends up in a symbolic state that satisfies the goal g.

IV. PARTIAL STATE LABELS FROM ACTIONS

Our goal is to use a PDDL specification to automatically
label symbolic states in an entire dataset of videos only
annotated with actions. In this section, we formalize our
method for obtaining partial state labels from pre- and
post-conditions of actions and discuss how to use these
partial labels to train symbolic state classifiers. An overview
of the pipeline is provided in Fig. 2.

A. Predicate Classification Network

Let M be the maximum number of parameters of any
predicate in P. Given Z as an RGB image of any dimension,
and M bounding boxes (by,...,bp) of M objects repre-
senting ordered predicate arguments, the network outputs a
vector y of P probabilities, one for each predicate in P:

g:fnetwork (Iab17"~7bM) € [07 1]P (4)

The benefit of using object bounding boxes is that we
can query the predicate network for propositions with
specific argument ordering, such as in(spoon, cup) or
in(cup, spoon). The predicate network would then output a
prediction based on its understanding of what it looks like for
argument a to be in argument b. We assume that most robot
manipulation applications will already rely on object tracking
for planning and control, and therefore obtaining object
bounding boxes for predicate detection would not incur any
additional cost. However, using bounding boxes is an imple-
mentation choice that is orthogonal to our proposed method
of labeling symbolic states with pre- and post-conditions. A
classifier that predicts propositions without bounding boxes
could also be used in place of the predicate classifier for
environments where bounding boxes are difficult to obtain.

Details of the network architecture that we use in the
experiments can be found in Appx. C.

B. Obtaining Partial State Labels from Actions

The logic formulas that describe pre- and post-conditions
can be arbitrarily complex with deeply nested compound
formulas. To make these nested formulas usable for
computing a neural network loss for symbolic state
predictions, we first convert them via first-order logic
algebra into a flattened form called disjunctive normal form
(DNF). DNFs are written as disjunctions (V) of conjunctions
(N) of positive and negative propositions. Each conjunction
in a DNF can be interpreted as a partially-specified state
under the open-world assumption.

DNF =4 Vi V---Vip (5)

With this interpretation, a pre-condition DNF represents
a set of possible partial states before performing the action,
and a post-condition DNF represents a set of possible partial
states after. These candidate states are partial because actions
only specify conditions relevant to the action itself. For
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Fig. 2: Training example for the 20BN action “picking [a cup] up”. The pre- and post-images Zpre and Zpost get fed into the predicate classifier along
with all C' combinations of M object bounding boxes. Each combination gets mapped to predicates according to the number of arguments (e.g., the
cup bounding box gets mapped to pred}()a) predicates and the cup and hand together get mapped to pred(a, b)). The predicate classifier outputs C'
predictions each for Gpre, Tpost € [0, 1], where P is the number of predicates in the symbolic domain. These predicate vectors are transformed into
symbolic state vectors Ypre, Ypost € [0, 1]V, where N is the number of propositions. The ground truth labels used to evaluate these predictions come
from partial state labels Spre, Spost € {0, 1}2><N , obtained from the PDDL definition of the action pick(a) on the right. DNF cross entropy is used
to compare the predictions to the partial state labels. At test time, a single image is fed into the network along with bounding boxes for the predicate
arguments, and the predicate classifier predicts the symbolic state of the image.

example, the action pick(box) may require —=in(box, hand)
as a pre-condition, but does not care whether open(door)
is true and is not even aware of door’s existence. The
candidate states in a pre- or post-condition DNF can encode
varying amounts of information about the open world (i.e.,
specifying anywhere from 1 to N propositions), and some
candidates may be supersets of others. A DNF is satisfied if
and only if at least one of the candidate states in the DNF is
true (Eq. 5). In other words, when an action is performed on
a concrete symbolic state, at least one candidate state in the
pre-condition DNF will be true before performing the action,
and at least one in the post-condition DNF will be true
after. Although it is impossible to know which candidate is
true without more information, we do know the truth value
of the propositions that appear in all the candidate states.

To label symbolic states using pre- and post-conditions,
we therefore collapse each DNF into the largest single partial
state that satisfies all its conjunctions. This is equivalent to
the intersection of all the positive and negative states.

D

(si

i=1

D
SpNF = ﬂ st €s? 6)
i=1

If collapsing a pre-condition DNF results in the empty
set, this means that the pre-conditions are too general to
provide labels for symbolic state. Post-conditions with
empty collapsed DNFs means that there is a conditional
effect (when) that may result in the action producing
no changes. Both cases can be avoided by making the
pre-conditions more descriptive. For example, if the
action close(a) contains the conditional post-condition
is—closable(a) = closed(a), the action can be
redefined so that is—closable(a) is a pre-condition and
the post-condition is simply closed(a).

Let 8pre(a) : A — 8% and $pose(a) : A — S% be
functions that return collapsed pre- and post-condition
DNFs, respectively, for action a. These functions provide

a way to label propositions whose values are guaranteed to
be known before or after an action is performed. Any other
proposition could be either true or false without violating
a pre- or post-condition, so nothing can be said about their
ground truth values. A formal proof for this statement can
be found in Theorem 1.1.

C. DNF Cross Entropy Loss

As summarized in Fig. 2, a data point in the training
set consists of an action a along with its pre- and post-
conditions, a pair of images (Z,, Zpost) corresponding to
the action’s before and after state, and bounding boxes of
the objects whose predicates one wishes to identify. Let
Ypre € [0, 1]V and Ypost € [0, 1]V be the predicted outputs
of the network. The ground truth labels derived from the
pre- and post-conditions of a can be represented as a pair
of matrices 8¢(a), 8post(a) € {0, 1},

To measure how much a network prediction output agrees
with an action’s pre- and post-conditions, we define a
modified cross entropy loss to handle DNFs. Here, o(y) is
the sigmoid function.

CEpnr(y,3) = —s"loga(y) — s~ loga(~y) (D)
The loss function used to train the network on a pre- and
post-condition pair is:
1055(Ypre, Ypost; Spres Spost) = CEDNF (Ypre, Spre)
+ CEpNF(Ypost, Spost)
V. EXPERIMENTS

®)

In the following experiments, we apply our framework to
a large-scale real-world dataset, where obtaining complete
ground truth labels is impractical. We then apply these
trained classifiers to perform closed-loop task planning in a
real robot environment. Finally, we evaluate the effectiveness
of using partial labels of symbolic state from action pre-
and post-conditions compared to complete ground truth
labels in a toy Gridworld environment.



A. Learning Predicates from Large-Scale Datasets

The 20BN dataset [9] contains 220, 847 video examples
of 174 manipulation actions. Although 20BN does not
label bounding boxes for the action arguments, we use
the bounding boxes from Something-Else [34]. We have
defined the pre- and post-conditions for all but two of the
actions—"“putting # of sth onto sth” and “stacking # of
sth”—since the # variable cannot be easily described as a
PDDL object. We have also defined 35 predicates relevant
to the 172 actions. The full PDDL description can be found
on the project website.

The purpose of this experiment is to show that our
framework makes it possible to train symbolic state
classifiers on large-scale real world datasets without relying
on expensive manual annotations. Back-of-the-envelope
calculations in Appx. A indicate that using pre- and
post-conditions to partially label the symbolic states in all
132,853 videos of our subset of 20BN would take an expert
roughly four 8-hour work days. By contrast, obtaining the
equivalent partial state labels with manual annotation would
take 690 8-hour work days.

1) Setup: We train the predicate classifiers using DNF
cross entropy (DNF CE), as well as a weighted version
of cross entropy (DNF WCE) using Class-Balanced Loss
[35] to overcoming imbalances in the predicate distribution.
There is no oracle because we do not have ground truth
labels of the full symbolic state in this real-world dataset.

2) Results: Both DNF CE and DNF WCE are able to
learn the predicates specified in the 20BN PDDL with 0.96
train F1 and 0.92 test F1. Although the two achieve the
same test F1 scores (within 0.001), the predicate F1 scores
in Table I reveal that overall, DNF WCE performs better on
the less frequent predicates, increasing the average predicate
F1 score from 0.60 to 0.65.

Given that each proposition in 20BN is positive 36% of
the time on average, a random classifier that outputs positive
propositions with 0.36 chance would be expected to get 0.36
F1. Thus, an F1 score of 0.65 is significantly better than
random. Both DNF CE and DNF WCE achieve 0.93 test
accuracy. Fig. 1 shows qualitative examples of DNF WCE.

3) Transfer to Real Robot Domains: To demonstrate the
zero-shot transferability of predicate classifiers trained with
our framework to robot manipulation domains, we directly
apply the DNF WCE classifier trained on 20BN to a robot
pick-and-place setting for closed-loop task planning (Fig. 3).

For our real robot experiment, we create a pick-and-place
environment where the robot needs to clear fruit off the
table and store them in appropriate containers. We use the
YOLOVS object detector [36] for predicate bounding boxes
along with Mediapipe object tracking [37] for smoother
tracking between frames. The predicate classifier then sends
a symbolic state prediction to a task planner that searches
for a sequence of actions that satisfies the PDDL goal. The
whole pipeline (from perception to task planning) operates
at 10Hz and therefore allows closed-loop task planning that
can respond to failures and disturbances. A video of this
demonstration is provided in the supplementary material.

Predicate Dist DNF CE DNF WCE
Prec. Rec. FI Prec. Rec. Fl

is-bendable(a) 0.00 0.95 0.90 0.93 0.97 0.82 0.89
is-fluid(a) 0.03 0.58 0.07 0.13 0.50 0.20 0.28
is-holdable(a) 0.06 1.00 1.00 1.00 1.00 1.00 1.00
is-rigid(a) 0.02 0.86 0.93 0.90 0.87 091 0.89
is-tearable(a) 0.00 0.89 0.85 0.87 0.88 0.84 0.86
above(a, b) 0.03 0.84 0.58 0.68 0.84 0.57 0.68
attached(a, b) 0.04 0.62 0.25 0.35 0.34 0.11 0.16
behind(a, b) 0.03 0.62 0.54 0.58 0.59 0.61 0.60
broken(a) 0.01 0.83 0.22 0.35 0.62 0.46 0.53
close(a) 0.01 091 0.95 0.93 0.92 0.90 091
closed(a) 0.00 0.65 0.76 0.70 0.65 0.79 0.71
deformed(a) 0.01 0.54 0.05 0.09 0.30 0.39 0.34
empty(a) 0.00 0.62 0.44 0.52 0.45 0.72 0.56
far(a) 0.08 0.17 0.03 0.05 0.17 0.15 0.16
fits(a, b) 0.00 0.98 1.00 0.99 0.99 0.95 0.97
folded(a) 0.02 0.57 0.27 0.37 0.43 0.55 0.48
has-hole(a) 0.00 0.75 0.50 0.60 0.60 0.50 0.55
high(a) 0.01 0.63 0.33 0.43 0.57 0.44 0.50
in(a, b) 0.10 0.90 0.88 0.89 0.90 0.88 0.89
infront(a, b) 0.03 0.65 0.51 0.57 0.63 0.54 0.58
left(a) 0.00 0.60 0.68 0.64 0.60 0.70 0.65
low(a) 0.01 0.65 0.62 0.64 0.65 0.63 0.64
nextto(a, b) 0.02 0.74 0.54 0.63 0.73 0.56 0.64
on(a, b) 0.04 0.80 0.52 0.63 0.79 0.51 0.62
onsurface(a) 0.02 0.87 0.93 0.90 0.88 0.91 0.90
open(a) 0.00 0.63 0.50 0.56 0.63 0.54 0.58
right(a) 0.00 0.63 0.53 0.58 0.64 0.53 0.58
stacked(a) 0.00 0.81 0.69 0.75 0.86 0.75 0.80
stretched(a) 0.02 0.79 0.22 0.35 0.27 0.59 0.37
torn(a) 0.02 0.80 0.34 0.47 0.63 0.53 0.57
touching(a, b) 0.16 091 0.89 0.90 0.90 0.88 0.89
twisted(a) 0.02 0.61 0.12 0.19 0.42 0.51 0.46
under(a, b) 0.03 0.83 0.58 0.69 0.82 0.60 0.69
upright(a) 0.01 0.78 0.71 0.74 0.64 0.80 0.71
visible(a) 0.14 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.03 0.75 0.54 0.60 0.66 0.61 0.65
Overall 1.00 0.93 0.90 0.92 0.93 0.90 0.92
Random 0.36 0.36 0.36 0.36 0.36 0.36

TABLE I: 20BN precision, recall, and F1 test scores per predicate. The
Dist column shows each predicate’s proportional representation in the
predicate distribution. Overall, DNF WCE improves the performance of
rare predicates, increasing the average F1 score across all predicates from
0.60 to 0.65. This result emphasizes the importance of mitigating skewed
predicate distributions common to symbolic domains. The Overall row
shows the F1 score over the entire test set (not split by predicate). The
Random row shows the expected performance of a random classifier, given
that each proposition is positive 36% of the time on average.

Fig. 3: 20BN predicate classifier applied to robotic pick-and-place domain.
In this closed-loop task planning example, a user first gives the task
planner a high-level goal in the form of a logical formula such as
in(banana, drawer). The predicate classifier then predicts the symbolic
state of the environment from RGB image data and sends it to a task
planner. The task planner performs symbolic tree search to produce a
sequence of actions to accomplish the goal, using 20BN actions such as
“open sth” or “put sth into sth”. As the actions are executed by low-level
controllers, the task planner continues to re-plan based on updated symbolic
state predictions given by the predicate classifier.

B. Partial vs. Full State Labels in Gridworld

Full symbolic state labels are ideal for training predicate
classifiers. However, obtaining such labels is only practical
for small domains or simulated environments with direct
access to the symbolic state. To evaluate the effectiveness
of training on partial vs. complete state labels, we use the
Gridworld environment (Fig. 4), where we have full control
of the symbolic state.

1) Gridworld Environment: In this environment, an agent
needs to obtain a trophy from inside a chest. There are 8
objects: agent, trophy, chest, chest_key, door, door_key,
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room_a, and room_b. There are 6 predicates:

— reachable(a): Whether a can be picked up by the agent.
— closed(a): Whether the door/chest a is closed.

— locked(a): Whether the door/chest a is locked.

— in(a, b): Whether a is in b.

— connects(a, b, ¢): Whether door a connects rooms b, c.
—matches(a, b): Whether key a matches door/chest b.

There are 8 actions to control the agent:

— enter(a,b): Enter room a through door b.

— goto(a,b): Go to object a in room b.

— pick(a,b) : Pick up object a from object/room b.
— place(a, b) : Place object a inside object/room b.
— open(a): Open door/chest a.

— close(a): Close door/chest a.

— unlock(a,b): Unlock door/chest a with key b.
—lock(a,b): Lock door/chest a with key b.

The actions are defined with complex pre- and post-
conditions, making use of universal (forall), existential
(exists), and conditional (when) quantifiers.

To generate training data, we first sample a random
symbolic state sy, where each proposition in sy has a
5% chance of being true. There are 172 propositions in
Gridworld, so on average, a randomly sampled state will have
8 propositions. Then, given an action with its pre- and post-
conditions 3,,. and 8,5, We generate two symbolic states:
;re)

-5 9

Spre = (S0 U s ore
(10)

_ + -
Spost = (SPTE U spost) — Spost

We then render s, and s,; to obtain images 7, Zpost-

2) Setup: We compare an QOracle trained on full state
labels to two models. The first, DNF CE, is trained with
DNF cross entropy (Eq. 7). Because partial labels contain
less information than full labels, we expect DNF CE to take
longer to train than Oracle and/or perform slightly worse.

The third model is an ablation study to test whether
the model benefits from seeing the visual change induced
by an action in order to visually ground symbols. This
ablation, Half DNF, trains DNF CE on only the pre- or
post-conditions of any given action instance, but not both.
With normal DNF training, a single data point comes with a
pair of images: one before and one after the action. For the
ablation, we feed the model with one image from the pair:
either before or after. Across all the data, the model will
see examples of both the pre- and post-conditions for each
action, but never both for a single action instance. Because
this ablation only sees half the data, we double the size of
its dataset for a fair comparison. We expect Half DNF to
perform worse than DNF CE.

Oracle and DNF CE are trained on 10,000 examples of
actions, and Half DNF is trained on 20,000. All of them
are evaluated against the full ground truth state (as opposed
to the partial DNF state) on the same test set of 10,000
examples. Using the full state allows us to get a clearer
picture of the generalization abilities of these models.

3) Results: As shown in Fig. 4, all the models achieve
a training F1 score of nearly 1, indicating that they finish
learning by 20 epochs. Oracle achieves a test F1 of 1.00,
DNF CE achieves 0.96, and Half DNF achieves 0.94. Half

Gridworld Predicate F1 Scores
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Fig. 4: Left: In the Gridworld environment, the agent needs to obtain a
trophy that is locked inside a chest locked inside another room. The full
PDDL specification can be found on the project website. Right: Test F1
scores per predicate for the Gridworld experiment.

DNF’s worse performance indicates that seeing the visual
changes induced by each action is more beneficial than
simply receiving more data (twice the amount).

Increasing the dataset size from 10,000 to 100,000
results in perfect test scores for all the DNF models for all
the predicates (results not shown). Because DNF training
uses partial labels, it requires more data to match the
effectiveness of training on complete labels. However, in
practice, acquiring a large dataset of actions should be easier
than acquiring a small dataset annotated with complete
symbolic states (Appx. A). Furthermore, in robotics
applications where symbolic state classifiers might be used
to determine whether the pre- or post-conditions of an action
are satisfied, being able to classify propositions outside of
the contexts provided by DNF labels may not be necessary.

VI. CONCLUSION

In this work, we have presented a framework for
extracting partial symbolic states from action pre- and
post-conditions, which can be used to label large datasets
with less effort. This new method drastically reduces the
cost of labeling large-scale real-world datasets (690 vs. 4
work days for 20BN). Yet, predicate classifiers trained with
our method are still able to nearly match the performance of
models trained with full ground truth labels, as shown with
our Gridworld experiment. Our closed-loop task planning
example demonstrates that predicate classifiers trained on
large-scale real-world datasets can be applied to real robot
domains. In many cases, predicates learned from a general
large-scale dataset may not be applicable to custom task
planning domains, where accuracy is critical. However, our
labeling framework would perhaps be most useful for these
very applications where collecting new datasets is necessary.
For these situations, our framework makes obtaining
real-world symbolic state classifiers much more feasible.

This work opens up many opportunities for long horizon
planning in the real world. Other interesting avenues of
work include using natural language to learn the pre- and
post-conditions of actions [38, 39], or combining visual
groundings of symbols with natural language [3, 40].
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APPENDIX
A. Back-of-the-Envelope Calculations for 20BN

Here, we perform back-of-the-envelope calculations to es-
timate how long it would take to label the symbolic states in
the 20BN dataset manually and using our proposed method.

Our PDDL specification for 20BN contains 35 predicates
and 151 total propositions. This means that fully annotating
the symbolic state in one image would require choosing
the boolean values for 151 variables. Assuming that an
accustomed worker could annotate the entire video in 10
minutes, labeling all of the 132,853 videos in our subset
of 20BN in would take approximately 22k working hours,
or 920 days of continuous 24-hour work. Assuming 8-hour
work days, this would take 2760 days.

By contrast, suppose defining the pre- and post-conditions
of an action takes an expert 10 minutes. Then, defining the
pre- and post-conditions of all 171 actions in our subset of
20BN would take roughly 30 hours.

With this method, the entire dataset has been labeled in 4
8-hour work days, or 1/690 of the time. However, the total
number of labeled propositions is also smaller. On average,
each action DNF specifies around 37 propositions with the
usage of axioms. This is about 1/4 of the total propositions,
which means the dataset labeled with actions is effectively
4 times smaller. Manually annotating the full symbolic state
of 1/4 the dataset would still take 690 8-hour work days.

B. Collapsed DNF Proof

Here, we provide a proof to justify our proposed formula
for collapsing a DNF into a single partial state that can
be used to evaluate a symbolic state classifier’s predictions
(Eq. 5). Specifically, we require that the formula captures
only the propositions whose truth values are guaranteed to
be known before or after an action is performed, and that
the truth values of propositions outside of the collapsed set
cannot be known without additional prior knowledge about
the symbolic state.

Theorem 1.1: SpyF is the largest set of propositions that
is fully determined by a DNF.

Two prove this statement, we first introduce two lemmas.

Lemma 1.2: If a DNF 31V S9 V ---V §p is true, then its
collapsed form SpnfF is also true.

Proof: If the DNF is true, then at least one of
§1,82,...,58p must be true. Let S, be one of these true
terms. Because Spyp 1s taken as the intersection of
$1,82,...,8p, it is a subset of §,. This means §* can be
written as Spyr A S«—pnNF, Where $._pnF consists of all
the positive and negative propositions in S, that are not in
SpnrF. Since &, is true, then SpypF must also be true. MW

Lemma 1.3: If a proposition p is not in the set Spnp,
then both p and —p satisfy the DNF §; V §3 V-V §p.

Proof: Suppose for the sake of contradiction that either
p or —p violates the DNF. Let us consider the case where p
violates the DNF. This means that —p is required to satisfy
the DNF, and that 57, s5, ..., s, all contain p. The intersec-
tion of §1, Sa, ..., §p would then contain p, and thus p would

be in the set §p . However, p ¢ §pnp by definition, so p
must not violate the DNF. The same argument applies for —p.
Neither p nor —p can violate the DNF, so both satisfy it. B

With these two results, the proof for Theorem 1.1 is
straightforward.

Proof: Lemma 1.2 shows that if the DNF
5§51 V38aV---V§p is true, then Spnp is also true. Conversely,
the DNF cannot be true if $pnp is false. This means that
the value of each proposition in $px is determined by the
DNF; in order for the DNF to hold true, their values cannot
be arbitrarily true or false. Therefore, Spyp is a subset of
propositions fully determined by the DNF.

Lemma 1.3 shows that if p ¢ $pyp, then both p and
—p satisfy the DNF §; V 3 V ---V §p. In other words, any
proposition p ¢ $pyp cannot be determined by the DNF.
Therefore, Spxyr must be the largest set of propositions
that is fully determined by the DNF. [ ]

C. Predicate Classifier Architecture

We base the network architecture for our predicate
classifier on the bounding-box channel network proposed
by Inayoshi et al. [25], a network that achieves state-of-
the-art performance on visual relationship detection tasks.
The network takes image features from a backbone image
classification network (in our case the fourth layer of ResNet-
50 [41]), and normalizes the spatial size of the image features
using RolAlign [42] with respect to the region of interest
of the image, defined in our case to be the smallest box
containing the bounding boxes of all the predicate arguments.
This aligned image feature (dimension 7 x 7 x 1024) provides
visual context for the predicate arguments. Then, spatial
features are created as binary image masks (dimension
7 x 7 x 256 M) generated from the M predicate argument
bounding boxes, indicating the locations of each object in
the aligned image feature. While [25] populates the spatial
features with word vectors corresponding to the name of
each object, we simply use a 256-dimensional vector of ones,
since language grounding is outside the scope of this paper.

Together, the image and spatial features allow the network
to recognize spatial relationships between arguments. How-
ever, in the case where the objects are far apart from each
other, their presence in the aligned image feature may be too
small. Furthermore, not all n-ary predicates depend on spatial
relationships (e.g., whether an object can fit inside another).
To mitigate these issues, we also provide object image fea-
tures (dimension 7 x 7 x 1024 M) of each predicate argument
normalized with RolAlign to the argument’s bounding box.

The image, spatial, and object features are
concatenated along the channel axis (dimension
7xTx1024+256M 41024 M) and fed into a convolutional
neural network (in our case a ResNet-50 layer) to output a
P-dimensional vector containing classification probabilities
for each of the P predicates.
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