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Abstract

Drawing inspiration from biology, we describe the way in which visual sensing with a monocular camera
can provide a reliable signal for navigation of mobile robots. The work takes inspiration from a classic paper
by Lee and Reddish (Nature, 1981, https://doi.org/10.1038/293293a0) in which they outline a behavioral
strategy pursued by diving sea birds based on a visual cue called time-to-contact. A closely related concept
of time-to-transit, τ , is defined below, and it is shown that idealized steering laws based on monocular camera
perceptions of τ can reliably and robustly steer a mobile vehicle within a wide variety of spaces in which
features perceived to lie on walls and other objects in the environment provide adequate visual cues. The
contribution of the paper is two-fold. It provides a simple theory of robust vision-based steering control. It
goes on to show how the theory guides the implementation of robust visual navigation using ROS-Gazebo
simulations as well as deployment and experiments with a camera-equipped Jackal robot. As far as we know,
the experiments described below are the first to demonstrate visual navigation based on τ .
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I. INTRODUCTION

The terminology time-to-contact and the notation τ appear to have originated among researchers working
in the Cornell University lab of James J. Gibson in the 1970’s and 1980’s ([1],[2]). Since then, τ has been
a significant focus of research in perceptual psychology (e.g. [3],[4]). The basic idea is simple. When an
observer is approaching an object at a constant velocity, the image of the object on the observer’s retina
(or camera’s image plane) is an expanding “bundle” of vectors, and if we take any particular image point
r(t) (in image plane coordinates) and differentiate with respect to time, then as noted in [2], r/ṙ is equal to
τ—the time-to-contact or time-to-collision. In order to explore how τ might be used as a navigation signal,
we recently introduced a generalization called time-to-transit ([5],[6]). To understand how time-to-transit can
be perceived and used to guide navigation, we consider the geometry of planar motion of a camera-equipped
unicycle vehicle relative to a feature point in the environment. The kinematics of the vehicle are: ẋ

ẏ

θ̇

 =

 v cos θ
v sin θ
u

 , (1)

where v is the forward speed in the direction of the body-frame x-axis, and u is the turning rate.

Definition 1: Consider a feature point with coordinates (xf , yf ) and a vehicle whose body-frame configu-
ration is as depicted in Fig. 1. Given the current configuration (x(t), y(t), θ(t)) and unicycle kinematics (1),
the geometric time-to-transit (geometric τ ) is the time it would take the vehicle to cross a line intersecting
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Fig. 1: When φ = 0, τ is a proxy for distance or depth. If the forward-looking camera is directly abeam
of the feature point to its right or left, the value of τ is zero; it is the instant at which the transit occurs.
If the camera heading is directly toward the feature point, the value of τ is maximized relative to all other
possible headings. If φ 6= 0, as in (b), then τper 6= τgeom, but for |φ| small and constant, the difference in
these τ -values is modest. In the inset in (a), constant speed forward motion of a forward-looking camera
results in an expanding bundle of velocity vectors produced by the motions of feature images. The quantities
r/ṙ in the inset and di/ḋi in the large figure, are the perceived time-to-transit.

the feature and perpendicular to the current heading under the assumption that speed v and heading θ are
held constant.

�

Simple plane geometry shows that geometric τ , defined in this way, is given by

τ(t) =
cos θ(xf − x(t)) + sin θ(yf − y(t))

v
. (2)

Time-to-transit, τ , is of interest as a navigation signal because under the assumption of constant speed v and
heading θ, this geometric value of τ can be perceived on the image plane or retina as r/ṙ, which in the
case of a forward-looking camera, is just τ = di(t)/ḋi(t) as depicted in Fig. 1. Because equality only holds
under the assumptions that θ and v are constant and the camera is forward facing with the optical axis being
aligned with the direction of motion, we call this value perceived time-to-transit and denote it by τper. When
these ideal assumptions (constant speed, heading, and camera angle) don’t hold, τper is distorted relative to
τgeom. Referring to Fig. 1(b), with φ not necessarily equal to 0, the general form of (2) is given by

τ∗ = [(xf − x(t)) sin(θ + φ)− (yf − y(t)) cos(θ + φ))] · [(xf − x(t)) cos(θ + φ) + (yf − y(t)) sin(θ + φ)]

v [sin(θ) (xf − x(t))− cos(θ) (yf − y(t))]
. (3)

The extent of the distortion caused by the camera’s misalignment with the vehicle heading can be illustrated by
having the vehicle (1) follow a straight line path from the origin of the global coordinate frame (x(0), y(0)) =
(0, 0) along the positive global frame y-axis—(x(t), y(t), θ) = (0, t, π/2). We assume that the feature point
(whose global frame coordinates are (xf , yf ) (Fig. 1(b)) is located such that xf > 0, yf > 0, and that v = 1.
Substituting these values into equation (3) yields:
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τper(t) = t2
sin(φ) cos(φ)

xf
+

+ t

(
−2yf sin(φ) cos(φ)

xf
+ sin2(φ)− cos2(φ)

)
+

+
y2f sin(φ) cos(φ)

xf
− xf sin(φ) cos(φ)+

− yf sin
2(φ) + yf cos

2(φ)

= yf − t+
φ

xf
(yf − t)2 − φxf + o(φ).

(4)

When φ = 0, this value yields the linear decrease τper(t) = yf − t, which is equal to τgeom. When φ 6= 0,
the expression for τper(t) involves a second order term, whose effect, as illustrated in (4) is small if φ has
small magnitude. The value of τper will be more severely distorted if the assumption of constant heading is
relaxed, and this will be discussed in detail in the next section.

The remainder of the paper is organized as follows. In the next section, we briefly describe how a highly
idealized model of optical flow and time-to-transit can provide a robust navigation signal. We briefly discuss
factors that confound visual signals in implementations, and by considering how perceived values of τ
become distorted from the ideal, we are led to mitigation strategies that make τ -based steering feasible.
Implementations using resources from ROS, Gazebo, and OpenCV are discussed in Section II. Selected
details of a theory of τ -based motion control are presented in Section III, and experiments involving both
simulations and tests with a Jackal robot are presented. The paper concludes with a discussion of future work
involving experimental exploration of ideas motivated by the neurophysiology of animal movement.

II. IMPLEMENTING SENSE-ACT CYCLE

Our previous work on τ -based navigation introduced an idealized model called Eulerian optical flow, which
by analogy with the Eulerian description of fluid flow, assumes that feature images stream continuously across
all photo receptors such that values of τ at each photo receptor are continuously available, [7]. A number
of τ -based steering laws in the Eulerian setting have been shown to produce robustly stable steering in a
variety of settings. In order to obtain reliable visual information in actual implementations using perceived
time-to-transit relative to features in the environment, a less idealized Lagrangian Optical Flow (LOF) model,
which is defined as the pattern of apparent motion of image objects between two consecutive frames caused
by movement, is used ([7]). Since one of the goals of this paper is to develop a navigation strategy capable
of running in real-time on a robotic platform, we have created software that implements our navigation laws
using ROS/Gazebo together with several well-known Optical Flow estimation techniques.

The Lucas-Kanade (LK) method ([8]) allows the computation of a sparse OF field (this means that OF
vectors are estimated just for selected features in the image) by optimizing an energy-like function at points
in the image that have been determined by a feature detector. We choose this technique because it is fast
and computationally efficient. Since, by its nature, it works well for small movements but it fails when
large pixel motion occurs, in our implementation it is used in its pyramidal form ([9]). The features are
detected by the Oriented FAST and Rotated BRIEF (ORB) detector because it is open source and suitable
for real-time applications. The LK method allows to track features in subsequent frames but every time the
number of remaining tracked features in the scene becomes lower than a threshold, the ORB detector is used
again. In Fig. 2 an outline of the ROS framework developed in this work is proposed with snapshots of the
functionalities implemented in each node.

The Optical Flow node is responsible for the OF estimation. It acquires a sequence of images from the
camera mounted on the robot and it extracts the relevant features to finally compute the optical flow vectors.
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Fig. 2: Graphical representation of the ROS framework used in this paper. Navigation is accomplished by
message passing among nodes in the system ROS graph.

The minimum quality and the maximum number of features to retain are parameters provided to the detector.
The node subscribes to the topic /camera used/image raw to get a camera frame and, thanks to the CVBridge
library, the ROS image is converted into a format manageable by OpenCV.

The goal of the tau computation node in Fig. 2 is to analyze the array of keypoints with their velocities
packed in the OF message, to compute τ values and to create the input signals for the controller. We transform
the data coming from the Optical Flow node in order to make them coherent with a reference frame that
has its origin at the intersection of the camera axis and the image plane. In this position, the origin of the
coordinate frame is approximately at the Focus of Expansion (FOE), and since the precise estimation of the
FOE is computationally expensive and sensitive to noise, and since our approximation has worked well in
practice, we have used the camera-axis frame to determine τ .

Once all the data are expressed in the right reference frame, time-to-transit is computed as

|τi| =
√
x[i]2 + y[i]2√
vx[i]2 + vy[i]2

where x, y, vx and vy are the arrays packed in the OF message. We define a fixed-size set of inputs that are
given to the controller by analyzing the distribution of the tau values in the image space and of the optical
flow field in different environments. We chose this approach to obtain with the goal of providing a good
representation of the environment without over burdening the controller with computational effort.

To obtain more robust τper data we choose to divide the input image into five Regions of Interest (ROIs),
as depicted in Fig. 2, which will output a single value each. The number and the dimension of these regions
can be adapted to the specific environment in which we want to use the robot and the motion primitives that
will be presented can be used regardless the number of regions.

Since the distribution of τ values is strongly related to the environment in which the robot is moving
we can use it to select the right control law with the correct gains to be used. When moving in a straight
corridor the tau values are continuous in time and they generally come from every region except the central
ROI (where time-to-transit is more sensitive to noise and may even be unavailable or unusably high). The
presence of a ninety degree turn, say at the end of a corridor, can be detected by a discontinuity in τ values,
a suddenly unbalanced OF field, and small τ values in the central part of the FOV. There also exist scenarios
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in which only the ROIs on one side of the environment provide enough features to compute reliable tau
values.

As noted in the introduction, camera rotation caused by a time-varying heading of the vehicle can cause
large distortion of the estimate of τ . To make τper ≈ τgeom a sense-act segmentation is implemented, which
consists in segmenting the motion into alternating straight (sensing) and curved (acting) path segments. Care
must of course be taken to ensure that neither portion is sustained for too long a time interval to produce an
instability. An instantaneous sensing is possible only in an ideal scenario in which noise is not present. In a
real environment the sense phase must be long enough to obtain a good estimation of τ values, but sensing
for too much time means not being able to detect instantaneous variations of the OF field potentially losing
important information coming from the environment. Moreover, the sense-act interleaving must guarantee the
stability of the control law applied in the acting phase, and following a mathematical argument along the
lines of [7] (the arXiv version), it can be shown that if both the cycle length and act phase are of sufficiently
short duration, the robot will stably and reliably move through the corridor—always tending to center itself.
This is checked with Matlab simulations assuming Eulerian sensing and we can conclude that the stability is
guaranteed for a wide large of sense-act duration values. To understand how much this strategy can improve
time-to-transit estimation a simple simulation in Gazebo using Lagrangian sensing has been set up. A feature
is positioned in the left wall of a straight corridor and during three tests a robot collect information moving
straight, then turning away from the feature and finally turning towards it. Fig. 3 shows a comparison between
τgeo and τper; in (a) no sense-act interleaving is used, while in (b) it is shown the significant improvement
in perception of τ when a sense-act cycle is used (sense duration is 0.4s, act duration is 0.25s and linear
velocity v = 0.5m/s).

III. STEERING CONTROL BASED ON time-to-transit

When flying through a narrow passage, bees position themselves in the center of it in order to experience
the same image velocity in both eyes. This characteristic of bee’s flight has been highlighted by Srinivasan
et al. in [10] and it represents the idea behind the Tau Balancing control law introduced in [5] and further
described in [11]. In this section we briefly describe how we adapt the motion primitives to the five ROIs.
In particular, remembering (1), in this work we choose to use:

u(t) = kf (τfl − τfr) + km(τl − τr) (5)

where τfl, τfr, τr and τl are the time-to-transit value averages of the different ROIs of the image (the central
ROI not included) as seen in the central panel of Fig. 2. It is possible to start from (1) and isolate the
following subsystem: [

ẋ

θ̇

]
=

[
cosθ

kf (τfl − τfr) + km(τl − τr)

]
(6)

Adopting the Eulerian optical flow, a modified version of Theorem 1 in [11] can be written since in this
case for any gain kf > 0 and km > 0 there is an open neighborhood U ′ of (x, θ) = (0, π2 ), U

′ ⊂ {(x, θ) :
−R < x < R;ϕ2 < θ < π − ϕ2} such that for all initial conditions (x0, y0, θ0) with (x0, θ0) ∈ U ′, the
Tau Balancing in (5) aligns the vehicle to the center of the corridor. The angle ϕx, θ and R are graphically
represented in Figure 4.

It is possible to linearize the subsystem in (6) about the rest point (x, θ) = (0, π2 ) obtaining:[
δẋ

δθ̇

]
=

[
0 −1

2(ffkf + fmkm) −2(kff2f + kmf
2
m + kfRf

2
f + kmRf

2
m)

] [
δx
δθ

]
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Fig. 3: Direct comparison between geometric (thick line) and perceived (fine line) time-to-transit values
during three tests, in (a) without and in (b) with the implementation of the sense-act interleaving.

with ff = tan(ϕ1) and fm = tan(ϕ2). In this case it is like using two pinhole cameras with focal length
ff and fm. The eigenvalues of the matrix representing the controlled system are:

λ1,2 = −(f2f kf + f2mkf )(1 +R)±
√

(ffkf + fmkm)[(f3f kf + f3mkm)(1 +R)2 − 2]

It can be noticed that they are always in the left half plane, proving the coefficient matrix is Hurvitz. Moreover,
if the condition (f3f kf + f3mkm) >

2
(1+R)2 is met, the eigenvalues are real and negative meaning that the

robot will not experience oscillations in aligning onto the center line. Stability is guaranteed for every choice
of kf and km, but these parameters must be tuned to obtain best performances.

When features points are available only in the right or in the left part of the image, Tau Balancing cannot
be used. A possible solution had already been proposed by Kong et al. in [6] observing the behavior of
a species of bats, the Myotis Velifer, in their natural habitat. The trajectories of these animals follow the
edge of a wooded area thanks to the maximization of the difference in time-to-transit of features along the
boundaries. This is the idea behind the formulation of the following motion primitive:

u(t) = k[τ ′2(θ(t))− τ ′1(θ(t))] (7)

where τ2 and τ1 are the time− to− transit values of two features on the same wall. Unfortunately, since
tau estimation is already in itself quite susceptible to noise, the computation of its derivative is generally
quite poor and this makes it difficult to obtain the desired control action when the steering control law is
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Fig. 4: Graphical representation of ϕx, θ and R.

used on a real platform. We introduce here a new control law called Single Wall strategy which is able to
cope with this problem that does not involve derivatives and it can then be written as:

u(t) = ±k(τx − c) (8)

where τx ∈ {τfl, τl, τr, τfr} and c is a constant ([12]). To demonstrate the stability of (8), we analyze Eulerian
models along the lines of [7], [11]. It is possible to isolate from (1) the following subsystem:[

ẋ

θ̇

]
=

[
cosθ

±k(τx − c)

]
and compute the rest point that, in this case, is (x, θ) =

(
±(c−fR−f)

f , π2

)
depending on the chosen τx. The

constant c is selected a priori depending on the general geometry of the environment, but a dynamic selection
of c is possible. Using Eulerian sensing, and linearizing the system around its rest point, we obtain:[

δẋ

δθ̇

]
=

[
0 −1
fk −kfc

] [
δx
δθ

]
The eigenvalues of the matrix representing the controlled system are:

λ1,2 = −
kfc

2
±
√
kf(kfc2 − 4)

2
(9)

Both of them are always in the left plane and for this reason the system is asymptotically stable. It is important
to notice that if k < 4

fc2 the eigenvalues become complex numbers and this introduces oscillations in the
system.

IV. PHYSICS-BASED SIMULATION AND IMPLEMENTATION ON ACTUAL ROBOTS

In this section we present some results from Gazebo simulations using Lagrangian optical flow models
with relatively sparse sets of visual features and from the tests performed on a real robotic platform.

A. Simulation Results: To verify the behaviour of the system presented in Fig. 2 we run multiple Gazebo
simulations in realistic and artificial environments and for each of them different geometric structures
are considered (straight corridors, 90 degrees turns, corridors with multiple turns, single walls). Artificial
environments have been used to verify the effectiveness of the software components in scenarios with a
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Fig. 5: (a) An artificial and (b) a realistic environment together with the trajectories followed by the robot
during Gazebo simulations.

precise feature density. However, since the robot has to be able to navigate in the real world, in which it is
not possible to define a fixed feature density, the realistic environments are used to test the real potential of
the controlled system. Fig. 5 provides an example of both types of environments together with the possible
challenges that the robot has to overcome when it navigates using our control strategy. The trajectories
followed by the robot are also reported and they show that the platform is able to safely navigate in these
environments by switching among the control laws.

B. Experiments with a Jackal Robot UGV: The promising results obtained with Gazebo simulations lead
us to test our tau-based navigation strategy on real robots. The robotic platform we use is the Jackal UGV,
an unmanned ground vehicle developed by Clearpath Robotics that includes an onboard computer, a GPS
and an IMU fully integrated with ROS whose skid-to-turn steering is somewhat more challenging than the
unicycle idealization (1). The extent of the difference between model (1) and the actual robot has proven to
be fairly negligible, and the control laws described above have worked well.

The Jackal robots have been equipped with stereo cameras (the MYNTEYE S1030 in Torino and the
Stereolabs ZED 2 at BU). We used the right monocular cameras as the only sensors in our navigation
experiments. The most important characteristic is the horizontal field of view that has to be wide enough
to recognize, with the proper timing, specific characteristics of the visual cues, e.g. discontinuities of the
time-to-transit signal in environments containing turns. The two robots are shown in the left panel in Fig.
6. We test the effectiveness of the entire algorithm by observing the behavior of the Jackal robot moving
through different environments which have been set up at Politecnico di Torino and in the Boston University
Robotics Lab. In each setting, we combine odometry and the IMU data to compute the position of the robot
with respect to a coordinate frame that has its origin where the Jackal is powered on for the first time. In the
upper images of Fig. 6 the different environment setups are shown, the features are mainly represented by the
edges and the corners of the post-it notes but, since the tests have been conducted in real environments, there
are also features belonging to other objects. The graphs in the lower panels of Fig. 6 are based on odometry
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Fig. 6: On the left the Jackal UGV equipped with the MYNTEYE S1030 stereo camera (top image) and the
Stereolabs ZED stereo camera (bottom image). On the right, some results from the tests run both at Boston
University and at Politecnico di Torino. A variety of environments were constructed using moving boxes.

data that show that the tau-balancing control law, as predicted by the theory, steers the robot toward the
center of the corridor and even successfully negotiates corners.

V. CONCLUSION AND FUTURE WORK

Within the page-count constraints imposed by the conference, we have reported selected results on reliable
navigation of a mobile robot using the perceptual cue time-to-transit. The work validates ideas with origins
in the Cornell University Perception Lab of James J. Gibson, and at the same time it sets the stage for a
broader investigation of vision based navigation using perceptual cues associated with optical flow. In an
expanded version of the paper, we shall report results on the use of a camera that is steered independently of
the robot so as eliminate the confounding effects of movement along a curved path. While a simple strategy
of steering the camera so as to cancel the rotational component of movement can be shown to be effective,
our current work is also aimed at understanding how camera movement might be used to support perceptual
processes that involve numerous animal and human brain regions that are known to support spatial cognition,
[13],[14],[15]. In particular, our current research is being informed by investigations by Boston University
colleagues (M. Betke and M. Hasselmo) who are working to correlate neural activity in running laboratory
animals with 3D tracking of head and body poses recorded on thermal videos. The results of this work will
be reported soon.
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