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Abstract— Knowledge of 3-D object shape is of great im-
portance to robot manipulation tasks, but may not be readily
available in unstructured environments. While vision is often
occluded during robot-object interaction, high-resolution tactile
sensors can give a dense local perspective of the object.
However, tactile sensors have limited sensing area and the shape
representation must faithfully approximate non-contact areas.
In addition, a key challenge is efficiently incorporating these
dense tactile measurements into a 3-D mapping framework. In
this work, we propose an incremental shape mapping method
using a GelSight tactile sensor and a depth camera. Local shape
is recovered from tactile images via a learned model trained
in simulation. Through efficient inference on a spatial factor
graph informed by a Gaussian process, we build an implicit
surface representation of the object. We demonstrate visuo-
tactile mapping in both simulated and real-world experiments,
to incrementally build 3-D reconstructions of household objects.

I. INTRODUCTION

For general-purpose manipulation in unstructured scenes,
robots must have accurate understanding of object properties.
In particular, knowledge of 3-D shape and its uncertainty
enables a breadth of downstream tasks like grasping, dex-
terous manipulation, and non-prehensile actions. Agents in
household or warehouse environments may encounter apriori
unknown objects, which they must reconstruct on the fly.

Vision and depth-based 3-D perception is well-studied [1],
but can often fail in the context of manipulation. During
some interactions, we only partially observe the scene due
to self-occlusion, occlusion from clutter, and fixed viewpoint.
Also, visual sensing is degraded by poor illumination, limited
range, and ambiguities from transparent or specular objects.

Studies show humans can optimally fuse touch and vision
to reconstruct shape [2], reinforcing their complementarity.
Vision gives coarse global context, while touch gives precise
local information. The development of vision-based tactile
sensing [3, 4, 5, 6, 7, 8, 9, 10], like the GelSight [4], has led
to renewed interest in the shape mapping problem. Fusing
both modalities requires globally integrating tactile signals
at the distal end, joint kinematics, and vision.
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Fig. 1: We perform incremental 3-D shape mapping with a vision-based
tactile sensor, GelSight, and an overlooking depth-camera. We combine
multi-modal sensor measurements into our Gaussian process spatial graph
(GP-SG), for efficient incremental mapping. The depth-camera gives us an
occluded noisy estimate of 3-D shape, after which we sequentially add
tactile measurements as Gaussian potentials into our GP-SG. The tactile
measurements are recovered from GelSight images via a learned model
trained in simulation. The results demonstrate accurate implicit surface
reconstruction and uncertainty prediction for interactive perception tasks.

Vision-based touch has higher spatial acuity than point-
contact or tactile arrays, which lends itself to 3-D recon-
struction [11, 12, 13, 14]. A key challenge is to efficiently
incorporating these dense measurements into a 3-D mapping
framework. Moreover, the tactile sensor’s coverage is limited
by its size and durability, and cameras only provide partial
visibility of the object. It’s desired that a shape representation
can faithfully approximate regions lacking measurements.

In this paper, we propose a framework that incrementally
reconstructs tabletop 3-D objects from a sequence of tactile
images and a noisy depth-map (Figure 1). We leverage
optical tactile simulation to learn local shape from GelSight-
object interactions. We represent 3-D shape as a signed dis-
tance function (SDF) sampled from a Gaussian process (GP),
and re-formulate shape mapping as probabilistic inference
on a spatial graph. We show that visuo-tactile measurements
can be incorporated into a factor graph as local Gaussian
potentials. This affords efficient access to the implicit sur-
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face and SDF uncertainty. We present both simulated and
real experiments, generating reconstructions of global shape
with trajectories of limited sensor coverage. Specifically, our
contributions include:
(1) Accurate recovery of local shape from touch learned via

tactile simulation of GelSight-object interactions,
(2) Incremental shape mapping through efficient inference

in our Gaussian process spatial graph (GP-SG),
(3) Evaluation of visuo-tactile shape mapping on our

YCBSight-Sim and YCBSight-Real datasets.

II. RELATED WORK

A. Tactile sensing and local shape

For vision-based tactile sensors, photometric stereo [15]
has been widely used to reconstruct local shape [4, 16, 17].
The approach maps image intensities to gradients via a
lookup table, and integrates the gradients to obtain a height-
map. However, this method does not consider spatial position
in the calibration, and leads to large variance around the
boundary of the sensor. Later works learn these gradients
directly from tactile images, via either a multilayer per-
ceptron [10] or pix2pix networks [18]. Alternatively, end-
to-end learning [12, 19] from a limited set of real-world
tactile interactions can directly provide heightmaps. Tactile
simulation [20, 21, 22, 23] allows us to scale supervised-
learning to a wide range of objects and ground-truth.

B. Visuo-tactile shape perception

Global information from vision has complemented low-
resolution touch in a multi-modal setting [24, 25, 26, 27].
Wang et al. [11] use monocular shape completion augmented
with GelSight readings. However they rely primarily on
the visual shape prediction, and tactile sensing serves as a
refinement step. Smith et al. [13, 14] demonstrate a learned
perception model on simulated datasets, to predict local mesh
deformations via high-resolution touch and filling-in through
vision. The context of our work resembles those of [11] and
[13], with partial vision and high-dimensional touch. Our
contributions differ from these methods as we (i) perform
incremental inference on the measurement stream, and (ii)
do not rely on data-driven shape priors.

C. Gaussian processes and graphs

We wish to faithfully approximate non-contact regions,
capture surface uncertainty, and probabilistically handle mea-
surement noise. Gaussian process implicit surfaces (GPIS)
[28] showcase these properties and have found preference
in manipulation research—over point-clouds [12] and other
parametric methods [29]. The GPIS considers the object’s
SDF magnitude and gradient as a GP, conditioned on noisy
sensor measurements. This has been successfully applied
to both passive [30, 31] and active 3-D reconstruction
[24, 32, 33, 34] with low-resolution tactile data. We extend
these ideas, scaling them to a stream of high-dimensional
touch measurements for incremental shape reconstruction.

The key challenge, especially for GelSight point-clouds,
is that GPs scale poorly due to matrix inversion costs. In the

SLAM community, common approximations include local
GPs [35, 36] and compact kernels [37]. These have further
been incorporated into factor graphs [38] for trajectory
estimation [39], target tracking [40], motion planning [41],
elevation modeling [42], and planar mapping [43]. Inspired
by these, our representation encodes GP potentials as local
constraints in a spatial factor graph.

III. PROBLEM FORMULATION

We consider a robot arm with a GelSight tactile sen-
sor interacting with an unknown 3-D object fixed on a
tabletop. Given a sequence of images from the GelSight,
robot kinematics, and depth-map from a depth-camera, we
incrementally estimate the object’s shape and signed distance
function (SDF) uncertainty.

Object shape: We represent the object’s shape as an implicit
surface S ∈ R3 in the robot’s frame, with SDF uncertainty
ΣS (Refer Section V-C).

Tactile measurements: During interaction, upon detecting
contact, we record the corresponding tactile image It and
sensor pose pt:

zt =
{

It ∈ R640×480×3, pt ∈ SE (3)
}

(1)

Depth-map: We capture a depth-map D0 of the object from
the camera, represented in the robot-frame: d1···M ∈ R3.

Assumptions: In line with prior efforts, we assume:

• Calibrated robot-camera extrinsics,
• Fixed object pose and known approximate object

dimensions,
• A passive exploration algorithm for object coverage.

The rest of the paper is as follows: Section IV presents a
GelSight image to height-map model for tactile perception.
Section V combines tactile point-clouds with a depth-map
in an incremental GP spatial graph. In Section VI, we
demonstrate our method for simulated and real visuo-tactile
experiments. Finally, we sum up our efforts in Section VII.

IV. LOCAL SHAPE FROM TOUCH

Vision-based tactile sensors perceive contact geometries
as images. The soft, illuminated gelpad deforms elastically
on contact and is captured by an embedded camera. We
represent local shape recovery as the inverse sensor model:

Ω : It 7→ Ht,Ct, where
It: tactile image,
Ht: recovered height-map,
Ct: contact area mask

(2)

With Ht, Ct, and knowledge of sensor pose pt from
robot kinematics, we can obtain a tactile point-cloud Mt,
comprising of 3-D points mx

i and normals my
i :

Mt = {[mx
1 ,m

y
1], [mx

2 ,m
y
2], · · · } (3)

In this section, we learn Ω through simulation, and its output
forms the basis for our visuo-tactile mapping in Section V.
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Fig. 2: Our learned model Ω takes in tactile images, and outputs both
estimated height-maps and binary contact masks. The residual network
is trained on a corpus of GelSight-object interactions in simulation.
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Fig. 3: Tactile images generated from GelSight interactions in [top] simulated
and [bottom] real settings. Pictured alongside are the height-maps and contact
masks output from our learned model Ω.

A. Learning Ω from simulation

For tactile sensors with soft body deformation, local shape
geometry can be learned through supervision. Image-to-depth
estimation networks [44, 45] can learn accurate heightmaps
from GelSight images. This would require a large corpus
of tactile images and corresponding ground-truth depths, for
which we can leverage tactile simulation. In particular, Si
et al. [23] calibrate their simulator with real-world tactile
images, thus mimicking the same intensity distributions.

Network and training: We use an implementation [46] of
the fully convolutional residual network [45] as our depth
estimator, as shown in Figure 2. The network combines
ResNet-50 as the encoder and up-sampling blocks as the
decoder. Our model takes tactile images as input, and outputs
predictions of both height-map Ht and contact mask Ct.
We choose 30 household objects from YCB dataset [47],
and hold out 6 objects for testing generalization. For each
object, we generate 660 images from randomly sampled
sensor poses on their ground-truth mesh models. We split
the train-validation-test sets as 550-50-60.

Benchmarks: We compare Ω with the standard lookup table
method [4]. This maps tactile images to gradients of the local
shape, and fast Poisson integration generates their height-

maps. The lookup is built via a calibration routine with a
4 mm sphere indenter. The contact masks are generated by
intensity thresholding of contact vs. non-contact frames.

Evaluation: Figure 4 compares Ω with respect to bench-
marks on our YCBSight-Sim dataset (refer Section VI-A).
We compare each estimated height-map and contact mask
against the ground-truth. Specifically, we evaluate:

(i) Pixel-wise RMSE on height-maps, and
(ii) Intersection over union (IoU) on contact masks.

On height-map estimation, we outperform the benchmark
with an average RMSE of 0.094 mm across all object classes.
The lookup table has larger variance, with an average RMSE
of 0.182 mm. Note that the maximum penetration depth of
the simulation is 1 mm. On contact mask estimation, we
have an average IoU of 0.752, while the handcrafted image
thresholding performs worse with 0.379. In addition, the IoU
variance appears to be larger for objects with more intricate
shapes. Finally, in Figure 3, we show generalization of Ω to
both unseen simulation and real-world tactile interactions.

V. 3-D SHAPE ESTIMATION

A. Standard Gaussian processes

A GP is a nonparametric method to learn a continuous
function from data, well-suited to model spatial and temporal
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Fig. 4: Local shape recovery benchmarked on our YCBSight-Sim dataset (Refer Section VI-A). [top] We evaluate our learned model with respect to the
baseline lookup table method for height-map estimation. Here we use a pixel-wise root-mean-square error (RMSE)↓ metric, and observe consistent, low
error for our method when compared with the lookup table. [bottom] We compare our learned contact mask model against intensity-based thresholding
on intersection over union (IoU)↑ metric. The test data is randomly generated, and gray represents the hold-out objects not encountered in training.



phenomena [48]. To estimate shape, a classical GP considers
the object’s SDF to be a joint Gaussian distribution over
noisy measurements of its surface. At any given point in
space, the SDF ϕ represents the signed-distance from the
surface: ϕ = 0 on the surface, ϕ < 0 inside, and ϕ > 0
outside. The GP meaningfully approximates the global shape,
even in regions lacking sensor information. Given a dense
tactile measurement mi ∈Mt

1, we learn a function between
positions mx

i and normals my
i :

mx
i 7→ [ϕ = 0, my

i ] (4)

More generally, treating the left and right hand side of
Equation 4 as the GP’s input-output:

X = {xi ∈ R3}1···N 7→ Y = {yi ∈ R4}1···N (5)

The posterior distribution at a query point (x∗j ,y
∗
j ) for a full

GP with N measurements, is given by [48]:

y∗j ∼ GP
(
kT∗
(
K + σ2

n I
)−1

Y︸ ︷︷ ︸
mean

, k∗∗ − kT∗
(
K + σ2

n I
)−1

k∗︸ ︷︷ ︸
variance

)
(6)

where σn is the sensor noise covariance, and K ∈ R4N×4N ,
k∗ ∈ R4N×4 and k∗∗ ∈ R4×4 are the train-train, train-
query, and query-query kernels respectively. Each kernel’s
constituent block kij = k(xi, xj) is an R4×4 kernel basis,
in our case a thin-plate function [28]. This inference is
computationally intractable for the large N that accrues from
high-dimensional tactile measurements. The update opera-
tions involve costly O(N3) matrix inversions, and per-query
costs O(N2) (Refer Equation 6). We now present a local
approximation that can be updated and queried incrementally,
with bounded computational costs.

B. GP-SG: Gaussian process spatial graph

We represent the scene as a spatial factor graph [38], com-
prising of nodes we optimize for and factors that constrain
them. These query nodes Y∗ are at their respective spatial
positions X∗, distributed in an S3 volume. Our optimization
goal is to recover the posterior Ŷ∗, which represents the SDF
of the volume and its underlying uncertainty.

Implementing the full GP (Equation 6) in the graph is
costly, as each measurement (xi,yi) constrains all query
nodes Y∗. Motivated by prior work in spatial partitioning
[35, 36], we decompose the GP into local unary factors as
a sparse approximation. Given that yi and query node y∗j
follow a GP, the joint distribution and conditional are:[

yi
y∗j

]
∼ N

([
0
0

]
,

[
kii + σ2

n I ki∗
k∗i k∗∗

])
y∗j | yi ∼ N

(
k∗i
(
kii + σ2

n I
)−1

yi︸ ︷︷ ︸
µy∗

j
|yi

, k∗∗ − k2
∗ik
−1
ii︸ ︷︷ ︸

Σy∗
j
|yi

) (7)

This gives us a unary Gaussian potential which can be
incorporated into a least-square setting:

Gij = ||y∗j − µy∗j |yi
||2

Σy∗
j
|yi

(8)

1or depth map d1···M ∈ D0

Noisy surface readings

Estimated SDF

Estimated uncertainty Gaussian process spatial graph

GP spatial factors
Surface measurements
Query grid points

L

H

0

L

H

Fig. 5: [right] A 2-D illustration of our GP spatial graph (GP-SG), an
efficient local approximation to a full GP. The graph consists of SDF query
nodes ( ) Y∗ each at their spatial positions X∗. Each surface measurement
( ) (xi,yi) produces a unary factor (–) Gij at query node y∗j (within the
local radius r). This represents a local Gaussian potential for the GP implicit
surface. [left] Optimizing for Ŷ∗ yields posterior SDF mean + uncertainty.
The zero-level set of the SDF gives us the implicit surface S.

At a timestep t, given n measurements (xi,yi), we add the
set of associated factors within a local radius r of each query
node’s position x∗j . r represents a tradeoff between speed and
reconstruction accuracy, and is empirically set to 15% of the
ground-truth object’s side length. Thus, for all query nodes,
we accumulate a small set of factors:

Rt ,
{
{Gij} i=1···n

j=1···S3
| ‖x∗j − xi‖ ≤ r

}
(9)

This sparsifies an otherwise intractable optimization, picto-
rially represented in Figure 5 for a 2-D case. Taking the
Stanford bunny as an example, we illustrate how a set of
noisy surface measurements are converted into local GP
factors. The final optimization recovers a posterior SDF
mean and uncertainty. More specifically, for the visuo-tactile
problem, the maximum a posteriori estimation is:

Ŷ∗ = argmin
Y∗

depth factors︷ ︸︸ ︷∑
Gd∈R0

Gd +

tactile factors︷ ︸︸ ︷
T∑

t=1

∑
Gm∈Rt

Gm +

GP priors︷ ︸︸ ︷∑
y∗∈Y∗

||y∗ − b||2Σb

(10)

where R0 is the factor set from the depth-map D0, and Rt
is the factor set from tactile measurement Mt. The term b
applies a positive SDF prior to nodes, initializing the volume
as empty space. Inference is carried out at each timestep via
incremental smoothing and mapping (iSAM2) [49].

This framework combines the computational benefits of
an online local GPIS [35, 36] with those of an incremental
least-squares solver. This is well-suited for sensors like the
GelSight, as the dense point-clouds are too expensive to
incorporate into a full GP. When querying, we recover the
posterior mean and covariance only for the nodes updated—
the remaining grid is accessed from cache.

C. Implicit surface generation

The posterior estimate Ŷ∗ represents the SDF’s mean and
uncertainty, sampled from the S3 volume. A marching cubes
algorithm [50] can give us both the implicit surface S and
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Fig. 6: Results from simulated visuo-tactile mapping on our YCBSight-Sim dataset. Shown for each object are (i) sample GelSight images, (ii) tactile
and depth-map measurements on the ground-truth mesh, and (iii) frames from the incremental mapping. Each object is initialized with a noisy rendered
depth-map (Depth only), and with each sequential GelSight measurement, we gain further understanding of global shape and reduce surface uncertainty.
Visualized here are the implicit surface + SDF + uncertainty for the intervals of [0, 30, 60] touches.

the corresponding SDF uncertainty ΣS . S is generated as the
zero-level set of the SDF:

S , {s ∈ R3 | Ŷ∗(s)ϕ = 0} (11)

Finally, we prune faces/vertices from S that lie outside r
for any of the sensor measurements. These areas have high
surface uncertainty, and our spatial graph will poorly approx-
imate them. Furthermore, this is necessary for sequential data
as we cannot expect a watertight mesh from partial coverage.

VI. EXPERIMENTAL EVALUATION

We illustrate our method in simulated (Section VI-B)
and real-world (Section VI-C) visuo-tactile experiments. The
shape estimates are compared with respect to the ground-
truth using the Chamfer distance (CD) [51], a commonly-
used shape similarity metric.

Implementation: The framework is executed on an Intel
Core i7-7820HQ CPU, 32GB RAM without GPU paralleliza-
tion. We use the GTSAM [52] optimizer with iSAM2 [49]
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Fig. 7: [top] The Chamfer distance (CD) with respect to ground-truth
meshes for YCBSight-Sim experiments. Objects are initialized with high
CD from partial depth-map, but converge to low-error in 35–40 touches.
[bottom] Average execution time for update/query operations on our GP
spatial graph (GP-SG). At each touch we add ≈ 103 GP factors during
update, and recover posterior mean/covariance during query. We see a dip
in timing towards the end, due to smaller contact areas on the top of objects.

for incremental inference. Due to the precision of sensing, we
empirically weight the noise of tactile measurements lower
than that of the depth-map. We set the grid size S = 16,
which can be increased for higher-resolution reconstructions.

A. Visuo-tactile data collection

We collect the YCBSight-Sim and YCBSight-Real
datasets for evaluating our method. This comprises of YCB
ground-truth meshes [47], GelSight images from interaction,
sensor poses, and a depth-map. While we consider 30 house-
hold objects in simulation, we restrict our shape mapping
evaluation to 6 objects. This subset of objects have varied
geometries (curved, rectangular, and complex) to verify the
generalization of our method.

YCBSight-Sim: We generate GelSight-object interactions
using Taxim, an example-based tactile simulator [23]. We
simulate 60 uniformly spread sensor poses on each object,
normal to the local surface of the mesh. We render a depth-
map from the perspective of an overlooking camera using
Pyrender [53]. Finally, zero-mean Gaussian noise is added
to tactile point-clouds, sensor poses, and depth-map.

YCBSight-Real: We use a UR5e 6-DoF robot arm, mounting
the GelSight sensor on a WSG50 parallel gripper. The depth-
map is captured via a fixed-pose, calibrated Azure Kinect,
approximately 1m away from the object. Our complete setup
can be seen in Figure 9. The GelSight captures 640 × 480
RGB images of the interactions in a 2.66 cm2 area. The
objects are secured by a mechanical bench vise at a known
pose, to ensure they remain static. After capturing the depth-
map D0, we approach each object from a discretized set
of angles and heights. This simple strategy works well for
the selected objects, and future work can replace this with a
closed-loop planner. We detect contact events by thresholding
the tactile images. We collect 40 tactile images {I1, . . ., I40}
of the object’s surface (≈ 20 minutes) with the corresponding
gripper poses {p1, . . .,p40} via robot kinematics.



m
as

te
r_

ch
ef

_c
an

su
ga

r_
bo

x

po
tte

d_
m

ea
t_

ca
n

bl
ea

ch
_c

le
an

se
r

w
oo

d_
bl

oc
k

to
m

at
o_

so
up

_c
an

Depth only 20 touches 40 touches Depth only 20 touches 40 touches
L

Uncertainty
H

Tactile
Depth-map

Tactile
Depth-map

GelSight 
images

GelSight 
images

L
Uncertainty

H

Fig. 8: Results from real visuo-tactile mapping on our YCBSight-Real dataset. This is structured similar to Figure 6, except with reconstruction frames
at intervals of [0, 20, 40] touches. The Kinect performs poorly for specular objects such as tomato_soup_can and potted_meat_can, but high-precision
GelSight measurements can disambiguate global shape. Our mapping generalizes well and we observe similar results between simulated and real experiments.

Fig. 9: Experimental setup for the YCBSight-Real dataset, with a GelSight
tactile sensor, a depth-camera and the YCB objects. Objects are firmly
secured on a mechanical bench vise, to ensure they stay stationary. We
collect measurements by approaching from a discretized set of angles and
heights, and detecting contact from the tactile images. The overlooking
Kinect collects a depth-map to initialize our visuo-tactile mapping.
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Fig. 10: The Chamfer distance (CD) with respect to ground-truth meshes
for our YCBSight-Real experiments. We observe the error converges to a
similar magnitude as Figure 7 after 30 touches. They initially start out with a
lower error than simulation as a result of the hallucinated base measurements
we add to each object (refer Section VI-C).

B. Simulated tactile mapping

In Figure 6 we highlight mapping results for the 6 objects
in YCBSight-Sim. We first visualize the implicit surface
and SDF uncertainty from depth-map only. After this, touch
measurements are added incrementally and reflect in the
shape estimate. The surface uncertainty is typically high for
regions that lack depth/tactile information, and reduces over
time. Figure 7 shows that the CD with respect to the ground-

truth mesh decreases with greater number of touches, and
converges within 35–40 touches. The timing plot of graph
operations shows near-constant graph update and query time.
This reduces towards the end of the datasets due to smaller
contact areas on the top surface of the objects. These timings
can be further improved by parallelizing spatial operations.

C. Real-world tactile mapping

In Figure 8, we show our method working on real data col-
lected in YCBSight-Real. The Kinect depth-maps for specu-
lar objects like tomato_soup_can and potted_meat_can are
erroneous, but tactile information provides more precise local
shape. To prevent damage to the robot and sensor, we do not
explore near the base of the object—we instead hallucinate
measurements at the bottom based on the nearest correspond-
ing sensor poses. In Figure 10, we plot the CD over time for
the 6 YCB objects. The initial error is lower than simulation
due to the additional hallucinated measurements. We see the
error converge to an average CD of 18.3 mm2, a similar
magnitude as in the simulated experiments. For reference the
average diagonal of the ground-truth YCB objects is 20 cm.

VII. CONCLUSION

We present an incremental framework for 3-D shape
estimation from dense touch and vision. We formulate a
GP spatial graph (GP-SG) structure, that efficiently infers an
object’s implicit surface and SDF uncertainty. To integrate
GelSight tactile images, we recover local shape with a
model learned in tactile simulation. Our method is first
demonstrated in a simulated visuo-tactile setting, and is later
shown to generalize to real-world shape perception.

As future work, we wish to actively reconstruct these
shapes using surface uncertainty information. The current
method can further benefit from (i) parallelized spatial graph
operations, and (ii) data-driven shape priors [11, 26]. Finally,
we wish to consider relaxing the fixed-pose assumption [43],
and perception of deformable objects.
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