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Abstract— Scene graphs represent the key components of a
scene in a compact and semantically rich way, but are difficult
to build during incremental SLAM operation because of the
challenges of robustly identifying abstract scene elements and
optimising continually changing, complex graphs. We present a
distributed, graph-based SLAM framework for incrementally
building scene graphs based on two novel components.

First, we propose an incremental abstraction framework
in which a neural network proposes abstract scene elements
that are incorporated into the factor graph of a feature-based
monocular SLAM system. Scene elements are confirmed or
rejected through optimisation and incrementally replace the
points yielding a more dense, semantic and compact represen-
tation. Second, enabled by our novel routing procedure, we use
Gaussian Belief Propagation (GBP) for distributed inference on
a graph processor. The time per iteration of GBP is structure-
agnostic and we demonstrate the speed advantages over direct
methods for inference of heterogeneous factor graphs. We run
our system on real indoor datasets using planar abstractions
and recover the major planes with significant compression.

I. INTRODUCTION

Abstract scene graphs of environments represent the key
structures, objects and interactions in a semantically rich
and compact way. Ideally, an intelligent embodied device
should build a scene graph rapidly and on-the-fly in a
new environment using on-board sensing and processing to
enable immediate intelligent action. Identifying high-level
abstractions is challenging and can require an expensive
search-and-test over both the type of abstraction and the
subset of elements to which it applies. Pre-trained neu-
ral networks can amortize this cost by directly proposing
candidate abstractions and most algorithms for scene graph
construction operate by either post-processing a low-level
representation [1] or by committing to abstractions of the
low-level data at measurement time [2][3] .

A more ambitious target is general incremental abstrac-
tion. Where abstract scene elements can be identified from
single observations, they should be immediately added to
a scene representation. More commonly, several observa-
tions may be needed to identify abstractions with high
confidence, requiring the system to temporarily store low-
level information (e.g. raw geometry as point clouds). As
exploration continues, abstraction should operate continually
and hierarchically on both stored and incoming observations,
gradually replacing the raw elements in the map. A scene
graph should therefore at any point in time be a hybrid mix
of raw and abstract elements, potentially of many kinds.

The correct way to accumulate many different measure-
ments and priors into coherent estimates is via probabilistic
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• Planes replace raw points.
• Yields dense semantic map 

and compact factor graph.

• Graph contains raw points and 
abstract elements (planes).

• Sparsity structure diminishes 
with more abstract elements.
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Fig. 1: Method Overview. The time per iteration of Gaussian Belief
Propagation (GBP) is structure-agnostic so it can rapidly optimise
factor graphs with little sparsity structure that appear in incremental
scene abstraction. In the graph, green nodes are points and red nodes
are planes. See the key in Fig 2 for the remaining nodes.

inference, and a factor graph represents the probabilistic
structure of inference problems in SLAM [4]. Abstract scene
elements can be combined into this estimation framework
and probabilistic inference can refine and confirm or reject
the abstractions. A hybrid, incrementally abstracting map is
therefore represented by a complicated, heterogeneous and
dynamically changing factor graph, where new raw structure
is continually added while abstractions are tested, and replace
raw structure if those tests are passed.

There have been few attempts to solve the true, complex
inference problems these factor graphs represent in real-time
systems. Most SLAM systems that go beyond sparse point
cloud processing make severe approximations to the true
inference problem by artificially layering estimation [1], bak-
ing in specific variable orderings [5], or by using alternation
to avoid joint estimation [6]. We believe these choices are of-
ten related to the rigidity of existing optimisation algorithms
that need to exploit the problem structure to achieve efficient
performance on standard processing hardware.

Gaussian Belief Propagation (GBP) has recently been
proposed as a strong candidate algorithm for real-time in-
ference of arbitrary and dynamically changing factor graphs
[7][8]. Its computational structure is node-wise parallel and
it operates by local message passing on a factor graph. GBP
trades the optimality of global updates for more flexible
distribution of compute and memory, meaning it can better
exploit parallel hardware and operate without assumptions
about the global structure of an estimation problem. When
implemented on a graph processor [9], GBP has already been
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shown to have speed advantages over global methods for
inference on static bundle adjustment graphs [10].

In this work, we present a general method for incre-
mentally constructing scene graphs in real-time based on
two novel components: 1) our incremental abstraction
framework and 2) distributed optimisation via GBP.

First, our incremental abstraction framework combines
amortized inference from an off-the-shelf network with
probabilistic inference to robustly identify abstract scene
elements. Additionally, upon accepting a scene element we
linearise and join factors connecting common nodes to yield
a more semantic, dense and compressed representation.

Second, enabled by our novel routing procedure, we are
the first to use GBP on a graph processor for inference of
dynamic factor graphs. The time per iteration of GBP is
independent of the graph structure and we demonstrate the
resulting advantages over direct methods.

While our framework is general and can be used with any
abstract feature detector, we experiment with planar abstrac-
tions, which provide a compact way to densely represent ge-
ometry in many human-made environments. In evaluations,
our framework reconstructs accurate planar scene graphs of
real indoor environments at different levels of granularity,
demonstrates significant graph compression and improves
tracking compared to ablated baselines.

II. RELATED WORK

For long-term SLAM operation it is vital to manage
computational cost by limiting factor graph growth to match
the spatial extent of the map. Towards this goal, [11] reuses
existing keyframes for new measurements and [12] uses
filtering to add only non-redundant nodes and edges. Al-
ternatively, compression by node removal [13][14], attempts
to recover the best non-linear and sparse factor graph that
approximates the marginalised distribution. These methods
target compression with minimal information loss, while we
focus on semantic-guided compression.

Recent SLAM research has investigated incremental scene
reconstruction with semantic elements included in the factor
graph. Object-centric SLAM methods use object recogni-
tion and correspondence in the front-end to build scene
graphs of objects [2][3]. Planar SLAM methods operate
similarly, either detecting planes from an RGB-D input
[15][16][17][18][5], or in the monocular case from CNN
predictions [19][20][21] or from the reconstructed points
[22]. All previous methods rely on accurate initial plane
predictions and, unlike our method, cannot confirm or reject
planes within the inference process, nor compress the factor
graph. Additionally, for real-time operation, these methods
often layer optimisation [19] or construct reduced systems
to leverage specific problem structure [5].

Recent methods have built hierarchical 3D scene graphs
containing layers of objects, rooms and buildings in which
edges describe non-probabilistic relations [23][24][25][26].
[23] constructs the graph from an annotated mesh model
while [24] is an incremental system that also tracks humans.

III. PRELIMINARIES

Factor graphs G = (X,F,E) are bipartite graphs that
consist of variable nodes X = {xi}i=1:Nv , factor nodes F =
{fs}s=1:Nf and edges E. They are commonly used as a
graphical representation of the factorisation of probability
distributions. Given the factorisation: p(X) ∝

∏Nf
s=1 fs(Xs)

where Xs ⊂ X , the factor graph is constructed by creating
nodes for all variables and factors and then connecting each
factor fs to variables xi ∈ Xs with an undirected edge.

Belief propagation (BP) [27] is a distributed inference
algorithm that infers the marginal distribution p(xi) for each
variable from the joint distribution p(X). On each iteration,
all factor nodes fs send messages µtfs→xi

to neighbouring
variable nodes xi ∈ Xs. These messages are aggregated to
update all variable node beliefs bi(xi) before all variable
nodes send messages µtxi→fs to neighbouring factor nodes.
BP only involves node-wise local compute and message
passing, making it trivial to distribute on highly parallel
hardware by placing nodes on separate cores. Factor to
variable messages are computed as:

µtfs→xi(xi) =
∑
Xs\xi

fs(Xs)
∏

j,xj∈Xs\xi

µt−1xj→fs(xj) , (1)

where Xs \xi denotes all elements in the set Xs apart from
xi. Variable to factor messages are computed as:

µtxi→fs(xi) =
bti(xi)

µt−1fs→xi
(xi)

, (2)

and variable beliefs are updated by simply taking the product
of incoming messages from adjacent factors: bti(xi) =∏
l∈n(xi) µ

t
fl→xi

(xi). See [28] for a full derivation.

A. GBP for Spatial Inference Problems

BP is exact for trees, but in general it is not guaran-
teed to converge on the true marginals when applied to
graphs with loops. Nonetheless, empirical results strongly
suggest that when all distributions are Gaussian, BP performs
robustly across a range of inference tasks [29][7]. In our
GBP framework, we utilise the Gaussian information form:
N−1(x;η, Λ) ∝ exp (− 1

2x
>Λx + η>x) , where η = Σ−1µ

is the information vector and Λ = Σ−1 the precision matrix.
Measurements are modelled as a deterministic function

plus centred Gaussian noise, Z = h(X) + ε, ε ∼ N (0, ΣM ).
In spatial estimation problems independent measurements zm
often depend on only a small subset of the variables Xm. The
likelihood therefore has the factorised form:

l(X;Z) =

Nm∏
m

lm(Xm; zm) ∝
Nm∏
m

exp(−1

2
‖ hm(Xm)−zm ‖2Σm) ,

(3)
and the factor graph for the posterior P (X|Z) consists of a
variable node for each xi and a factor node for each lm.

We are interested in estimating both the configuration
X that maximises the posterior distribution P (X|Z) given
observed measurements Z and the associated uncertainty
given by the marginal covariances. Using Bayes Rule:

XMAP = arg max
X

p(X|Z) = arg max
X

l(X;Z)p(X) , (4)



where l(X;Z) is proportional to P (Z|X) but is a function
of the variables X with the measurements as parameters [4].

Gaussian Belief Propagation performs posterior inference
on the factor graph by computing the marginal posteriors
p(xi|Z) = N (µi,Σi) for all variables, where XMAP =
[µ1, ..., µNv ]>. For factors with non-linear measurement
functions h, the density l is non-Gaussian and so we use the
first order Taylor expansion, h(X) ≈ h(X0) + J(X −X0),
to yield a Gaussian likelihood (dropping m subscripts) [7]:

l(X; z) = N−1(X; J>Σ−1(J X0 + z − h(X0)), J
>
Σ
−1

J) . (5)

During inference, non-linear factors are relinearised indepen-
dently when the L1 distance between the current beliefs and
the linearisation point exceeds a threshold β.

IV. INCREMENTAL PLANAR ABSTRACTION FRAMEWORK

We combine amortized inference via a neural network with
distributed probabilistic inference via GBP to incrementally
abstract factor graphs in SLAM. The master scene represen-
tation is always the factor graph and during online operation
GBP is continually performing inference on this graph.

GBP is interrupted to edit the factor graph, which occurs
when: i) adding a new keyframe (Sec. IV-A, IV-B) ii) testing
plane hypotheses (Sec. IV-C) or iii) merging planes (Sec. IV-
D). An overview of the system is provided in Algorithm 1.

A. Feature Extraction from Keyframes

We construct the abstract scene graph on top of a feature-
based monocular SLAM system. We choose a sparse front-
end for experimental purposes and concentrate on the graphi-
cal back-end in this paper. Given a stream of live images, we
use the ORB-SLAM2 [30] front-end to build the factor graph
composed of keyframes, points and reprojection factors (Fig.
2 left). Reprojection factors penalise the distance between a
matched feature at image coordinates z in keyframe c and the
projection of the corresponding point p in the image plane:

lr(c,p ; z) ∝ exp
(
− 1

2
‖ z− proj (Rc p+ tc) ‖2Σr

)
, (6)

where proj is the projection operator and Rc and tc are the
rotations and translations derived from keyframe pose c.

Algorithm 1 System Overview.
1: Initialise factor graph with first keyframe, n iterations = 0
2: while in operation do
3: Run iteration of GBP, n iterations += 1
4: if new keyframe then
5: Feature matching (Sec. IV-A, Fig. 2 left)
6: Add NN plane hypotheses (Sec. IV-B, Fig. 2 mid)
7: if n iterations % N == 0 then
8: for each plane hypothesis do
9: if confirm criteria satisfied (Eq. 10) then

10: Create rigid body plane (Fig. 2 right)
11: else if reject criteria satisfied (Eq. 9) then
12: Remove plane hypothesis (Fig. 2 left)
13: if n iterations % M == 0 then
14: for each pair of planes do
15: if merge criteria satisfied then
16: Merge planes (Sec. IV-D)

B. Integrating Plane Predictions

We denote the homogeneous plane vector π =
(π1, π2, π3, π4)> ∈ P3 [31]. Points p ∈ R3 lying in a plane
satisfy n̂>p = d, where n̂ = (π1,π2,π3)

>√
π2
1+π

2
2+π

2
3

is the normal vec-

tor and d = −π4√
π2
1+π

2
2+π

2
3

is the distance from the origin. The

homogeneous plane vector is transformed between coordi-
nate frames using the inverse transpose of the homogeneous
point transform: π′ = T−>π. For optimisation, we represent
planes using the minimal parametrisation n̂ · d and denote
the � operator to subtract the plane parameters in our chosen
minimal form (πa � πb := n̂a · da − n̂b · db).

For each keyframe, we run a forward pass of the PlaneR-
CNN model [32] to predict a set of plane parameters and
corresponding segmentation masks. The model is based on
Mask RCNN [33] with an additional head to regress the plane
normal. The predictions are filtered to remove planes with
small or disconnected segmentation masks. The resulting
plane hypotheses are then integrated into the existing factor
graph as plane hypothesis nodes (Fig. 2 middle).

Using the segmentation mask for each plane, we deter-
mine the map points that are predicted to lie in the plane
and introduce plane-point distance factors, connecting the
hypothesised plane π to each of these points p. Plane-point
distance factors penalise the perpendicular distance from a
point to a plane and have the form:

lpp(p,π) ∝ exp
(
− 1

2
‖ n̂ · p− d ‖2Σpp

)
. (7)

Each plane hypothesis π is also connected to the keyframe c
in which it was predicted via a plane prediction factor. Plane
prediction factors treat the network prediction of the plane
parameters πz as a measurement and take the form:

lπp(π, c ;πz) ∝ exp
(
− 1

2
‖ πz � T−>cw π ‖2Σπp

)
, (8)

where Tcw ∈ SE(3) is the transformation from the global
coordinate frame to the coordinate frame of the camera c.
In experiments we set Σπp to be very large as the network
plane parameter prediction can be unreliable.

Our framework is not specific to planes; in fact, any
abstract scene element with appropriate compatibility factor
and inference model to generate hypotheses could be used.

C. Plane hypothesis confirmation and rejection

Having added the plane hypotheses to the raw factor graph,
GBP carries out inference on the hybrid graph (Fig. 2 middle)
and converges to the configuration that minimises the factor
energies. To allow bad plane hypotheses to be treated as
outlying measurements and only contribute weakly to the
graph energy, we employ the robust Tukey loss function for
all factors via covariance rescaling as in [7] and [34].

After convergence, for each plane hypothesis, we go
through all connected points and read off from the fac-
tor graph the likelihood that the point lies in the plane.
The likelihood is the plane-point distance factor density
lpp(pconv,πconv) evaluated at the converged belief means
pconv and πconv . To determine whether to confirm or reject
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Fig. 2: Factor Graph. Left: Raw factor graph with only keyframes and points. Middle: The network predicts plane π1 in keyframe 3
and points p2 and p3 lie inside the predicted segmentation mask. The plane hypothesis variable node is added to the graph along with 2
plane-point distance factors and a plane prediction factor. Right: The plane hypothesis is confirmed and the plane hypothesis and points
are replaced by a rigid body plane node r1. The factors with dashed borders connect to a rigid body node and have a different functional
form (Eq. 12 and 13). Linearised reprojection factors that connect to the same rigid body node are combined into a single factor which
is represented by overlaying 3 reprojection factors. If the plane hypothesis is rejected the factor graph returns to the form on the left.

each plane hypothesis, we use the proportion of points y
with likelihood lpp(pconv,πconv) > lthresh and the number
of iterations the hypothesis has been in the graph t.

Reject criteria : y < yreject OR t > tmax (9)
Confirm criteria : y > yconf AND t > tmin (10)

If rejected, the plane hypothesis node and all adjacent
factors are removed from the graph. If confirmed, the plane
hypothesis node and points with lpp(pconv,πconv) > lthresh
are replaced by a single rigid body variable node with just
6 degrees of freedom, as in Fig. 2 right. We use a rigid
body to represent the plane as we assume that the relative
configuration of the planar points has now been determined
and that they can be optimised as a single rigid planar body.

The reprojection factors connected to the planar points,
and the plane prediction factors connected to the plane
hypothesis node are transferred to the new rigid body variable
node. For these factors, the rigid body transformation r
becomes an argument of the measurement function while
πconv and pconv are parameters as we replace:

π → T−>r πconv and p→ Rrpconv + tr , (11)

where Tr, Rr and tr are the transformation matrix, rotation
matrix and translation derived from the minimal SE(3)
vector r. Plane prediction and reprojection factors become:

lπp(r, c;πz,πconv) ∝ exp
(
− 1

2
‖ πz�T−>cw T−>r πconv ‖2Σπp

)
,

(12)
lr(c, r; z,pconv) ∝ exp

(
−1/2 ‖ z−proj(Rc(Rrp+tr)+tc) ‖2Σr

)
(13)

As all transferred reprojection factors connect to the same
pair of nodes, they are linearised and combined into a single
factor by taking the product. This further compresses the
graph and reduces the computation at each GBP iteration.
Note that relinearisation requires linearising the contributions
from all the original reprojection factors, however this only
occurs on a small proportion of GBP iterations.

D. Merging Planes

As there may be multiple plane hypotheses for the same
geometric plane, we merge confirmed planes that have: i)

aligned normal vectors ii) small perpendicular separation and
iii) large overlap. The latter two criteria are estimated by
sampling points in the plane. Once two planes are chosen to
be merged, we replace the two rigid body planes with a single
rigid body plane. The new plane normal is the average of the
merged normals and the factors connecting to the merged
planes are transferred to the new plane.

V. DYNAMIC ROUTING ON THE IPU

We implement our incremental abstraction method on a
single Graphcore MK1 IPU chip [9] as in [10]. The IPU is
a large chip composed of 1216 independent cores arranged
in a fully connected graph structure. Like a GPU it is highly
parallel, but due to its interconnect structure and the local
memory on each core, it has breakthrough performance for
algorithms with a sparse message passing character.

Inference on static factor graphs is achieved in [10] by
mapping the factor graph onto the IPU cores with the
communication pattern matching the topology of the graph.
This approach however cannot be applied to dynamic graphs,
as the communication pattern must be precompiled and
recompilation is expensive. To enable parallel inference of
dynamic factor graphs, we develop a routing procedure that
can manage arbitrary graph topologies while operating on a
fixed precompiled communication pattern.

Our routing solution introduces densely connected routing
nodes to mediate the transfer of messages through the factor
graph. Routing nodes have knowledge about the structure of
a part of the factor graph, stored in a routing matrix. As
shown in Fig. 3, when the factor graph is edited, the routing
matrix can be updated to enable inference on the new factor
graph without changing the compiled communication pattern.

To distribute the routing, we create a routing node for
each factor type. One requirement is to specify the maximum
number of nodes of each type in the graph and the maximum
number of edges each type of node can have – these are weak
requirements and the limits can be set generously. For large
graphs we create multiple routing nodes for each factor type.

The routing procedure enables optimisation of arbitrary
graph topologies at minimal time cost; only increasing the
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Fig. 4: We plot mean and standard deviation error over 10 runs.
Convergence is defined as reaching 1.5 pixels average reprojection
error as in [10]. With the additional 800 factors, convergence time
for Ceres with Dense Schur increases by roughly 5x from 20.1ms
to 111.6ms, while GBP increases from 15.6ms to 22.0ms.

time per iteration from 200µs to 400µs. As GBP typically
converges in less than 100 iterations [10], inference remains
comfortably within real-time constraints.

VI. EXPERIMENTAL EVALUATION

For evaluations, we use real-world sequences captured
with the Kinect camera in varied indoor environments and
sequences from the TUM dataset [35]. We compare against
[10] which uses GBP for inference but without planar
abstractions. We call this method GBP-BL as it is similar
to our system but without planes.

Implementation settings. For all experiments, we use the
default parameters: Σr = σ2

rI2, σr = 2 pixels, Σπp = σ2
πpI3,

σπp = 20m, Σpp = σ2
pp, σpp = 5cm, yreject = 0.5, yconf =

0.8, lthresh = 0.8, tmax = 6000 iterations, tmin = 4000
iterations, N = M = 1000 iterations and β = 1e − 4. We
use message dropout of 0.7 and message damping of 0.4 to
stabilise GBP [29]. Keyframes are initialised with a constant
velocity motion model and points using an average depth.

A. Convergence Time Evaluation

We evaluate the convergence time for bundle adjustment
problems based on the sitting room sequence for factor
graphs with an increasing number of different factor types.
We begin with a factor graph containing 35 keyframes,
3108 points and 10000 reprojection factors and measure the
convergence time from noisy initialisations. We then add
200 additional factors of a new type to the graph along
with any new variables nodes (for example we add plane
hypotheses variable nodes when adding plane hypothesis
prediction factors) and repeat the experiment. We conduct
experiments adding 4 additional types of factors, meaning in
the final experiment there are 10800 factors in the graph.

Following [10], we compare GBP on a single IPU chip
[9] with Ceres [36], a non-linear least squares optimisation

library, run on a 6 core i7-8700K CPU with 18 threads. Ceres
uses Levenberg-Marquardt (LM), a Tukey kernel and analytic
derivatives. In Fig. 4, we compare the convergence time of
GBP with the 3 fastest Ceres linear solvers.

As different types of factors are added to the graph,
convergence time for Ceres increases greatly while GBP
increases only marginally. It is instructive to break down con-
vergence time as the product of the time per iteration and the
number of iterations to converge. Ceres makes optimal global
updates through LM and, across all experiments, converges
in 5-10 iterations while GBP requires 20-25 iterations. The
time per iteration however is the more significant factor and
where the two methods differ greatly in performance.

The local distributed nature of GBP makes its time per
iteration structure-agnostic; in other words, the compute
per iteration depends only on the number of factors and
not their structure. Consequently, the time per iteration for
GBP is approximately constant for all experiments and the
convergence time only increases slightly, due to extra factors
and more iterations required to converge.

In contrast, as different types of factors are added to the
graph, solving the linear system or normal equations for
the Ceres LM update becomes considerably more expensive,
increasing the time per iteration. Ceres linear solvers com-
pute the update by exploiting sparsity structure in the Fisher
information matrix which depends on both the number of
non-zero entries or equivalently factors in the graph and
the variable ordering. In the base case, the Dense Schur
solver is designed to leverage the large zero blocks in the
information matrix to efficiently solve the normal equations
without inverting the full information matrix. As different
types of factors are added, even in very small numbers, these
zero blocks are eroded and the time per iteration for Ceres
increases by over 5x with only an additional 8% of factors.

These experiments expose the reliance of direct solvers
on fixed sparsity structure and suggest that GBP is more
efficient for optimising heterogeneous scene graphs without
strong structure. Lastly, not only does GBP have the right
computational properties, but it is also doing additional work
by computing both the MAP and the marginal covariances
while LM only computes the MAP with significant extra
computation required to get the covariances.

B. Qualitative Reconstructions

We show planar reconstructions for 4 real sequences in
Fig. 5. Our system captures the prominent planes such as
walls, beds (b), desks (b, c) and cupboards (a). In Fig. 5 d) we
verify that for a simple planar scene, our system can achieve
a complete reconstruction. Fig. 1 shows an intermediate
reconstruction of the same sequence with points.

C. Compression Evaluation

Graph compression yields a more dense, semantic and
parameter-efficient representation and reduces the amount
of computation per iteration of GBP. The computation is
proportional to the number of edges or equivalently the
number of factors when all factors are pairwise. To quantify



a) Sitting room b) Bedroom c) Laboratory d) TUM str_tex_far
Fig. 5: Qualitative reconstructions. Top: Planar reconstructions recovered by our system. Planes that are almost perpendicular or parallel
to the largest planes in the reconstruction are displayed as rectangles, while the extent of other planes is the convex hull of the planar
points. We do not include raw points that have not been abstracted in this visualisation. Bottom: Visualisation of the scene obtained
using depth, shown for reference rather than comparison. Reconstructions a), b) and c) are from sequences captured with the Kinect
camera and d) is from the TUM sequence structure texture far. Perpendicular planes in d) are joined at their intersection for a watertight
reconstruction. Note in sequence c), the near side of the room is not abstracted into a plane as there is a cluttered bookshelf.
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Fig. 6: We compare the number of factor nodes in the graph during
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TABLE I: Average absolute trajectory error (ATE) over 16 runs for
TUM sequences [35]. Ours-C is ours without compression.

ATE (cm) Ours Ours-C GBP-BL ORB-SLAM2
str tex far 1.204 1.186 1.384 0.924

cabinet 0.723 0.659 1.048 0.601
long office 0.658 0.648 0.891 0.670

the compression capabilities of our system, we compare the
number of factor nodes in the graph with GBP-BL in Fig. 6.

For our planar system, there are initially more factors
as many plane hypotheses are added, however the graph
is quickly compressed as planes are confirmed. The com-
pression is most significant in the Laboratory and TUM
str tex far sequences in which there are large textured walls,
while there is less compression in the sitting room sequence
due to large curved objects such as the sofa.

D. Tracking Evaluation

We evaluate the absolute trajectory error (ATE) on 3
TUM sequences (chosen for their prominent planar regions)
in Table I. We compare our full method with two ablated

systems: our planar method without compression (Ours-C)
and GBP-BL which has similar performance to Ceres [10].

Ours-C has lower ATE than GBP-BL demonstrating that
planar constraints help tracking. Our full method performs
slightly worse than Ours-C because compression is lossy,
however the fact that the difference is small indicates that
the compression is accurate. Our tracking is comparable
to ORB-SLAM2 [30], even achieving lower ATE for one
sequence with slow motion and many planes. Both our
method and GBP-BL lack a tracking system so receive
worse initialisations than ORB-SLAM2 when new frames
are added, likely explaining the worse performance on two
sequences. Designing a distributed tracking system within the
GBP framework remains an important research direction.

VII. CONCLUSIONS

We have proposed a method for efficient incremental con-
struction of probabilistic scene graphs from monocular input
based on two novel components. First, our incremental scene
abstraction framework combines amortized inference with
probabilistic inference to identify abstract scene elements
and build a semantic, dense and compact representation. We
show that with planar abstractions, we can achieve accurate
reconstructions with significant compression. Second, our
routing procedure enables inference on dynamic graphs with
GBP on a graph processor. We demonstrate the advantage
of GBP over direct methods for complex factor graphs due
to the structure-agnostic time per iteration. In the near term,
we hope to inspire research into novel parallel processors to
tackle the computational challenges of optimising dynamic
heterogeneous graphs.
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