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Collaborative Robot Mapping using Spectral Graph Analysis
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Abstract— In this paper, we deal with the problem of creating
globally consistent pose graphs in a centralized multi-robot
SLAM framework. For each robot to act autonomously, indi-
vidual onboard pose estimates and maps are maintained, which
are then communicated to a central server to build an optimized
global map. However, inconsistencies between onboard and
server estimates can occur due to onboard odometry drift or
failure. Furthermore, robots do not benefit from the collabora-
tive map if the server provides no feedback in a computationally
tractable and bandwidth-efficient manner. Motivated by this
challenge, this paper proposes a novel collaborative mapping
framework to enable accurate global mapping among robots
and server. In particular, structural differences between robot
and server graphs are exploited at different spatial scales using
graph spectral analysis to generate necessary constraints for
the individual robot pose graphs. The proposed approach is
thoroughly analyzed and validated using several real-world
multi-robot field deployments where we show improvements
of the onboard system up to 90%.

I. INTRODUCTION

Collaborative multi-robot exploration with heterogeneous
platforms and sensors imposes significant challenges on
current state-of-the-art mapping and localization approaches.
Maintaining a consistent pose estimate across all employed
systems is particularly difficult for distributed modules
and is mission-critical for the operation of robot teams in
applications like disaster response and search and rescue.

With the recent availability of high-bandwidth mobile
networks, e.g., 5G networks, centralized and collaborative
robotic approaches have received increased attention in the
robotics community due to their improved practical feasibility.
Typically, mobile robotic systems have limited onboard
computational resources for which centralized approaches
can assist by offloading computational intensive operations
from individual robots to a shared centralized server. A
centralized server with more computational capacity can
perform expensive operations such as global optimizations,
loop closing, exploitation of all available sensor data to
improve accuracy and also overcome onboard failure.

Most collaborative mapping approaches focus on building
accurate maps on the server and ignore the use of global
multi-robot information to provide localization feedback to
individual agents to make the onboard and server maps
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Fig. 1: Overview of a large-scale multi-robot deployment in
an underground tunnel system. Structural differences between
single-robot maps and a collaborative global map (left) are
used to derive necessary constraints for making the onboard
and global estimates consistent (right).

consistent w.r.t. each other. Especially in centralized settings
without feedback, pose estimation discrepancies may arise
between robots during large missions leading to severe
drift between robot and server maps resulting in increased
optimization time at the server for collaborative mapping.
Therefore, it is evident that the provision of additional
constraints to improve onboard estimation and collaborative
mapping performance can be highly beneficial for large-scale
multi-robot missions.

Furthermore, multi-robot missions often deploy a hetero-
geneous set of robots, e.g., aerial and ground robots, which
depending on the type and role of the robot, carry a diverse set
of multi-modal sensors onboard and correspondingly utilize
different algorithms for robotic operations, e.g., localization
and mapping. Consequently, no common layer sharing data
to improve pose estimation and mapping accuracy among
the employed systems is readily available. Hence, a sensor
modality-invariant approach that can incorporate and com-
municate relevant correction information among robots while
maintaining low network bandwidth requirements is essential
for large-scale multi-robot field deployments.

Motivated by the discussion above, this paper proposes
a novel collaborative multi-robot pose graph approach (cf.
Figure [2) which is independent of the underlying robot pose
estimation processes and relies only on a sparse abstraction
of the estimated poses — a positional graph. Our framework
operates in the graph spectral domain of the positional
graphs to identify structural anomalies in the individual robot
pose graphs using a multi-scale analysis. By examining the
structural components of the positional graphs at different
scales, our system identifies discrepancies in the local and
coarser neighborhoods and adds corresponding constraints to
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Fig. 2: Our approach considers multiple robots individually exploring an environment and sending incremental mapping data
to a centralized server that accumulates and jointly optimizes them. A relaxation of the collaborative multi-robot map is sent
back to the robots, where a multi-scale graph spectral analysis is performed to identify discrepancies onboard and server
maps and to generate necessary constraints for making them consistent.

improve pose estimation accuracy of individual robots and
to make the individual robot and collaborative server maps
consistent. Key contributions of this paper are:
o Graph spectral analysis of positional graphs to identify
disagreements between onboard and server pose graphs.
o Automatic adaptive inference of multi-scale constraints
to achieve a consensus between robot and server maps.
o Comparison against current state-of-the-art approaches
on datasets and a thorough quantitative analysis on large-
scale multi-robot field deployments are presented to
validate the proposed approach.

II. RELATED WORK

In this section, we review the state-of-the-art in collabo-
rative and consistent multi-robot localization and mapping
approaches as well as the current applications of graph signal
processing.

A. Globally Consistent Multi-Robot Mapping

Collaborative multi-robot approaches can be distinguished
into centralized [1]-[3] and distributed solutions [4,5].
Deutsch et al. [1] proposed a vision-based centralized multi-
robot SLAM approach where a mapping server performs loop
closures and replaces robot pose graphs with corrected graphs.
A similar approach was proposed by [2] in which robots send
local maps to a mapping server which then returns optimized
keyframes and landmarks to each robot to include in their
onboard optimizations. To improve the speed of onboard
optimizing tasks, CoSLAM [6] proposes to make use of
GPU computing, hence requiring a GPU onboard individual
robots. Different from vision-only approaches, the work of
Ebadi [7] proposes a large-scale collaborative multi-modal
SLAM framework. However, their proposed approach does
not provide any pose corrections from the centralized server
to the individual robots.

In contrast to collaborative approaches, distributed ap-
proaches require each robot to run a full onboard SLAM

solution [5] and share marginalized information with other
robots [4], thus making full information available to each
robot but increasing the onboard compute requirements
significantly. Independent of the sensing modality used, [8]
aims to achieve consistent maps across multiple robots by
detecting loop closures between robots and connecting their
pose graphs. In this direction, [9,10] aim to robustly select
inter-robot loop closure candidates by maintaining pair-wise
consistent measurements. More recently [11] proposed a
distributed system with distributed loop closure detection.

Most current collaborative multi-robot mapping approaches
require the partial or complete substitution of the onboard
pose graphs with the server-optimized graph. Conversely, this
paper proposes to detect discrepancies between the robot
graphs using spectral analysis and a sparse abstraction of
the server graph to generate an individual set of constraints
for each robot. Hence, the proposed approach achieves
high mapping accuracy while maintaining low network and
compute requirements.

B. Graph Signal Processing

Spectral graph theory is an active research area and has
gained popularity in the past years in the context of robotics.
Spectral graph theory approaches have been proposed for
robotic mapping [12], planning [13], and more recently, in
combination with graph neural networks for various robotic
tasks [14,15]. In general, graphs are irregular structures and
are capable of modeling large, complex, and distributed
problems [16], e.g. [17] proposes an anomaly detection for
spatial proximity of graph nodes using spectral graph filtering.
Furthermore, graph signal processing aims at applying signal
processing techniques on graph structures, thus allowing the
use of existing concepts such as the Laplacian operator [18]
and multi-scale analysis [19,20]. Similarly, [21] aims to learn
a multi-scale structural embedding using graph wavelets by
treating the wavelet coefficients as a probability distribution.
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Fig. 3: Different employed graphs: a) Onboard visual-inertial
graph, which will be incorporated into the global server
map. b) Positional graph proxies including Kron reduction.
c¢) Synchronized graph proxies. d) Multiscale spectral graph
analysis. With the results from (d) the system queries poses
in SE(3) to generate constraints.

A good introduction and overview of graph signal processing
is presented in [22].

Our approach also performs a structural analysis of graph
signals to detect discrepancies between the onboard and server
graphs. Using localized graph wavelets in the graph domain,
our approach directly compares the trajectories at different
scales to estimate the severity of the inconsistency of the
individual positional graphs.

III. CONSISTENT COLLABORATIVE MULTI-ROBOT
MAPPING

This section details the proposed method, for which an
overview is presented in Figure Overall, the aim is
to identify graphs nodes with high positional drift that
will lead to large errors and correct them with only a
few constraints. The proposed approach comprises of the
following core components: (i) Onboard localization and
mapping, (ii) Mapping server at the base station, (iii) Pose
graph comparison and correction.

A. Onboard Localization and Mapping

Each robot performs onboard mapping and localization to
provide an odometry estimate of its current position. This state
estimate is then utilized to build a dense visual-inertial (VI)
graph used for global multi-robot mapping on the server.
In brief, the odometry estimates are used to triangulate
tracked visual features, and throughout the exploration, a
factor graph in the form of keyframed [23] submaps is sent
to the mapping server, where all submaps are accumulated,
merged into a collaborative map, loop closed and globally
optimized. Consequently, all the computational-intense multi-
robot operations are delegated to the central mapping server
while the robots only perform the initial graph building.

B. Centralized Mapping Server

Each submap overlaps with the previous one, allowing the
mapping server to readily combine submaps by attaching

them, only requiring the handling of potential landmark
conflicts. The mapping server holds and continuously operates
on a single global multi-robot map. In particular, each
iteration includes detection of for intra- and inter-robot loop
closures [24] as well as performing a joint optimization on the
merged multi-robot map. Once a globally optimized map is
available, the mapping server creates, relaxes and broadcasts
the global graph. Since for comparison rotational information
is not required, the VI graph is relaxed to proxy graphs in
R3 which contains only the positional information.

Global Proxy Graph. The global proxy graph encapsulates
the global knowledge of the environment in a compact
representation and contains crucial information such as the last
known positions of all robots. The global proxy graph is built
by defining representative nodes for each incoming submap.
The representative nodes can be freely chosen but ought to
reflect the robot trajectories to some degree. Moreover, since
the global map is continuously optimized, the proxy graph
is not immediately built but only a reference to each node
is maintained. When an update is triggered after the global
optimization, the graph monitor (cf. Figure |2)) retrieves the
latest estimate of the multi-robot pose graph, builds the proxy
graph, and sends it to all robots. Although only the proxy
graph in R? is needed for comparison, auxiliary information
is also included for each node in the transmission, such as
timestamps and orientations for synchronization and constraint
generation purposes.

In general, the proxy graph is a weighted undirected graph
Gserver = (€,V,w) consisting of a set of nodes V, edges £
and weights w : £ — R* denoting how strong two nodes are
connected. A radius search (7 m) is performed around each
vertex in the proxy graph and the weight wp of adjacent
nodes is calculated using a squared exponential function
where the weight decreases with increasing spatial distance,

i.e.
Vo — Vm|2>
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wp(n,m) = exp (— (D
with o being a free parameter. The weighted adjacency matrix
A is then given by A,,,,, = wp(n,m).

Consequently, the graph is described by N nodes n € R3
and its adjacency matrix A € RV*Y with A,,,,, > 0 if two
nodes n and m are connected. Furthermore, the degree matrix
D is a diagonal matrix with entries D,,,, = >, A, where
m are all incident nodes of n. Based on these two matrices
A and D, the graph Laplacian £ can be obtained by

L=D-A, 2

which is by definition a symmetric and a positive semidefinite
matrix. Hence, it can be decomposed into its eigenvalues and
eigenvectors, i.e. L= UAUT.

As a final step, Ggerver 18 reduced using a Kron reduc-
tion [25], when the graph increases to a specific number of
nodes, to avoid long computation times. The Kron reduction
takes the nodes to keep from the proxy graph as input and
reduces them while preserving the spectral properties and the
adjacency matrix. The reduced nodes are selected based on



the polarity of the largest eigenvector uy,, in £ [26], i.e.
Vreduced = {77, ey: umax(n) > O} . (3)

Finally, the global proxy graph Gge,ye is broadcasted over
the network. Each robot then uses this information to build
an onboard graph G,.p.+ using the procedure described above
and synchronizes the nodes based on their timestamp (cf.
Figure [3t). Next, we perform a graph spectral analysis using
Gserver and Gropot to identify drifts in the onboard estimation.

C. Spectral Analysis of Graph Signals

The analysis of spectral components of band-limited signals
is a well-established and widely used technique in engineering
and research. In this paper, we utilize the theory of spectral
analysis and signal processing defined on graphs. In contrast
to the standard spectral analysis, graphs do not assume any
underlying manifold. Therefore, they are well-suited for many
robotic applications where graph structures such as pose
graphs play a significant role.

The traditional Fourier transform is the inner product of a
signal = with a harmonic oscillation i.e.

X (w) = (2(t), exp (jewt)) = /

—0o0

o0

x(t) exp (—jwt) dt, (4)

where X (w) is the spectrum of x(t) and exp (—jwt) the
eigenfunctions of the one-dimensional Laplacian. Analo-
gously, the Graph Fourier transform F' of a function f is
given by the expansion of f with the eigenfunctions u of the
graph Laplacian £ (cf. Eq. (2)), i.e.

F(\) = (f(n),w(n))n = Y f(n)ui(n), (5

where JA; is the [-th non-negative eigenvalue of £ correspond-
ing to u; and (-)* denotes a complex conjugation.

The graph Fourier transform of a signal f is then F' =
v f. The eigenvalues A are real values, thus can be ordered
and correspond to the graph frequencies, allowing a similar
intuition as for traditional frequency analysis. Consequently,
most of a graph signals energy is preserved in the lower
bands of A and higher bands correspond to high oscillating
frequencies.

Graph Comparison. After the robot has received a global
update, a chronological synchronization is performed, yielding
a one-to-one mapping of the global graph G¢e,- and onboard
graph G,..p0t- Next, the pose information at the nodes of
each graph is used to create the functions f and h for
server and robot, respectively. In particular, the positional
information for each node in the graph is used to compute the
relative distance to the origin. Since rotational drifts result in
positional structural discrepancies, the inclusion of rotational
information is omitted and left for future research.

Generally, wavelets are well-known to be very efficient and
flexible for a variety of different tasks in signal processing
problems [20]. In traditional wavelet analysis, a signal x(t)
is projected onto a scaled (a) and shifted (b) wavelet v, i.e.

W(a,b) = (x(t), Yap(t)): = /_O; Y (t;b) () dt.
(6)

e

Fig. 4: Tllustration of three different relative constraint types.
Based on the scale of the structural difference, additional
constraints are added to correct (a) adjacent, (b) close
neighborhood or (c) submaps.

Using Parseval’s theorem, Eq. () can also be expressed with
the Fourier-transformed signal: W (a, b) = (X (w), ¥4 p(w))ew.
Analogously, the graph wavelet transform can be derived using
the graph Fourier transform and a wavelet filter kernel on L.
For more details, we refer the interested reader to the work
of Hammond et. al [19,20].

In this work, the Meyer wavelet using seven scales (Spax =
7) is used due to its good localization in the graph and
frequency domain. By construction, graph wavelets have
the property of being localized on the graph and, therefore,
directly relate to its structural properties. The realization of
a graph wavelet 15 ,, for a scale s and node n is given by

ws,n = UGS (A)UT(STH (7)

where ¢,, is a Dirac centered at vertex n and G the wavelet
filter bank at scale s. In other words, the filter bank Gg
acts only on the eigenvalues of the graph, i.e. Gg(A) =
diag(g(sA1),...,9(sAy) and is multiplied with the graph
Fourier-transformed Dirac, followed by an inverse transform
U. Since 1, 5, lies in the graph domain, we can compute the
wavelet coefficients for a graph signal f using W ,, = ;rn f

In summary, the wavelet coefficients up to scale Spyax
constitute a feature vector that represents multiscale structural
information for a node n.

D. Correcting Onboard Estimation

For a server node n with corresponding onboard node n’,
the scale-wise distance is computed as:

dfb’n' = ||Ws,n - Ws,n’ ||2 5 (8)

where W, ,, and W, ,,» were computed using Ggerper and
Grobot, respectively.

Intuitively, since graph wavelets are localized at a specific
node n in the graph [21,27], large scales compress the filter
function g leading to a description of the larger neighborhood.
In contrast, small scales stretch g and thus yield a description
of the closer neighborhood of n. Consequently, three separate
cases are distinguished (cf. Figure , i.e., a large difference
in the lower, mid and higher scales of the coefficients. If de,n,
exceeds the threshold for small scales, a relative constraint
is added between the direct neighbors of n’. Likewise, for
mid-scale differences, a corresponding constraint within a
two-node distance of n’ is added. In the case of large-scale
discrepancies, a constraint between the k-nearest submaps



is added. Since all different types of constraints are relative
between nodes, the server and robot graph can be expressed
in arbitrary and unknown frames. Additionally, it should be
noted that the comparison is based on the proxy graphs, but
constraints originate from the optimized poses in SE(3) (cf.
Figure [3{d).

Furthermore, the existence of already added constraints
between the corresponding nodes is checked before the
addition of every new constraint to the graph, and constraints
are only updated when there is a reasonable difference in
translation and rotation. Otherwise, they remain unchanged.

IV. EXPERIMENTS

We thoroughly evaluate the proposed framework and
demonstrate its real-world application using aerial and legged
robot datasets. First, we validate our approach and compare its
performance to the current state-of-the-art methods using the
EuRoC [28] dataset sequences to simulate multi-robot deploy-
ments. Next, we demonstrate the real-world performance of
our framework during a multi-robot autonomous exploration
and mapping mission conducted in an underground tunnel
system using ANYmal [29] legged robots. Finally, the
localization recovery for an individual agent in case of
onboard localization failure is demonstrated during a multi-
robot experiment conducted in an environment consisting of
indoor and outdoor areas. For all experiments, the root-mean-
square of the absolute trajectory error, denoted as RMSE, is
used as an evaluation metric. Furthermore, in each experiment,
the close neighborhood constraints use a 5-hop distance, and
the submap-constraints are added between the four closest
submaps. Each robot creates a new submap every 10s and
sends it to the mapping server.

A. EuRoC Dataset: Validation and Comparison

To validate the proposed approach and compare its per-
formance against the current state-of-the-art collaborative
mapping frameworks [2,3,30], Machine Hall (MH) sequences
from the EuRoC dataset are used to evaluate single- and multi-
robot performance. For each sequence, ROVIO [31] is used
to provide monocular visual-inertial odometry for individual
aerial agents. First, we evaluate the localization performance
by comparing the onboard robot estimates, the collaborative
server estimate, and the proposed approach to the provided
ground truth; in addition, we also compare with current state-
of-the-art approaches with results presented in Table Il It
can be noted that despite larger individual onboard error, the
proposed framework still attains the lowest collaborative error.
Furthermore, correcting the onboard estimation using our
multi-scale spectral approach, the lowest single-robot errors
are also achieved, demonstrating the proposed approach’s
effectiveness to correct large onboard estimation errors.

Next, using the experimental setup described in CVI-
SLAM [3], it is demonstrated that the proposed approach can

ISingle robot results from [32]. Collaborative result from [2].
2Monocular visual-inertial results from [30].
3As reported in [2].

@ Robot 1 [ Robot2 [ Robot 3

Fig. 5: Collaboratvie VI multi-robot map built by three robots
for the EuRoC dataset.

EuRoC Machine Hall - Single and Collaborative

Method / Seq MHO1 MH02 MHO03 | MH01-03
VINS—mon(E] [32] 0.12m 0.12m 0.13m 0.074 m
ORB-SLAMEE] [30] 0.062m 0.037m 0.046m 0.037m
Onboard 021m 0.29m 0.41m 0.025 m
CCM-SLANE] [2] 0.06lm 0.081m 0.048m 0.077 m
Proposed 0.029m 0.028m  0.033m 0.025 m

TABLE I: RMSE comparison for the EuRoC dataset. Top
part shows the results of single and collaborative approaches
while the bottom row shows the individual corrected results.

facilitate accurate pose estimation for individual robots by
providing collaborative corrections, as shown in Table

EuRoC Machine Hall - Collaborative Corrections

Sequences CVI-SLAM [3] Proposed
Single Multi Single Multi
MHOl & MHO02 | 0.224m  0.139m 029m  0.030 m
MHO02 & MHO3 | 0.295m 0256m 041m  0.033m
MHO04 & MHO5 | 0412m  034m  0.62m  0.094m

TABLE II: Onboard pose RMSE after adding constraints
from the centralized server for different dataset combinations.

Finally, to understand the potential for real-world applica-
tions, bi-directional network bandwidth utilization between
robot and server is analyzed and compared to the network
requirements of CVI-SLAM [3]. The results are presented
in Figure [6] and show that the robot-to-server network
requirements of the proposed approach are comparable to
CVI-SLAM. However, the server-to-robot communication
requirements are significantly reduced as only a sparse
relaxation of the dense server graph is sent to the robots.

B. Large-Scale Multi-Robot Subterranean Exploration

To demonstrate the suitability towards complex real-world
applications, the proposed approach was utilized during
an autonomous multi-robot exploration [33] and mapping
mission conducted at Hagerbach underground facility in
Switzerland. Two ANYmal quadrupedal robots were deployed
during an hour long mission and autonomously navigated
distances of 1.21km and 1.1 km respectively. Each robot is
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Fig. 6: Average network usage for bi-directional communica-
tion between robot and server on the EuRoC dataset.

equipped with a Velodyne VLP-16 LiDAR and a Sevensense
Alphasense visual-inertial sensor. Onboard robot odometry
estimation and mapping is performed by compSLAM [34]
and, along with required visual and pointcloud data, sent
to the mapping server whenever the robots are within the
communication range.

A ground-truth map was created using a Leica RTC360
scanner to evaluate the proposed collaborative mapping frame-
work’s performance and quantify the effect of integration of
collaborative corrections on individual robot pose accuracy.
Ground-truth robot poses were then computed by registering
individual robot pointclouds against the ground-truth map
following the approach of [35]. The collaborative server
and individual robots maps are shown in Figure |1} with
quantitative results presented in Table demonstrating that
the collaborative mapping approach achieves a lower error
than either of the individual robot estimates. In addition, ben-
efiting from the feedback constraints, the onboard estimated
pose error is significantly reduced. Furthermore, the proposed
approach adds the lowest number of additional constraints
than the baseline approach of adding a correction to each node
of the robot graph or for all nodes corresponding to the proxy
graph while achieving comparable accuracy improvement
without significantly increasing computational cost. Finally,
the robot-server network usage statistics for the mission are
presented in Table showing overall low communication
bandwidth requirements and demonstrating the feasibility
of the proposed approach towards real-world applications.
Additionally, by reducing the graph using the Kron reduction,
we can further decrease the bandwidth by more than 40%.

Underground Tunnel - Ground Truth Evaluation

Method RMSE Time # Factors Server
ANYmal 1 1.15m 68.6 ms 29152 0.25m
Baseline 0.51m  187.2ms 31736 (+2584)
Proposed 0.46 m 71.2ms 29898 (+746)
ANYmal 2 0.97m 53.7ms 25435 0.59 m
Baseline 0.72m  152.6ms 27815 (+2380)
Proposed 0.67m 59.8 ms 26067 (+632)

TABLE III: RMSE comparison for the original onboard,
server and corrected onboard graph. The numbers in paren-
thesis denote the improvement and total amount of additional
constraints, respectively.

Underground Tunnel - Average Bandwidth

Without Reduction ‘With Reduction

Robot Rob—Srv Srv—Rob Nodes Srv—Rob
ANYmal 1  0.32MBps 0.044 MBps | 1295—691 0.025 MBps
ANYmal 2 0.30MBps 0.044MBps | 1191—444  0.025 MBps

TABLE IV: Average bandwidth usage for the multi-robot
underground mission. Our approach maintains low bandwidth
requirements with the server-to-robot communication being
identical as the same global graph is transmitted to all robots.

Indoor/Outdoor Dataset - Ground Truth Evaluation

Method RMSE Time # Factors Server
ANYmal 1 222m 52ms 3317 0.21m
Proposed 030m 59ms 3339 (+22)
ANYmal 2 025m 3.4ms 2239 0.14m
Proposed 0.16m 4.1ms 2253 (+14)

TABLE V: Comparison of the RMSE of the onboard estima-
tion before and after the supplying additional constraints.

Outdoors Indoors
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Fig. 7: Mapping results for the indoor/outdoor multi-robot
experiment. The top compares the collaborative map to
the ground-truth while the bottom row shows a sideview
comparison of the robot and server maps. The robot map of
ANYmal 1 is misaligned due to onboard localization failure.
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C. Localization Recovery

We conducted an experiment in a particularly challenging
environment for LiDAR localization due to the absence of
surrounding geometric structure to demonstrate the utility of
collaborative mapping towards localization recovery for an
individual robot in case of an onboard estimation failure. Two
ANYmal robots, equipped with the same sensory payload as
described in subsection were simultaneously deployed
in an indoor office environment connected to an outdoor
rooftop terrace. The first robot performs a loop indoors
while the second robot transitions outdoors through a narrow
doorway, navigates a rectangular path, and returns indoors.
Due to the absence of surrounding structure outdoors, the
onboard localization drifts significantly, skewing the onboard
robot map. Nevertheless, the collaborative mapping approach
is able to generate a consistent map of the environment,



as shown in Figure [7} due to its loop closure capabilities.
Furthermore, the integration of collaborative constraints
enables localization recovery for the individual robot leading
to a significant reduction in its pose error, as shown in Table [V]
when compared to ground-truth robot trajectory, generated
as described in subsection [[V-Bl

V. CONCLUSIONS

This paper presented a novel framework for creating
globally consistent estimates between multiple robots and a
centralized mapping server. A graph-based spectral analysis
of the robot and server graphs is proposed to identify
the underlying structural differences in positional graphs.
By adding constraints on drifting nodes efficiently, low
additional computation and communication resources are
achieved. The presented results using large-scale multi-robot
field deployments in challenging environments demonstrate
the real-world potential of the proposed approach for both
research and industry.
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