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Abstract— Maneuvering an autonomous vehicle under drift
condition is critical to the safety of autonomous vehicles when
there is a sudden loss of traction due to external conditions
such as rain or snow, which is a challenging control problem
due to the presence of significant sideslip and nearly full
saturation of the tires. In this paper, we focus on the control
of drift maneuvers of autonomous vehicle to track circular
paths with either fixed or moving centers, subject to change
in the tire-ground interaction, which are common training
tasks for Radio Control (RC) car drifting enthusiasts and can
therefore be used as benchmarks of the performance of drift
control. In order to achieve the above tasks, we propose a
hierarchical control architecture which decouples the curvature
and center control of the trajectory. In particular, an outer
control loop is proposed to stabilize the center by tuning the
target curvature, and an inner control loop tracks the curvature
using a feedforward/feedback controller enhanced by an L1

adaptive component. The hierarchical architecture is flexible
because the inner loop is task-agnostic and adaptive to changes
in tire-ground interaction, which allows the outer loop to be
designed independent of low-level dynamics, opening up the
possibility of incorporating sophisticated planning algorithms.
We implement our control strategy on a simulation platform
as well as on a 1/10 scale RC car, and both the simulation and
experiment results illustrate the effectiveness of our strategy in
achieving the above described set of drift maneuvering tasks.

I. INTRODUCTION

In recent years, increasing attention from academia and
industry has been drawn to autonomous driving research [1],
which includes various sub-areas such as environment per-
ception [2]–[4], motion planning [5]–[7], motion control [8]–
[10] and etc. In this paper, we focus on drift control, an
extreme instance of motion control where significant slip
exists between the tires and the ground. Drift control is perti-
nent to the safety of autonomous driving because significant
slip may occur unexpectedly due to external conditions like
rain or snow and cause a sudden loss of traction, where the
precise control of the vehicle trajectory is required to avoid
accidents. More specifically, we focus on drift maneuvering,
which involves manipulating the vehicle to track certain
trajectories in sustained drift, and can therefore be viewed
as a benchmark of drift control performance.

Drift maneuvering is challenging due to tire saturation and
limited control authority in a highly unstable region [11]. As
a result, in the existing literature it is usually tackled on a
per-task or per-vehicle basis in a controlled environment. For
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example, Goh et al. [12] reformulate a fixed circular trajec-
tory as a series of vehicle-dependent drift equilibrium points,
based on which they propose tracking controllers to minimize
the sideslip error and lookahead error, and Goh et al. [13]
extend the above work to tracking arbitrary pre-defined
trajectories by casting the vehicle dynamics into a trajectory-
dependent curvilinear coordinate system, in which they apply
nonlinear model inversion to minimize the tracking error.
Both works rely heavily on accurate modeling of the vehicle
dynamics and parameterization of the reference trajectory,
which is very demanding if the methods are to be deployed
to different vehicles, or even the same vehicle whose model
inevitably varies due to load changes or component wears,
and applied to perform generic drift maneuvering tasks.
Culter et al. [14], on the contrary, adopt the data-driven
approach by applying an reinforcement learning algorithm
called Probability Inference for Learning COntrol (PILCO),
but the method is only considered in a single-task setting,
where the objective is to minimize tracking error of a par-
ticular drift equilibrium. Like other reinforcement learning
algorithms [15], ad-hoc reward shaping and a significant
amount of training data may be required for the method
to generalize across different drift maneuvering tasks. Apart
from the model-based and data-driven methods, another class
of drift maneuvering methods are aided by expert experience,
including Jelavic et al. [16] and Zhang et al. [11], [17], which
apply either a feedforward/feedback controller or an open-
loop controller to track an expert trajectory in some phase of
the drifting process. A drawback of the expert-aided methods
is that human experience has limited coverage of different
drifting conditions, and as a result, those methods are usually
designed to track a particular trajectory. Moreover, none
of the above works consider the sudden change of tire-
ground interaction, a practical situation that may occur due
to external conditions like rain or snow.

In this paper, we propose a drift control framework that
can perform various maneuvering tasks and adapt to sud-
den changes of tire-ground interaction. The flexibility of
our framework stems from the observation that a generic
drift trajectory can be viewed as an arc with continuously
varying center and curvature, based on which we propose
a hierarchical architecture that decouples the center and
curvature control of the trajectory. In particular, an outer loop
stabilizes the center by tuning the target curvature, and an
inner loop tracks the curvature using a feedforward/feedback
controller enhanced by an L1 adaptive control [18] compo-
nent. Through an adaptive feedforward and reference signal
design, the inner loop can deliver a consistent curvature
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tracking performance over different tire-ground interaction,
allowing the outer loop to focus on maneuver navigation,
such that it can achieve various tasks without knowing the
internal details of the vehicle dynamics.

A key contribution of our control architecture described
above is the introduction of curvature inference and feed-
back, which bridge the low-level vehicle stabilization and
the high-level navigation. In contrast to the aforementioned
previous works that are built upon state feedback, our pro-
posed controller makes decisions based on both the vehicle
state and the trajectory curvature. The reason behind this
design are twofold: On one hand, as a quantity derived
from historical trajectory in a small time window, curvature
can encodes higher-level information about the drifting state
comparing to other quantities computed directly from the
current state, e.g. sideslip angle. Hence, observed from the
experiments on a RC car platform, the inner control loop can
be designed with better performance. On the other hand, the
curvature information can be leveraged by the outer control
loop for planning desired trajectories, which in this paper
include circular motions orbiting fixed or moving centers.

In this paper, we illustrate the effectiveness of our control
strategy on the circular drift maneuvers, subject to changes
in the tire-ground interaction, which are common training
tasks for drifting enthusiasts [19]. We also believe our
proposed hierarchical control architecture can potentially
incorporate more sophisticated planning algorithms, e.g., the
one proposed by Levin et al. [20], which plans trajectories
by concatenating motion primitives. Conceptually complex
trajectory can be approximated in terms of a sequence of arcs
with fixed curvature values (motion primitives), and such se-
quences, common in the aforementioned drift training tasks,
have been shown to be accurately tracked by our proposed
controller in both simulation and hardware experiments.

The rest of the manuscript is organized as follows: Sec-
tion II introduces the modeling of our RC car platform
and defines drift maneuvering tasks, Section III gives an
overview of our proposed control architecture and describes
its components in detail, Section IV presents the result of
our control strategy on a simulation platform as well as on
our RC car, and finally, Section V summarizes this paper and
gives remarks on future research directions.

II. PROBLEM FORMULATION

The target platform of our control design is a 1/10 scale
RC car shown in Fig. 1, which is similar to the ones used
in MIT Racecar [21] and BARC [22] projects. The vehicle
adopts an Ackermann steering geometry, and is four-wheel
driven in the sense that all wheels have the same rotational
speed.

For controller design and simulation purposes, we abstract
the above shown RC car into a bicycle model with sideslip,
illustrated in Fig. 2. It is worth noticing that we ignore the
difference between left and right set of wheels, which is
usually insignificant in drift maneuvering [11]. On the other
hand, for a relatively high-fidelity characterization of the tire

Fig. 1: Our RC car platform

slip, which is an essential feature of drift, we model the tire-
ground interaction using the wide-adopted Pacejka Magic
Formula [23]. The above mixed-fidelity vehicle modeling
for aggressive maneuvering has been reported and proved
effective in [24], [25].
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Fig. 2: Illustration of car model

The state and input vectors for the bicycle model are:

X =
[
x, y, ψ, ẋ, ẏ, ψ̇

]>
,U = [δ, ω]

>
, (1)

where x, y are the coordinate of the vehicle in a two-
dimensional plane, ψ is the heading angle, ẋ, ẏ, ψ̇ are the
time derivatives of x, y, ψ; δ is the front wheel steering angle,
and ω is the rotational speed of the wheels. The system
dynamics are governed by 2D rigid body kinetics:

mẍ = fw
fx cos(ψ + δ)− fw

fy sin(ψ + δ) + fb
rx cosψ − fb

ry sinψ,
(2)

mÿ = fw
fx sin(ψ + δ) + fw

fy cos(ψ + δ) + fb
rx sinψ + fb

ry cosψ,
(3)

Izψ̈ =
(
fw
fy cos δ + fw

fx sin δ
)
lf − fb

rylr, (4)

where m is the mass of the vehicle, Iz is the moment of
inertia of the vehicle body w.r.t. the z axis, rf , rr are the
radii of the wheels, lf , lr are the distances of the wheels to
the center of mass of the vehicle, and fwfx, f

w
fy, f

b
rx, f

b
ry are

the frictional forces. The subscripts ‘f’, ‘r’ refer to “front”
and “rear” respectively, and the superscripts ‘w’ and ‘b’ refer
to “front wheel frame” and “body frame” respectively1. The
frictions are determined by.

fwfx = µfxffz, f
w
fy = µfyffz, f

b
rx = µrxfrz, f

b
ry = µryfrz,

1The distinction of the front wheel and body frame is made due to the
existence of the front wheel steering angle



where µfx, µfy, µrx, µry are the friction coefficients, and
ffz, frz are the normal forces. The friction coefficients are
described by

µij = −sij
si
D sin (C atan(Bsi)) (i ∈ f, r, j ∈ x, y) , (5)

where B,C,D are parameters that vary with the tire-ground
interaction properties, and si, sij are slip ratios that can be
computed from relative speeds between the wheels and the
road:

si =
√
s2
ix + s2

iy, (i ∈ {f, r}) , (6)

sfx =
vwfx − ωrf

ωrf
, sfy =

vwfy
ωrf

, (7)

srx =
vbrx − ωrr
ωrr

, sry =
vbry
ωrr

, (8)

v =
√
ẋ2 + ẏ2, β = arctan

ẏ

ẋ
− ψ, (9)

vwfx = v cos(β − δ) + ψ̇lf sin δ, vbrx = v cosβ, (10)

vwfy = v sin(β − δ) + ψ̇lf cos δ, vbry = v sinβ − ψ̇lr. (11)

Finally, the normal forces ffz, frz can be determined as:

ffz =
lr − µrxh

lf + lr + (µfx cos δ − µfy sin δ − µrx)h
mg, (12)

frz =
lf + (µfx cos δ − µfy sin δ)h

lf + lr + (µfx cos δ − µfy sin δ − µrx)h
mg. (13)

The goal of our controller is driving the vehicle to perform
various maneuvers while maintaining it in the drift condi-
tion, characterized by a nontrivial sideslip angle β (defined
in (9)) [11], e.g., β = −π/3 during a counter-clockwise
move. To illustrate, a vehicle performing a drift maneuver is
sketched in Fig. 3. In particular, we consider the following
drift maneuver tasks as they are common training tasks for
drift enthusiasts and can therefore serve as benchmarks of
our control algorithm:
• Fixed-circle drifting: tracking a circle path with fixed

center and radius while drifting.
• Moving-center drifting: drifting in a circular manner,

with a moving desired center.
• Varying-interaction drifting: drifting across ground

textures with different tire-ground interaction parame-
ters B,C,D (c.f. (5)).

Fig. 3: Illustration of vehicle performing a drift maneuver

III. CONTROL ARCHITECTURE

In this section, we propose our control strategy for drift
maneuvers, the architecture of which is presented in Fig. 4.

Our controller consists of three main components: i) state,
curvature and friction estimators, which provide both low-
and high-level descriptions of the current drifting situation;
ii) an inner-loop feedforward/feedback controller, which aims
to track target curvature κref while maintaining the vehicle
in sustained drift; iii) an outer-loop controller for center
stabilization, which decides a feasible curvature for the inner-
loop controller to track, according to the expected center
and radius Cexp, Rexp provided by the task specification. A
main feature of our control architecture is the estimation
of and feedback on the curvature κ, a key quantity that
allows us to decouple of the inner and outer loops, which
are responsible for the low-level vehicle stabilization and
high-level task completion respectively. In addition, besides
the standard state estimator and feedback controller blocks,
we adopt a friction estimator for tuning the feedforward
signals according to the perceived tire-ground interaction
parameters, and an L1 Adaptive Control (L1AC) module for
optimizing the transient characteristics of the inner loop, both
of which serve to improve the adaptive performance of our
controller when subject to tire-ground interaction changes.
For the rest of this section, we describe each of the three
components of our control architecture in detail.

A. Estimators

For state estimation, we adopt the Kalman Filter (KF) to
fuse position and angular velocity measurements from both
on-board sensors, e.g., Inertial Measurement Unit (IMU), and
off-board sensors, e.g., the motion capture system. Taking
communication delay into account, we implement the KF in
an asynchronous manner [26], performing an update upon
the arrival of each new observation from any sensor.

For both curvature and friction estimation, we utilize state
and input data (defined in (1)) from a recent time window
of T steps, denoted by {X(i),U(i)}0i=−T+1.

For curvature estimation, we fit a circle centered at (x0, y0)
with radius R that approximately crosses those T points, by
solving the following nonlinear optimization problem:

arg min
x0,y0,R

0∑
i=−T+1

(
R(i)

geo −R
)2

+
(
R

(i)
kin −R

)2

,

s.t. R(i)
geo =

√(
x(i) − x0

)2
+
(
y(i) − y0

)2
,

R
(i)
kin =

√(
ẋ(i)
)2

+
(
ẏ(i)
)2∣∣∣ψ̇(i)

∣∣∣ ,

and obtain the curvature κ according to κ = R−1. Notice
that due to the minimization of the squared error, the optimal
radius follows:

R =

0∑
i=−T+1

R
(i)
geo +R

(i)
kin

2T
. (14)

In other words, our algorithm fuses geometric information
with kinematics information (denoted by Rgeo and Rkin
respectively in the above formulation), which leverages the
potential of both position and angular velocity sensors. On
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Fig. 4: Overview of our control architecture

the other hand, most existing circle fitting algorithms use
purely geometric information [27], [28].

For friction estimation, we observe that it is very chal-
lenging to identify the parameters B,C,D in a timely
fashion. As a compromise, we simplify the friction esti-
mation by assuming a constant friction coefficient µ =
D sin (C atan (Bsf )) = D sin (C atan (Bsr)) between the
wheels during a short time window (c.f. (5)), which agrees
with our empirical observations. Based on this assumption,
the friction estimator attempts to find µ that best explains the
observed data by solving the following optimization problem:

min
µ

−1∑
i=−T+1

`
(
f
(
X(i),U(i);µ

)
,X(i+1)

)
,

where ` denotes the `2 loss, f denotes the discretized dynam-
ics equations (2)-(5) with D sin (C arctan (Bsi)) replace by
µ. Once the estimated friction coefficient µ is obtained, the
corresponding optimal feedforward control inputs δff, ωff can
be found by looking up a table of drift equilibria collected
offline.

B. Inner-loop Controller

The basis of our inner-loop controller is two feedback con-
trol loops: the first control loop stabilizes the sideslip angle
β by tuning the front wheel steering angle δ. The goal of this
controller is to keep the vehicle in a sustained drift status,
by maintaining the sideslip angle β close to a constant, e.g.,
βref = −π/3. The other feedback loop controls the curvature
κ by tuning the wheel rotational speed ω in order to track
the reference signal κref from the outer control loop. In both
simulation and experiment, PID controllers are sufficient for
both feedback control loops to achieve satisfactory control
performance. Feedforward signals δff, ωff, which depend on
tire-ground friction coefficient µ (see subsection III-A) and
target curvature, are supplemented to the feedback controller
to speed up the transient process.

To further compensate for potential changes in the tire-
ground interaction, in addition to the feedforward scheme,
we adopt an L1 adaptive control [18], [29], [30] component,

the structure of which is shown in the Fig. 5, where M(s)
represents the reference model with ideal curvature response
properties, C(s) is a Low-Pass Filter (LPF), which limits
the bandwidth of reference curvature signal κac provided to
the feedforward/feedback controller to avoid high frequency
oscillation while maintaining a fast adaptive rate, and Γ is
the adaptive gain.

LPF
C(s)

Ref. Model
M(s)

Adaptation
−Γ
s

κref

−κ

+

+
+

+

−

κac

Fig. 5: Structure of our applied L1 adaptive controller

By designing the reference model M(s), the LPF C(s) and
the adaptive gain Γ, the ideal closed-loop response H(s)C(s)
with respect to the curvature κ can be obtained.

Readers are referred to Michini et al. [18] for the full
technical details of the L1 adaptive controller design.

C. Outer-loop Controller

The goal of the outer control loop is to ensure circumnav-
igation around either a fixed or moving target, by controlling
the curvature of vehicle. Circumnavigation using only bear-
ing or distance information has been studied by [31], [32]
and [33] respectively. In our setup, we consider only bearing
information, which is sufficient for the circumnavigation of
a drifting vehicle. We assume w.l.o.g. that the desired path is
counterclockwise. As such, we adopt the following control
law:

κref = κ0(1 + γ cos(φ)),

where γ > 0 is the curvature adjustment rate, κ0 = 1/Rexp

is the desired curvature and φ is defined as:

φ , atan2(ẏ, ẋ)− atan2(y − Cy, x− Cx),



where (Cx, Cy) is the center of the desired circle. By a
change of coordinate, as is shown in Fig. 6, the kinematics
of our vehicle can be characterized as

ḋ = v cos(φ), φ̇ = vκ− v

d
sin(φ),

where d is the distance between the vehicle to the desired
center, and v =

√
ẋ2 + ẏ2 is the velocity.

Rexp

(Cx, Cy)

(x, y)
d

v
φ

Fig. 6: Illustration of circumnavigation around an expected
center

Assume that the inner control loop is perfect, then κ =
κref . In that case, we arrive at the following differential
equations:

ḋ = v cos(φ), (15)

φ̇ = v

(
κ0(1 + γ cos(φ))− 1

d
sin(φ)

)
. (16)

Further assuming that the velocity v is bounded away from
0, then it is easy to see that the only equilibrium of the above
differential equation is

(φ, d) = (π/2 + 2kπ, 1/κ0),

which correspond to the desired circular trajectory. We can
further prove that the actual trajectory must converge to the
desired trajectory under appropriate γ, as is formally stated
in the following theorem.

Theorem 1: Assume that κ0 > 0, γ > 0 and that v >
0 at any time, then the following equilibrium is globally
asymptotically stable:

φ = π/2 + 2kπ, d = 1/κ0.
Proof: Consider the following Lyapunov function can-

didate,

V =
1

2
(d− κ−1

0 )2 + κ−1
0 d(1− sinφ),

whose derivative is

V̇ = (d− κ−1
0 sinφ)ḋ− κ−1

0 d cosφ φ̇.

Substituting in (15), (16), we have

V̇ = v
[
(d− κ−1

0 sinφ) cosφ− d cosφ(1 + γ cosφ)+

κ−1
0 cosφ sinφ

]
= −vγ cos2 φ ≤ 0.

It can be seen that V̇ = 0 only when cosφ = 0.
We next show that the largest invariance set in {(φ, d)|V̇ =

0} is {(π/2 + 2kπ, 1/κ0)}. Indeed, from cosφ = 0 we

have sinφ ∈ −1,+1. Under the above condition, from (16)
we see φ̇ = 0 if and only if sinφ = 1, 1/d = κ0,
i.e., (φ, d) = (π/2 + 2kπ, 1/κ0). According to LaSalle’s
invariance theorem [34, Theorem 4.4], the trajectory of (φ, d)
converges to (π/2 + 2kπ, 1/κ0), i.e., the equilibrium is
globally asymptotically stable.

IV. SIMULATION AND EXPERIMENT

A. Simulation Results

We benchmark the performance of our proposed drift con-
trol strategy using the three drift maneuver tasks defined in
Section II. In this subsection, we report the simulation results
based on a simulator of the vehicle dynamics model (2)-(13).

The first task we consider is fixed-circle drifting, where
the expected center is (0, 0) and the expected radius is 10m.
The controller is expected to initialize the drift starting from
zero velocity, and track the target circle while maintaining
the drift afterwards. The simulation results for this task are
presented in Fig. 7. We can observe from the figure that
our proposed controller is effective in both drift initialization
and target tracking. In particular, unlike previous methods
on drift maneuver control [11], [16], which switch between
an expert-aided open-loop controller for initializing the drift
and a feedback controller for maintaining the drift, we use
the same controller for initializing and maintaining the drift,
without resort to any open-loop design. We can observe
from Fig. 7a that using our unified controller, the sideslip
angle stabilizes around the reference value in about (10
seconds), which corresponds to traveling through an arc of
less than 360◦ (the arc in green in Fig. 7c). This demonstrates
the effectiveness of our controller in a large portion of
the state space. Furthermore, we can observe from Fig. 7b
that after entering a sustained drift, the curvature tracking
error converges to zero, which illustrates the effectiveness of
hierarchical control architecture based on curvature inference
and feedback. Finally, we can observe from Fig. 7d that over
the entire drift initialization and maintenance process, the
maximum tracking error relative to the expected radius is
less than 15%, which proves that our proposed drift control
scheme is capable of tracking a drift trajectory with adequate
precision.

The second task we consider is moving-center drifting,
where the expected drifting center itself moves along a
larger circle. This can be intuitively visualized as a satellite
(the vehicle) orbiting a planet (the expected drifting center),
which in turn orbits a star (the center of the larger circle).
In this task, the continuous adjustment of drift trajectory
curvature is required for the vehicle to follow the moving
center smoothly. We choose the orbit of the expected drifting
center to be a circle centered at (0, 0) with radius 15m, the
movement speed of the drifting center to be 0.131m/s, and
the expected drifting radius to be 10m. The simulation results
for this task are presented in Fig. 8. It can be visually checked
from Fig. 8c that our proposed controller is able to drive the
vehicle to move in the desired manner. We can observe from
Fig. 8b that the tracking of a moving center realized by the
cooperation between our outer-loop controller, which sets the



(a) Tracking performance of
sideslip angle β

(b) Tracking performance of
curvature κ

(c) Reference and actual trajec-
tories (red arrows indicate the
orientation of the vehicle)

(d) Relative tracking error

Fig. 7: Simulation results for fixed-circle drifting

(a) Tracking performance of
sideslip angle β

(b) Tracking performance of
curvature κ

(c) Moving center and drift tra-
jectories (d) Relative tracking error

Fig. 8: Simulation results for moving-center drifting

reference curvature κref to vary periodically, and our inner-
loop controller, which makes the actual curvature κ track a
non-stationary reference agilely.

The third task we consider is varying-interaction drift-
ing, where the tire-ground interaction parameters B,C,D
(c.f. (5)) undergo a sudden change during drifting. In partic-
ular, those parameters are changed from B = 5, C = 2, D =
0.3 to B = 4, C = 2, D = 0.15 at time t = 200s, which
correspond to the friction coefficient µ changing from around
0.12 to around 0.07, which implies a loss of traction of 40%,
posing challenge to the drift controller. The simulation results
for this task are presented in Fig. 9. We can observe from the
figure that the curvature κ and the sideslip angle β undergo a
sudden change due to the loss of friction, but our inner-loop
controller quickly brings them back to the reference values.

(a) Tracking performance of
sideslip angle β

(b) Tracking performance of
curvature κ

(c) Reference and actual trajec-
tories (d) Relative tracking error

Fig. 9: Simulation results for varying-interaction drifting

Fig. 10: 9 snapshots of vehicle in drifting condition stacked
together

The maximum tracking error throughout the process is about
30%.

B. Experiment Results

The RC car used for the hardware experiments is shown
in Fig. 1. In order to complete the curvature estimation,
we implement asynchronous Kalman filter [26] to fuse the
data from motion capture system and IMU. The proposed
hierarchical controller is lightweight and efficient, allowing
it to run on-board at a high frequency of 100Hz. As shown
in Fig. 10, we capture 9 frames at a time interval of 1/3
second from an experimental video and stack them together,
from which we can observe that, the large sideslip angle β is
maintained while drifting. All these drift maneuver simula-
tions as well as full video footage of hardware experiments
are available in: https://github.com/BobTesla17/hierarchical-
control-framework-for-drift-maneuver.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a hierarchical control framework
for the drift maneuvering of autonomous vehicles. Our



proposed controller features curvature inference from a small
section of the historical trajectory, based on which we can
decouple the curvature and center control into inner and
outer control loops: the outer control loop stabilizes the
center and provides a reference curvature, which is then
tracked by the inner control loop. Both numerical simulation
and experimental results on a RC car platform demonstrate
the effectiveness of our proposed control architecture in a
set of drift maneuvering tasks. In future works, we plan
to integrate high-level curvature-based path planners into
our outer-loop design, in order to achieve a larger variety
of drift maneuvering tasks while avoiding obstacles in the
environment.
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