

Edinburgh Research Explorer

Accessibility-Based Clustering for Efficient Learning of
Locomotion Skills
Citation for published version:
Zhang, C, Yu, W & Li, Z 2022, Accessibility-Based Clustering for Efficient Learning of Locomotion Skills. in
2022 IEEE International Conference on Robotics and Automation, ICRA 2022. Proceedings - IEEE
International Conference on Robotics and Automation, IEEE, pp. 1600-1606, 39th IEEE International
Conference on Robotics and Automation, ICRA 2022, Philadelphia, United States, 23/05/22.
https://doi.org/10.1109/ICRA46639.2022.9812113

Digital Object Identifier (DOI):
10.1109/ICRA46639.2022.9812113

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2022 IEEE International Conference on Robotics and Automation, ICRA 2022

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Apr. 2024

https://doi.org/10.1109/ICRA46639.2022.9812113
https://doi.org/10.1109/ICRA46639.2022.9812113
https://www.research.ed.ac.uk/en/publications/7f610ce6-472b-42e5-ae93-4c161e78b0c7

Accessibility-Based Clustering for Efficient Learning of Locomotion
Skills

Chong Zhang1∗, Wanming Yu2∗, and Zhibin Li2†

Abstract— For model-free deep reinforcement learning of
quadruped locomotion, the initialization of robot configurations
is crucial for data efficiency and robustness. This work focuses
on algorithmic improvements of data efficiency and robustness
simultaneously through automatic discovery of initial states,
which is achieved by our proposed K-Access algorithm based
on accessibility metrics. Specifically, we formulated accessibility
metrics to measure the difficulty of transitions between two
arbitrary states, and proposed a novel K-Access algorithm for
state-space clustering that automatically discovers the centroids
of the static-pose clusters based on the accessibility metrics.
By using the discovered centroidal static poses as the initial
states, we can improve data efficiency by reducing redundant
explorations, and enhance the robustness by more effective
explorations from the centroids to sampled poses. Focusing
on fall recovery as a very hard set of locomotion skills, we
validated our method extensively using an 8-DoF quadrupedal
robot Bittle. Compared to the baselines, the learning curve
of our method converges much faster, requiring only 60% of
training episodes. With our method, the robot can successfully
recover to standing poses within 3 seconds in 99.4% of the test
cases. Moreover, the method can generalize to other difficult
skills successfully, such as backflipping.

I. INTRODUCTION

Among robot locomotion skills, trotting and some other
tasks are easy in terms of exploration, while fall recovery is
difficult due to many possible robot states. Thus, the ability
to recover from a fall is critical for legged robots to improve
their robustness against potential failures.

For fall recovery, manually-designed joint trajectories [1]
are laborious, and their robustness in different environments
is not guaranteed. Optimization-based [2] methods require a
significant amount of time to obtain a feasible solution since
dynamic models and complex contact situations need to be
considered [3], which makes it difficult to achieve real-time
fall recovery. To overcome the limitations of these methods,
model-free deep reinforcement learning (DRL) methods [4]
serve as a promising alternative.

However, learning fall recovery via DRL suffers from
hard exploration, i.e., to explore in domains with sparse,
delayed, or deceptive rewards, and redundant exploration,
i.e., certain regions of the state space being too frequently
visited while training because of skewed data collection.

*These authors contributed equally to this work.
†Corresponding author. Email: zhibin.li@ed.ac.uk
1Chong Zhang is with Department of Precision Instrument, Tsinghua

University, Beijing, 100084 China.
Email: chong-zh18@mails.tsinghua.edu.cn

2Wanming Yu and Zhibin Li are with the School of Informatics, Univer-
sity of Edinburgh, 10 Crichton St, Edinburgh EH8 9AB, United Kingdom.
Email: wanming.yu@ed.ac.uk, zhibin.li@ed.ac.uk

Accompanying video: https://youtu.be/7cZMThUn0rU

Both hard exploration and redundant exploration can detri-
ment the data efficiency and learning performance, and initial
state distribution is one of the key factors that can affect the
efficiency of exploration.

Currently, there are three common ways to design initial
state distributions for learning fall recovery via DRL: 1)
initialization from demonstrations [5], 2) initialization from
random distributions [6], and 3) initialization from prede-
fined poses [4]. For initialization from demonstrations, the
performance is limited to the demonstrated examples. For
initialization from random distributions, it is not data efficient
[6] because of the redundant exploration. Also, corner cases
may suffer from insufficient exploration because of skewed
data collection. As a result, the diversity of exploration is not
guaranteed. For initialization from predefined poses, states
that lack heuristics are very likely to be missed, and the
generalization can be a problem despite high data efficiency.

In this work, we aim to automatically discover initial states
that can help achieve high robustness while still being data
efficient. We propose to achieve this by clustering the static
poses of the robot and applying centroids as initial states.

A. Related Work

Regarding DRL, model-free DRL has been a commonly-
used method for fall recovery and other locomotion tasks [7]
[8] [9]. In contrast to model-based methods such as model
predictive control [10] [11], trajectory optimization [12]
[13] and Bayesian optimization [14], model-free methods
do not require explicit knowledge of complex dynamics,
and support fast online computation without mathematical
optimization. The most popular model-free DRL algorithms
for robot locomotion are the PPO algorithm [15] and the
SAC algorithm [16].

Regarding clustering, common clustering methods have
successful applications in RL, such as value function ap-
proximation [17], but they fail to achieve ideal clustering of
diverse robot states. For centroid-based methods such as K-
Means [18] and density-based methods such as DBSCAN
[19], the problem is the metric for clustering, which will
be discussed later. For pattern-based methods [20], state
transitions of the robot can be regarded as edges in a directed
graph. However, the existing methods could not achieve the
desired effect as well, which will be discussed in I-B.

Regarding the metric, we usually adopt the Euclidean
distance assuming orthogonal coordinates and undirected
distances. However, both of the assumptions are problematic
for robot poses. For the state space of static poses, we tend to
use the combination of the normalized gravity vector and the

ar
X

iv
:2

10
9.

11
19

1v
3

 [
cs

.R
O

]
 1

 M
ar

 2
02

2

https://youtu.be/7cZMThUn0rU

Backward Leaning Forward Leaning Lying

Pose

Joint
Positions

Normalized
Gravity Vector

Euclidean
Distance

− 𝜋𝜋
4

, 𝜋𝜋
4

× 4 legs 𝜋𝜋
4

,−𝜋𝜋
4

× 4 legs 𝜋𝜋
4

,−𝜋𝜋
4

× 4 legs

(0,0,−1) (0,0,−1) (0,0,1)

2𝜋𝜋 2

Fig. 1. An erroneous case of using Euclidean distance metric. The distance
between a backward leaning stance and a forward leaning stance should be
smaller than that between a forward leaning stance and a lying pose.

joint positions [4], and these feature dimensions are coupled.
Also, it is difficult to determine the scale of the features. A
failure case of the Euclidean distance is shown in Fig. 1.
The undirected distances are inapplicable because the robot’s
transitions are directed. For instance, it is easy to fall from
a standing pose, but difficult to recover from a lying pose.

There are also some metric learning methods, but they are
time-consuming and difficult to obtain values for each start-
end pose pair. In [21], the distance metric is approximated
for state-space RRTs [22], but it is impractical to construct
an RRT for each pose. In [23], the metric is learned during
the training process, but we do not want to learn the metric
for a certain DRL model before clustering.

B. Motivation and Our Contribution

In this paper, we aim to find the initial states that can help
reduce hard exploration and redundant exploration during the
training process to learn robust fall recovery efficiently. To
ensure robustness, the initial states need to cover as much of
the state space as possible. We expect the centroids of the
static-pose clusters to serve as the ideal initial states.

In terms of the metric for clustering, we propose the
accessibility metric in II-A to overcome the shortcomings
of the Euclidean distance mentioned in I-A.

For pattern-based clustering, we tried several common
methods but they all failed. The directed Louvain method
[24] failed because it cannot properly distinguish the di-
rection of the edges (state transitions in this paper) [25].
The Infomap method [26] failed because unreachable states
could exist in the same cluster, which means that the agent
was expected to explore states that can hardly be reached
from the initial states. The spectral clustering method [27]
failed because the number of clusters was too small, which
indicates low robustness. To obtain the ideal clustering effect,
we propose a new accessibility-based clustering method, i.e.,
K-Access, in II-C.

Our contributions in this paper include:
• An accessibility metric to quantify the level of dif-

ficulties for a robot to transition from one physical
state/configuration to another;

• A K-Access algorithm based on the accessibility metric
for state-space clustering, which is adapted from the K-
Means++ algorithm;

Effective Exploration
Region 𝑅𝑅

𝑠𝑠0

𝑠𝑠1

𝑠𝑠2

State Space 𝑆𝑆

Low Accessibility:
Hard to Explore

High Accessibility:
Easy to Explore 𝑡𝑡 𝑠𝑠0 , 𝑠𝑠 = 𝑡𝑡0

Fig. 2. An illustration of accessibility. The accessibility value corresponds
to the difficulty of a state being explored from the initial state.

• A pipeline of automatically discovering feasible initial
states, based on their inter-connected transitions, for ef-
ficient learning of robot fall recovery and other tasks.

With our proposed method, the data efficiency of DRL
models can be greatly improved by avoiding repeated and
redundant explorations, and the robustness can be greatly
enhanced because of the wide range of searched states and
their explored inter-connections.

II. METHODOLOGY

In this section, the concept of accessibility is firstly
introduced in II-A. The criteria of good initial state distri-
butions are discussed in II-B, and the K-Access algorithm
is presented in II-C. In II-D, the DRL is applied for fall
recovery, and the entire pipeline is shown in Fig. 4. Generic
principles to apply our proposed method to learning other
locomotion tasks are presented in II-E.

A. Accessibility

To model the difficulty of transitions from one state
to another, we propose the accessibility metric. Figure 2
demonstrates the concept of accessibility. Consider an initial
state s0 in the state space S. There is a region R⊆ S that can
be easily and effectively explored from s0, and this region
can be mathematically defined as

R = {s|s ∈ S, t(s0,s)< t0}, (1)

where t(s0,s) is the minimal time cost (in seconds) of the
transition from s0 to s, and t0 is a positive value. R is called
the effective exploration region of s0.

Consider another two states s1 ∈ R and s2 /∈ R. We can say
that the accessibility from s0 to s1 is high, and it is easy to
explore s1 from s0. In contrast, the accessibility from s0 to
s2 is low, and it is difficult to explore s2 from s0.

Mathematically, we define the accessibility from si ∈ S to
s j ∈ S as

access(si,s j) = e−t(si,s j). (2)

In practice, it is difficult to get the minimal time cost t(si,s j),
and we approximate it with PD tracking (see III-B). The
range of accessibility is [0,1]. If the accessibility is zero, s j
is unreachable from si. If the accessibility is one, si = s j.

State SpaceOne initial state with its
effective exploration region

Corner states missed:
low robustness

Target State

Target State Target State

Target State

Too much overlapping:
redundant exploration,
low data efficiency

Case I

Case IVCase III

Case II

Target state not covered:
hard exploration,
low data efficiency

Good!

Fig. 3. Different cases of initial state distributions. The target state is what
the agent is expected to achieve during exploration (see II-E). Randomized
initialization corresponds to case I, and we expect the auto-discovered initial
states are similar to case IV.

B. What Makes Good Initial States

With the concept of accessibility, we can evaluate whether
a distribution of initial states is good for the DRL exploration.
Figure 3 shows different cases of initial state distributions.
For data efficiency, redundant exploration and hard explo-
ration are detrimental. For robustness, the effective explo-
ration regions should cover as much state space as possible.
For the trade-off between data efficiency and robustness, we
need to select the initial states and their effective exploration
regions with sufficient coverage but minimal redundancy.

To ensure enough coverage, we propose to randomly
sample a wide range of static poses. Then we cluster the
sampled poses to reduce the redundancy. We expect that
the centroids of the obtained clusters can make good initial
states. Their effective exploration regions should cover most
of the state space, and there should be little overlapping.

Based on the discussion above, we can evaluate whether
the obtained clusters are good. If the inter-cluster acces-
sibility is too high, there is much overlapping since the
centroids can be too close to each other, leading to redundant
exploration. If the intra-cluster accessibility is too low, the
coverage is low since many samples are not in the effective
exploration region of their centroids. Hence, for good clus-
tering results, the inter-cluster accessibility should be low,
and the intra-cluster accessibility should be high.

C. K-Access Algorithm

Based on the accessibility metric proposed in II-A, we
refer to the K-Means++ algorithm [28] and propose the K-
Access clustering method. The algorithm is presented in

Algorithm 1 K-Access(k,A)
1: cIndex← zeros(k); C indices of centroids
2: cIndex[0]← randInt(0,k);
3: for i = 1 to k−1 do
4: CAccess←

i−1
∑
j=0

(A [cIndex[j], :]+A [:,cIndex[j]]);

5: cIndex[i]← argmin
j

CAccess[j]; C initialize cIndex

6: end for
7: assignment[l]← argmax

c∈cIndex
A[c, l],∀l < n, l ∈ N;

8: preassign← zeros(n); C previous assignment
9: while preassign 6= assignment do

10: preassign← assignment;
11: cIndex[i]← argmax

m s.t. am=ci

min
al=ci

A[m, l],∀i < k, i ∈ N;

12: assignment[l]← argmax
c∈cIndex

A[c, l],∀l < n, l ∈ N;

13: end while
14: return cIndex,assignment

Algorithm 1. The inputs are the number of clusters k and the
accessibility matrix A for the sampled states s0,s1, . . . ,sn−1 ∈
S. The size of A is (n,n), and A[i, j] is the accessibility from
si to s j (i, j ∈ {0, . . . ,n− 1}). The outputs are the indices
of the centroids cIndex = (c0, . . . ,ck−1) and the centroids of
each state’s cluster assignment = (a0, . . . ,an−1).

Similar to the K-Means++ algorithm, the first step of K-
Access algorithm is to initialize the centroids, and then we
repeat the assignment step and the update step until the
assignments no longer change, as described below.
1) Initialization of centroids: The first centroid is randomly

selected (line 2), and each new centroid is the furthest
sample from the already selected centroids (line 3-6).

2) Assignment of samples to clusters: Each sample state is
assigned to the cluster of which the centroid has the
highest accessibility to this state (line 7,12). Note that we
only consider the accessibility of single direction here.

3) Update of the choice of centroids: The new centroid has
the maximal neighborhood accessibility. The neighbor-
hood accessibility of one state is defined as the minimal
accessibility value from the state to its neighbors in the
same cluster (line 11). To ensure robustness, we do not
take the average, which differs from K-Means++.

Finally, the K-Access algorithm can converge to a result
that prefers high intra-cluster accessibility and low inter-
cluster accessibility. To determine the number of clusters, we
propose an index based on the discussions in II-B that good
clustering results should have high intra-cluster accessibility
and low inter-cluster accessibility. The index I is defined as

I = log(Aintra)− log(Ainter)−α · |Λ|, (3)

where Aintra is the intra-cluster accessibility array of size k,
Ainter is the inter-cluster accessibility of size (k,k), and α · |Λ|
is the regularization term. The clustering results are better if
the index is larger, and the inter/intra-cluster metrics are also
defined in a different way from K-Means++. To be specific,

Aintra[i] = min
al=ci,l<n

A[ci, l],∀i < k, (4)

Sampling Static Poses Estimating Accessibility Values Learning

Robot

Policy Network

PD Controllers

Replay Buffer

Optimize Policy via SAC

Accessibility
Matrix

Clustering
Centroid 1

Centroid 3

Centroid 2

(a) (b) (c) (d)

Fig. 4. Pipeline of the proposed method. First, static poses are randomly sampled. Second, the estimated accessibility values are obtained via simulation.
Third, the proposed K-Access algorithm selects and discovers the optimal initial states. Finally, the DRL agent learns fall recovery through exploration
based on the discovered initial states.

Ainter[i, j] =

{
mean

al=ci
A[al ,c j],∀i 6= j,

1,∀i = j,
(5)

where i < k, i ∈ N, j < k, j ∈ N,

Λ = {ci | i < k, i ∈ N, |{l | al = ci, l < n, l ∈ N}|= 1} , (6)

and α is a real value (recommended value: 1). We penalize
the number of one-sample clusters because such clusters
can hardly be encountered and they may exist because of
extreme circumstances. In most cases, one-sample clusters
are also accessible from other clusters. Therefore, one-
sample clusters should be rare or non-existent, otherwise the
training process may suffer from unnecessary or redundant
explorations. In Fig. 4 (c), the K-Access algorithm is applied
for clustering, after the estimation of accessibility values for
the sampled poses.

D. Fall Recovery Learning

Our DRL framework is shown in Fig. 5. The state space
consists of the orientation (represented by the normalized
gravity vector), the angular velocity of the body, and the
joint positions. Here we adopt the positional control for high
learning efficiency and performance according to [29]. The
outputs of the policy network are the target joint positions
which update at 25 Hz. The PD controllers generate torques
based on the target joint positions and the measured joint po-
sitions at 300 Hz. The SAC algorithm is applied for learning.
In our implementation, we use the 8-DoF quadrupedal robot
Bittle [30] and the PyBullet [31] simulation environment.

The Bittle is equipped with an IMU on its body. The
angular velocity can be directly accessed from the IMU. The
orientation is represented as the gravity vector in the body
frame which is normalized to be of length 1. The gravity
vector can be computed using the IMU measurements.

The reward function is the sum of reward terms in Table I.
The jump regularization term aims to penalize the robot for
actions (e.g., spinning) to adjust the orientation in the air, and
the action difference term serves to reduce unrealistic large
movements. We assign larger weights to the reward terms
related to body height and orientation since we characterize
a standing pose mainly by the body height and the orientation

Replay BufferOptimize Policy via SAC

PD Controllers

Robot

State Feedback

Target Joint PositionsPolicy Network

ReLU ReLU
tanh

14

256 256
8

Orien-
tation

Angular
Velocity

Joint
Positions

25 Hz

(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1)

300
Hz

Measured
Joint

Positions
Torques

Sample

Update

Fig. 5. DRL framework overview. The policy network generates the target
joint positions at 25 Hz. The actuators follow the 300 Hz impedance control
based on the target and the measured joint positions. The SAC algorithm is
applied for learning the feedback control policy.

for the fall recovery task. The radial basis function (RBF)
applied in these terms is defined as:

RBF(x,y,α) = exp
(

α · ‖x− y‖2
2

)
. (7)

The learning process is the last stage (d) of the pipeline
in Fig. 4, where we apply the centroids in (c) as the initial
states for DRL of quadruped fall recovery.

E. Learning Other Tasks

The proposed method is not limited to fall recovery
learning. In III-E, we also validated our method in back-
flip learning. The generic principles to apply the proposed
method are:

1) Perform clustering in a subspace with feasible and nec-
essary dimensions;

2) Ensure that the target state has the maximum expected
return in the subspace;

3) Estimate the accessibility values with time-accuracy
trade-off.

The first principle is about how we define the subspace for
clustering. Some dimensions such as velocities are not suit-
able for estimating the accessibility values. Also, necessary
dimensions to identify the initial states must be included.

TABLE I
REWARD TERMS FOR DRL.

Symbols
h body height
gori normalized gravity vector
Ω body angular velocity
τ vector of joint torques
ω vector of joint velocity
cb 0 if the body touches the ground, otherwise 1
cf 0.3×the number of feet that touch the ground
hf vector of the distances from four feet to the ground
ds the shortest distance from the robot to the ground
p vector of the measured joint positions
pt vector of the target joint positions
·̂ target value

Reward Terms
Height 0.667×RBF(h, ĥ,−2000)
Orientation 0.333×RBF(gori, [0,0,−1]T ,−5)
Angular velocity 0.067×RBF(Ω,0,−0.05)
Joint torques 0.067×RBF(τ,0,−5)
Joint velocity 0.067×RBF(ω,0,−0.05)
Contact 0.067× cb +0.033× cf
Foot lift 0.067×RBF(hf,0,−100)
Jump regularization 0.033×RBF(ds,0,−100)
Action difference 0.033×RBF(pt, p,−1)

The second principle is about the reward function and the
target state. In fall recovery, the target state corresponds to
the standing pose. In other tasks such as backflipping, the
target state can refer to a good starting pose that can get the
maximum episode reward in the future.

The third principle is about the estimation of accessibility
values. In fall recovery, we apply the response time of PD
control. However, there can be errors in some cases, e.g.,
when large torques make the robot fly. Also, more compli-
cated and high-level controllers can be necessary for other
scenarios. In such cases, a trade-off between complexity and
estimation accuracy needs to be considered.

III. IMPLEMENTATION AND RESULTS

A. Sampling Static Poses

In the PyBullet environment, we randomly initialized
the Bittle robot with roll angle φ ∼ U(−π,π), pitch angle
θ ∼ U(−π

2 ,
π

2), yaw angle ψ = 0, and joint positions p ∼
U(− 5

6 π, 5
6 π). Self-collision cases were abandoned.

The robot was dropped from 0.35 m above the ground. If
the robot was stationary within 2 seconds (with negligible
velocity, angular velocity, and distance to the ground), we
recorded the final joint positions, the final roll angle, the final
pitch angle, and the body height. We assume the ground to
be flat for sampling.

With 12× multiprocessing, we sampled 2.4k static poses
within an hour on an ordinary desktop machine.

B. Estimating Accessibility Values

To estimate the accessibility from static pose A to static
pose B, we initialized the robot with static pose A. Then
we sent a command to the PD controllers with the joint
positions of B as the target positions. If the robot entered
static equilibrium within 3 seconds, we checked whether
the state of robot was close to the state of B. If these two
states were close enough, we recorded the time cost t and
the estimated accessibility from A to B was e−t . Otherwise,

1 6 11 16 21 26 31 36 41

Cluster ID

0

50

100

150

Nu
m

be
r o

f S
am

pl
es

Fig. 6. Number of samples within each cluster when there are k = 43
clusters. The clusters are sorted by the number of samples assigned to them.

Fig. 7. Visualization of the inter-cluster accessibility of top-20 clusters.
Inter-cluster accessibility values above 0.15 are highlighted, and those values
below 0.05 are omitted here for clarity.

we set the accessibility to be 10−8 instead of zero because
all the sampled static poses are assumed to be accessible.

We randomly selected 1k samples from the sampled static
poses. With 12× multiprocessing, we obtained the 1M ac-
cessibility values for the 1k×1k accessibility matrix within
20 hours on an ordinary desktop machine.

C. Clustering

We applied the proposed K-Access algorithm to the 1k×1k
accessibility matrix obtained in III-B. The α value for the
index is 1. To determine the number of clusters k, we tried
different k values and obtained the maximum index value
when k = 43. The number of samples in each of the 43
clusters is shown in Fig. 6, indicating that the static poses
of the robot are subjected to a long-tail distribution.

Figure 7 visualizes the inter-cluster accessibility of top-20
clusters via chord diagram, which can also contribute to pose
taxonomy analysis [32] [33]. Different clusters correspond
to different contact cases, and the inter-cluster accessibility
corresponds to the difficulty of transitions.

D. Deep Reinforcement Learning

We applied six kinds of initial state distributions:
1) Centroids of the obtained 43 clusters by K-Access (ab-

breviated to KA);

(a)

(b)
0.00 s 0.56 s 0.72 s 1.24 s

0.00 s 0.24 s 0.36 s 0.44 s 0.56 s

0.72 s 0.84 s 1.48 s0.64 s 1.76 s

0.24 s

(c)

(d)

Time (s)

Time (s)
LF Thigh
LF Shank

LR Thigh
LR Shank

RF Thigh
RF Shank

RR Thigh
RR Shank

Jo
in

t
To

rq
ue

s
(N
⋅m

)

Jo
in

t
Po

si
tio

ns
(ra

d)

Jo
in

t
To

rq
ue

s
(N
⋅m

)

Jo
in

t
Po

si
tio

ns
(ra

d)

Fig. 8. Snapshots of (a) fall recovery and (b) continuous backflips. (c) shows the joint positions and torques for (a), and (d) shows those for (b).

0k 20k 40k 60k 80k 100k 120k 140k 160k 180k

Learning Steps

100

200

300

400

Te
st

 E
pi

so
de

 R
ew

ar
d

KA (1σ)
KM (1σ)
WKM (1σ)
9-Pose(1σ)
1-POSE (1σ)
RND (1σ)

Fig. 9. Learning curves of fall recovery for different initial state distribu-
tions. The proposed method (KA) shows the highest data efficiency. There
are 300 steps per episode, the discount factor is 0.987. Averaged over 3
random seeds, with ±1 SD. in shadow.

2) Centroids of the obtained 33 clusters by K-Means++
based on the generalized Dunn’s index ν43 [34] (abbre-
viated to KM);

3) Centroids of the obtained 14 clusters by weighted K-
Means++ based on ν43 (abbreviated to WKM, gravity
vector weighted by 2);

4) Nine initial poses applied in [4] (abbreviated to 9-Pose);
5) One lying pose (abbreviated to 1-Pose);
6) Random static poses (abbreviated to RND).

We demonstrate the proposed method can greatly improve
the data efficiency, based on the learning curves for fall
recovery using the same test samples shown in Fig. 9.

For robustness, agents of the best seeds were tested on
another 500 static poses. There are 75 steps (3 seconds) per
episode during the test. The performance scores are presented
in Table II. It can be seen that the proposed method can be
used to learn robust fall recovery policies with 25% fewer
steps than other distributions. Test runs are shown in the
accompanying video. Snapshots are in Fig. 8(a).

E. Backflip Learning
We applied our proposed method to learn backflipping and

the learning curves using the same test samples are in Fig.
10. Here we only clustered the static poses with roll angle
less than 60deg. See snapshots in Fig. 8(b). Test runs and
learning details are in the accompanying video.

IV. CONCLUSION

In this paper, we propose to automatically discover initial
states for DRL of locomotion skills via the accessibility

0k 100k 200k 300k 400k 500k 600k

Learning Steps

200

300

400

500

600

700

800

Te
st

 E
pi

so
de

 R
ew

ar
d

KA (1σ)
KM (1σ)
WKM (1σ)
1-POSE (1σ)
RND (1σ)

Fig. 10. Learning curves of backflipping for different initial state distri-
butions. Averaged over 3 random seeds, with ±1 SD. in shadow.

TABLE II
PERFORMANCE ON THE TEST POSES

Initial
States

Training
Episodes

Episode Reward Success Rate
in 3 s (%)Mean SD.

KA (proposed) 1200 81.93 11.84 99.4
KM 1600 74.84 20.14 91.8

WKM 1600 79.04 18.20 94.4
9-Pose 1600 73.35 17.01 91.6
1-Pose 1600 73.09 17.75 92.6
RND 1600 79.97 17.32 94.6

metric and the K-Access clustering algorithm. With the
obtained centroids as the initial states, the data efficiency can
be greatly improved, and the robustness can be guaranteed.
Despite the extra computation to estimate accessibility values
before clustering, the centroids are only computed once
based on this learning-free metric, and they can boost the
training process regardless of the choices of DRL algorithms,
hyperparameters, and reward functions.

The K-Access algorithm performs better than the existing
clustering methods because: 1) the direction of transitions
is taken into consideration; 2) the neighbors in one cluster
are all easy to explore from the centroid; 3) the number
of clusters can be assigned and determined by the index
value. The generalization to backflipping also shows that
intermediate and unstable poses can also be better explored
with our method.

Future work will focus on the possible extensions to other
tasks that can benefit from the proposed technique. We will
also do hardware validation and try other methods for better
accessibility estimation, e.g., neural networks.

REFERENCES

[1] S. Shamsuddin et al., “Humanoid robot nao: Review of control and
motion exploration,” in 2011 IEEE international conference on Control
System, Computing and Engineering, 2011, pp. 511–516.

[2] I. Mordatch et al., “Discovery of complex behaviors through contact-
invariant optimization,” ACM Transactions on Graphics (TOG),
vol. 31, no. 4, pp. 1–8, 2012.

[3] O. Melon et al., “Receding-horizon perceptive trajectory optimiza-
tion for dynamic legged locomotion with learned initialization,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2021.

[4] C. Yang et al., “Multi-expert learning of adaptive legged locomotion,”
Science Robotics, vol. 5, no. 49, 2020.

[5] X. B. Peng et al., “Deepmimic: Example-guided deep reinforcement
learning of physics-based character skills,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pp. 1–14, 2018.

[6] D. Reda et al., “Learning to locomote: Understanding how environ-
ment design matters for deep reinforcement learning,” in Motion,
Interaction and Games, 2020, pp. 1–10.

[7] J. Yue, “Learning locomotion for legged robots based on reinforcement
learning: A survey,” in 2020 International Conference on Electrical
Engineering and Control Technologies (CEECT), 2020, pp. 1–7.

[8] J. Hwangbo et al., “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, 2019.

[9] N. Rudin et al., “Learning to walk in minutes using massively parallel
deep reinforcement learning,” in 5th Annual Conference on Robot
Learning, 2021.

[10] M. Neunert et al., “Whole-body nonlinear model predictive control
through contacts for quadrupeds,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[11] J. Lafaye et al., “Model predictive control for tilt recovery of an
omnidirectional wheeled humanoid robot,” in 2015 IEEE international
conference on robotics and automation (ICRA), 2015, pp. 5134–5139.

[12] I. Chatzinikolaidis et al., “Contact-implicit trajectory optimization us-
ing an analytically solvable contact model for locomotion on variable
ground,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp.
6357–6364, 2020.

[13] J. Wang et al., “Whole-body trajectory optimization for humanoid
falling,” in 2012 American Control Conference (ACC), 2012, pp.
4837–4842.

[14] K. Yuan et al., “Bayesian optimization for whole-body control of high-
degree-of-freedom robots through reduction of dimensionality,” IEEE
Robotics and Automation Letters, vol. 4, no. 3, pp. 2268–2275, 2019.

[15] J. Schulman et al., “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[16] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” arXiv
preprint arXiv:1812.05905, 2018.

[17] X. Xu et al., “A clustering-based graph laplacian framework for value
function approximation in reinforcement learning,” IEEE Transactions
on Cybernetics, vol. 44, no. 12, pp. 2613–2625, 2014.

[18] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol. 1, no. 14.
Oakland, CA, USA, 1967, pp. 281–297.

[19] M. Ester et al., “A density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining,
ser. KDD’96. AAAI Press, 1996, p. 226–231.

[20] F. D. Malliaros and M. Vazirgiannis, “Clustering and community
detection in directed networks: A survey,” Physics reports, vol. 533,
no. 4, pp. 95–142, 2013.

[21] M. Bharatheesha et al., “Distance metric approximation for state-
space rrts using supervised learning,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 252–257.

[22] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Department, Iowa State University,
Tech. Rep., 1998.

[23] M. E. Taylor et al., “Metric learning for reinforcement learning
agents,” in The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, 2011, pp. 777–784.

[24] N. Dugué and A. Perez, “Directed louvain: maximizing modularity in
directed networks,” Ph.D. dissertation, Université d’Orléans, 2015.

[25] Y. Kim et al., “Finding communities in directed networks,” Physical
Review E, vol. 81, no. 1, p. 016103, 2010.

[26] L. Bohlin et al., “Community detection and visualization of networks
with the map equation framework,” in Measuring scholarly impact.
Springer, 2014, pp. 3–34.

[27] D. Gleich, “Hierarchical directed spectral graph partitioning,” Infor-
mation Networks, vol. 443, 2006.

[28] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Stanford, Tech. Rep., 2006.

[29] X. B. Peng and M. van de Panne, “Learning locomotion skills using
deeprl: Does the choice of action space matter?” in Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2017, pp. 1–13.

[30] Petoi. (2021) Bittle robot. [Online]. Available: https://www.kickstarter.
com/projects/petoi/bittle

[31] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[32] J. Borras and T. Asfour, “A whole-body pose taxonomy for loco-
manipulation tasks,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015, pp. 1578–1585.

[33] J. Borràs et al., “A whole-body support pose taxonomy for multi-
contact humanoid robot motions,” Science Robotics, vol. 2, no. 13,
2017.

[34] J. C. Bezdek and N. R. Pal, “Cluster validation with generalized dunn’s
indices,” in Proceedings 1995 second New Zealand international two-
stream conference on artificial neural networks and expert systems,
1995, pp. 190–193.

https://www.kickstarter.com/projects/petoi/bittle
https://www.kickstarter.com/projects/petoi/bittle
http://pybullet.org

