
Configuration Control for Physical Coupling of Heterogeneous Robot
Swarms

Sha Yi Zeynep Temel Katia Sycara

Abstract— In this paper, we present a heterogeneous robot
swarm system that can physically couple with each other
to form functional structures and dynamically decouple to
perform individual tasks. The connection between robots can be
formed with a passive coupling mechanism, ensuring minimum
energy consumption during coupling and decoupling behavior.
The heterogeneity of the system enables the robots to perform
structural enhancement configurations based on specific envi-
ronmental requirements. We propose a connection-pair oriented
configuration control algorithm to form different assemblies. We
show experiments of up to nine robots performing the coupling,
gap-crossing, and decoupling behaviors.

I. INTRODUCTION

In unstructured environments, ants form and adapt func-
tional structures dynamically in response to obstacles, gaps,
and holes [12]. Inspired by these animals, robot swarms
perform collective behaviors and accomplish complex tasks
that a single robot is not capable of. In this paper, we build
on our previous work that introduced PuzzleBots [20] - a
reconfigurable robot swarm system with a passive coupling
mechanism, and present extensions on structural enhance-
ment configuration control.

Existing robot swarms, or Multi-Robot System (MRS)
platforms [11], [15] have demonstrated collective and de-
centralized collaboration, but the robots do not physically
interact with each other - physical abilities of the robots
remain the same as a single robot. In the modular robot
systems, individual units are equipped with active mechanical
structures to couple and form various structures [2], [3], [7],
[14], [18]. The most common method for dynamic coupling
is performed by magnetic forces [7], [14], [17], [18]. This
may consume high energy during the coupling or decoupling
process, and also has limited load-carrying capabilities. In
addition, the magnets are directional, limiting the formation
of the robots and introducing complexity in controlling and
planning algorithms. In most modular robot systems, each
connection is connected via a single contact point/face.
Single connection is more fragile compared with multiple
connections when encountering complex environments [10].
Reconfiguration algorithms for pre-connected modular robot
systems focus on graph topology reconfiguration [4], [8],
[9]. Modular robots that have limited mobility reconfigure
based on motion primitives [19] or grid-based setup [1], [16].

The authors are with the Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, USA. Email: {shayi, ztemel,
katia}@cs.cmu.edu.

This work was funded by AFOSR award FA9550-18-1-0097 and
AFRL/AFOSR award FA9550-18-1-0251.

Hardware and Software implementation is available at: https://
github.com/ZoomLabCMU/puzzlebot_v2

Fig. 1: Four robots form a mesh configuration to cross a gap between two
platforms.

These methods restrict the formation and are ineffective with
systems where robots have individual mobility and no strong
connection with each other.

In PuzzleBots [20], we presented a passive coupling mech-
anism where each robot has knobs and holes. PuzzleBots
can couple with each other by pushing the knobs into the
holes of the other robot when initially aligned, cross a
gap, and decouple to perform individual tasks. The passive
coupling mechanism does not consume any additional power
compared to active coupling mechanisms. While the initial
design with four active wheels helps the robots climb onto a
platform, it limits their mobility to perform precise motions.
In this paper, we focus on the following challenges: 1)
improve the existing hardware platform to achieve precise
motion while maintaining the gap-crossing capability, 2)
reduce fragility of single-connection assembly, 3) develop
a planning and control algorithm to achieve a given config-
uration when robots do not start from aligned positions.

We provide solutions to the challenges mentioned above
by a heterogeneous robot swarm system and a connection-
pair-oriented configuration control algorithm. In this paper,
we assume the target configuration is given by the user and
the goal of the robots is to align and form this predefined
configuration. To improve the gap-crossing performance, we
introduce a heterogeneous system containing pilot robots and
non-pilot robots. Pilot robots have the same design as [20]
that helps climbing onto platforms. Non-pilot robots have
caster wheels that enables precise control in both linear
velocity and angular velocity. This heterogeneous system
utilize the advantages of both designs while minimizing the
drawbacks. Based on this, we propose a connection-pair
oriented configuration control algorithm with which robots
can form given configurations from unaligned positions. Due
to the passive coupling mechanism, the connection between
robots in [20] can be fragile and sensitive to disturbances.
Borrowing the k-connectivity concept from graph theory,
we introduce the mesh assembly shown in Figure 1, where
robots can couple in two dimensions to strengthen the

ar
X

iv
:2

20
2.

13
46

1v
2

 [
cs

.R
O

]
 1

 M
ar

 2
02

2

https://github.com/ZoomLabCMU/puzzlebot_v2
https://github.com/ZoomLabCMU/puzzlebot_v2

(a) (b)

Fig. 2: (a) PuzzleBot with eight connection points shown as blue dots and
the robot frame (O), world frame (W), and connection point frame (C); (b)
Two possible connection configuration for two robots.

connection pairs formed in one direction. Experiments show
that the mesh configuration helps maintain a stable assembly
formation and increases the strength of the connection.

The outline of the paper is as follows. First, we discuss the
problem setup of what the robots are expected to achieve in
Section II. Then, in Section III, we present our connection-
pair-oriented configuration control algorithm that drives the
robots to a given coupled configuration. Next, in Section IV,
we present our heterogeneous system consisting of pilot
robots and non-pilot robots. Finally, experiments of up to
nine robots with line and mesh formation to cross gaps of
different sizes, as well as calibration and a behavior sequence
demonstration, are presented in Section V.

II. PROBLEM FORMULATION

Consider a set of N robots on a 2D plane. Denote the
poses of the robots as p = [p1, p2, . . . , pN] ∈ R3×N , where
each robot pose consists of its coordinates in x and y axis,
and its heading angle, i.e. pi = [xi, yi, θi]. The control of
the robots is based on unicycle model where the control
input u ∈ R2×N consists of linear velocities and angular
velocities, i.e. ui = [vi, ωi]. The transition equation [6] is
defined as

ṗi =

[
ẋi
ẏi
θ̇i

]
=

[
cos θi 0
sin θi 0

0 1

] [
vi
ωi

]
= Ji · ui . (1)

Our heterogeneous system consists of two type of robots
- pilot and non-pilot robots. The two type of robots are
different in wheel design but follow the same dynamics
in Equation (1). Details will be introduced in Section IV.
All robots have the same body with two knobs and two
holes on each side to provide passive coupling behavior [20].
The knobs on one robot can be inserted into the holes of
another robot to couple. To parametrize each coupling pair,
we define eight connection points on the robot body as shown
in Figure 2a. Define the connection point set of robot i as
Ci. Robot i and robot j are coupled when Ci ∩ Cj 6= Ø,
forming one or more connection pairs. Each connection
pair uniquely defines a coupling configuration, while each
coupling configuration may have multiple connection pairs
as shown in Figure 2b. Define an assembly as a group of
successfully coupled robots. An assembly consists of two or
more robots and the relationship of their connection pairs.

The goal configuration pg = [pg1 , pg2 , . . . , pgN] ∈ R3×N

consists of N relative poses on the 2D plane, i.e. G · pTg is
the same goal configuration as pg where G ∈ SE(2) is a
rigid transformation on the 2D plane. To form functional

assembly structures, robots in the goal configuration are
coupled, i.e. for each robot i in pg , there exist a robot j
whose Ci ∩ Cj 6= Ø. This coupling constraint on the goal
configuration is particularly challenging since a simple go-
to-goal controller cannot guarantee the coupling behavior or
the alignment of the connection pairs. We will introduce our
connection pair oriented configuration control algorithm to
solve this problem in section III.

III. METHODOLOGY

In this section, we will present three aspects of the
configuration control based on connection pairs. Section III-
A introduces a PID based controller that aligns a single pair
of connection points. Then the formation of a two-robot
assembly, which serves as a basis for multiple connection
pair alignment, is defined in section II. Section III-B intro-
duces an optimization-based control for an assembly to reach
individual goals while maintaining in-assembly connection
pairs. The last section III-C presents our connection pair
based configuration control algorithm. Heterogeneity of the
system will be discussed in section IV.

A. Single Connection Pair Alignment

As shown in Figure 2a, the robot body frame is defined
as O, and the contact frame of a connection point is defined
as C. The O frame and C frame have the same orientation.
Note that the C frame is a general representation of a contact
frame but not a specific connection point on a robot. Given
a target connection pair alignment Ci and Cj of the robots
i and j respectively, where i, j = 1, 2, . . . , N , denote the
position of Ci in x and y axis in world frame W as [cxi

, cyi].
The heading angle of Ci is θi, aligned with the robot frame.
For robot i, the controller for connection pair alignment is

ui = J+
i

[
∆cx
∆cy
∆θ

]
= J+

i

[
cxj − cxi

cyj − cyi
arctan

∆cy
∆cx

− θi + θbias

]
, (2)

where J+
i is the pseudo-inverse of Ji in Equation (1). ∆θ

is wrapped into (−π2 ,
π
2]. θbias is an angle bias added when

the connection pair will lead the robots to align side-by-
side. This will help the robot to push its knob into the hole
of the other robot. Similarly, uj is computed accordingly as
in Equation (2). Note that not any given set of connection
pair can be aligned due to local minima with this Jacobian
pseudo-inverse method. For example, for the two robots in
Figure 2b, it will be infeasible if the connection point on
the left robot is on the left side of the robot body. In our
setting, we assume robots only start from feasible positions
with respect to a given connection pair.

B. Connection Pair Maintenance

Once one or more connection pairs are aligned in the
system, we study the motion of an assembly - how to reach
another configuration while maintaining current connection
pairs within an assembly. Consider a given target control
input û for an assembly. The assembly consists of one or
multiple connection pair(s) already aligned. We aim to find
the control u that minimizes ||u − û||2 while maintaining

(a) (b)

Fig. 3: (a) Two convex assemblies couple to form a larger assembly. (b)
One robot cannot couple with a concave assembly.

the connection pairs within the assembly. We formulate this
problem as a quadratic programming (QP) problem with
linear constraints. Define the homogeneous transformation
from the world frame W to the contact frame C of robot i
to be gwc. We have gwc = gwogoc, where goc is constant for
a given connection point. Denote

goc =

[
1 0 dxc

0 1 dyc
0 0 1

]
,

and when applying u = [vi, ωi] over time ∆t,

gwo =

[
cos(θi + ωi∆t) − sin(θi + ωi∆t) xi + vi∆t cos θi
sin(θi + ωi∆t) cos(θi + ωi∆t) yi + vi∆t sin θi

0 0 1

]
.

By calculating gwc = gwogoc and extracting the translational
component of C, the position vector [cxi

, cyi]
T becomes[

xi + vi∆t cos θi + dxc cos(θi + ωi∆t) − dyc sin(θi + ωi∆t)
yi + vi∆t sin θi + dxc sin(θi + ωi∆t) + dyc cos(θi + ωi∆t)

]
.

Consider ∆t as a very small value, we may perform Taylor
expansion around θi to linearize the above equation as

cos(θi + ωi∆t) ≈ cos θi − ωi∆t sin θi (3)
sin(θi + ωi∆t) ≈ sin θi + ωi∆t cos θi . (4)

To simplify the notation, denote cos θi as ci and sin θi as si,
the position vector becomes[
cxi

cyi

]
=
[
ci −dxcsi − dycci
si dxcci − dycsi

]
ui∆t+

[
xi + dxcci − dycsi
yi + dxcsi + dycci

]
.

(5)

The connection pair constraint on robot i and j is defined as

−ε ≤
[
cxi

cyi

]
−
[
cxj

cyj

]
≤ ε . (6)

We may stack all the connection pair constraints in Equa-
tion (6) in an assembly in one equation Au ≤ b. The
connection pair maintenance problem then becomes

u∗ = arg min ||u− û||2 (7)
s.t. Au ≤ b . (8)

C. Connection Pair Based Configuration Control

As defined in section II, given a goal configuration pg ,
we aim to provide a solution for the robots to reach this
goal configuration. During the process of assembling into the
goal configuration, a sequential constraint exists - concave
assemblies may not be able to assemble into one larger

assembly due to the knobs blocking each other. For example,
in Figure 3a, two convex assemblies, each formed by two
robots, are able to couple and form a larger assembly of
four robots. However, in Figure 3b, one robot tries to couple
with a concave assembly of three robots, but the knobs block
its motion. In the algorithm to be introduced in Section III-C,
we plan to avoid forming concave assemblies by prioritizing
convex assemblies first.

Algorithm 1 Find Existing Connection Pairs

Input: p: input poses
Output: pair dict: connection pairs
Initialize: pair dict={}

1: function FINDEXISTPAIRS(p)
2: G ← constructGraph(p) based on distance
3: edge set ← getMinimumSpanningTree(G)
4: for vertex i and j in edge set do
5: [Ci, Cj] ← findMinDistancePair(Ci, Cj)
6: pair dict[(i, j)] = [Ci, Cj]
7: return pair dict

The connection pair assignment is shown in Algorithm 2.
First, we align the center of the input goal configuration with
the current robot poses as

p′g = pg − pg + p, (9)

where p is the mean of p. We then find the connection pair
assignment based on the goal configuration p′g as shown in
Algorithm 1. In Algorithm 1, we find the connection pairs
based on an existing configuration. This input robot poses p
assumes the robots are already aligned. First, we construct a
fully connected graph G where the vertices are the location
points in p and the edge weights are the distances between
the vertices. We then find the Minimum Spanning Tree
(MST) based on this distance-induced graph. This provides
information on the minimum connection pairs to monitor in
order to maintain the current configuration p. Then for each
edge, we loop through all combinations of connection points
on the two vertices of this edge to find the one with minimum
distance. With this information in Algorithm 2, we obtain the
connection pairs needed to form the goal configuration pg .
The pairs are then sorted based on the distance between the
robot poses in pg . Notice that the concave assembly is only
formed with mesh configuration, and line formation can only
form a convex assembly. Two robots in mesh configuration
always have a distance of

√
2 times the body length between

each other, which is larger than that of the distance in the line
configuration. By sorting the distance between robot poses,
we can guarantee that convex assemblies are always formed
before the concave assemblies. We then calculate the distance
matrix between p′g and p. Each element in the distance
matrix dij is calculated as dij = ||p′gi − pj ||2. Hungarian
algorithm [5] is then used to find the minimum sum of
distance assignment between the shifted goal configuration
and the current robot poses. Finally, the resulting assignment
is mapped to the sorted goal configuration pairs.

Algorithm 2 Connection Pair Assignment

Input: pg: goal configuration, p: robot poses
Output: pair dict: connection pair assignment

1: function ASSIGNCONNECTIONPAIRS(pg , p)
2: p′g ← alignCenter(pg , p)
3: goal pair dict ← findExistPairs(p′g)
4: sorted pair dict ← sortPairs(goal pair dict, p′g)

based on distance
5: dist matrix ← getDistanceMatrix(p′g , p)
6: id assign ← HungarianAlgorithm(dist matrix)
7: pair dict← updatePairAssignment(sorted pair dict,
id assign)

8: return pair dict

The configuration control algorithm is shown in Algo-
rithm 3. It takes in a goal configuration and outputs the
control input for the robots to execute. During the process,
we maintain the information of 1) busy vector where busy[i]
represents if robot i is currently aligning an active connection
pair, 2) already connected pairs, denoted as Cconn = {(i, j) :
(ci, cj), . . . |ci ∈ Ci, cj ∈ Cj , Ci ∩ Cj = (ci, cj)}; 3)
the active connection pairs Cexec that are currently being
executed. First, we obtain the goal connection pairs to be
executed, denoted as Cgoal with Algorithm 2. To maintain
a dynamic connection between the robots, we will updated
the connection pairs in Cconn with Algorithm 1. Then we
check if any new connection pair can be executed, as in the
single pair alignment in Section III-A and the target control
input obtained in this step is denoted as û[busy]. Note that,
only the robots that have active connection pairs to execute
are assigned with target control input. Therefore, for already
connected pairs, e.g. (i, j) ∈ Cconn, if robot i is busy, the
target control input for robot j becomes ûj = ûi to mimic the
motion of the leading robot i in this connection pair. To limit
the influence of uncertainties in the hardware actuation, we
incorporate a connection bias in the control signal to further
maintain the already connected pairs. For each robot i, the
connection bias is

uconnection bias[i] =
∑
j

J+
i (pj − pi), for all(i, j) ∈ Cconn .

The optimal control input u∗ is then obtained from Equa-
tion (7). Finally, we find the already aligned connection pairs
in the current execution set Cexec. The connected pairs are
removed, and the robots return to non-busy status. Depending
on the structure of the configuration, the best case run time
of this algorithm is O(logN) while the worst case is O(N).

IV. HARDWARE SETUP

Each PuzzleBot is equipped with onboard power, com-
putation, communication, and actuation. The circuit design
remains the same as in the previous version of the PuzzleBots
[20]. Each robot is equipped with four trackers for indoor
localization via the Vicon motion tracking system. The
robots, Vicon, and a central computer are connected within

Algorithm 3 Connection Pair Based Configuration Control

Input: pg: goal configuration, p: robot poses, ε: threshold
Output: u∗: control input
Initialize: busy =[False, . . .], Cconn = {}, Cexec = {}

1: function CONFIGURATIONCONTROL(pg , p)
2: Cgoal ← assignConnectionPairs(pg , p)
3: for pairs in Cconn do
4: update connection pairs pairs
5: for (i, j) in Cgoal do
6: if i, j not busy then
7: Cexec.append((i, j))
8: busy[i] = True, busy[j] = True
9: û[busy] ← alignConnectionPairs(Cexec, p)

10: û[∼ busy] ← û[busy] for each Cconn
11: û = (1− kbias)û + kbiasuconnection bias
12: u∗ = arg min ||u− û||2, s.t. Au ≤ b
13: for (i, j) in Cexec do
14: if distance between connection pairs < ε then
15: Cexec.remove((i, j))
16: busy[i] = False, busy[j] = False
17: ui, uj ← 0

18: return u∗

the same WiFi network. The central computer computes the
command velocity and sends it to each robot to execute.

In the previous version of the PuzzleBots, each robot has
two wheels on each side, four wheels in total. The two wheels
are controlled by one motor via a double reduction gear set.
This four-wheeled setup successfully demonstrated the abil-
ity to climb onto a platform when crossing a gap. However,
their mobility is limited due to friction. The robot can freely
move forward and backward but has limited rotation ability.
This highly restricts the robots’ performance of achieving
precise poses. Therefore, we modified the design by adding
two caster wheels in the front and back while replacing the
two wheels on each side with only one. The new robot design
is shown in Figure 4c. While the caster wheels successfully
solve the problem in rotation and enable the robot to do high-
precision tasks, the gap-crossing behavior becomes limited.
Since the caster wheels are not actuated, the robot cannot
climb onto the platform when the caster wheel reaches the
other side of the gap. Thus, we propose a heterogeneous
robot swarm system that consists of two types of robots:
pilot robots and non-pilot robots. The pilot robot is a four-
wheeled robot, and the non-pilot robot is the one with casters
and side wheels. As shown in Figure 4, the wheels of the
pilot robot will help to climb onto a platform, while the
flexibility of the non-pilot robot enables the system to form
complex configurations and perform high-precision tasks.

The electronics board on the pilot and non-pilot robot is
the same. The control of these two kinds of robots also
remains the same, i.e., both follow the differential drive
model. The linear velocity is linearly proportional to the left
and weight wheel average velocity. The angular velocity is
linearly proportional to the velocity difference between the

(a) (b) (c) (d)

Fig. 4: Pilot robot: (a) side view, (b) bottom view. Non-pilot robot: (c) side
view, (d) bottom view.

right and left wheels. Denote the left and right motor Pulse-
width modulation (PWM) signal as Mr, Ml. The motor
rotational speed is linearly proportional to the PWM signal
with a fixed load. We parametrize the velocity equation for
each robot as

v = kv
Mr +Ml

2
, ω = kω(Mr −Ml) . (10)

From experiments, each robot needs a start-up torque to
move. Denote the corresponding PWM signal as Mmin, and
a maximum PWM as Mmax. With a given control input
u∗ = [v∗, ω∗], we compute

argminMr,Ml
µv||kv

Mr+Ml
2 −v∗||2+µω||kω(Mr−Ml)−ω∗||2

Mmin ≤ |Mr,Ml| ≤Mmax,

where µv and µω are weight parameters for linear and
angular velocities respectively. The difference of controlling
the pilot and the non-pilot robot lies in their parameters of the
control feasibility region, which is the constraints Au ≤ b in
Equation (7). We will present the calibration of the feasibility
region in Section V-A as well.

V. EXPERIMENTS AND RESULTS

The system consists of several PuzzleBots, a Vicon lo-
calization system, and a central computer within the same
network. The algorithm is first tested in simulation in Cop-
peliaSim [13] with the Vortex Studio1 as the physics engine
for concave objects. We conducted three sets of experiments:
Section V-A presents the hardware calibration of the pilot
and non-pilot robots. Section V-B shows a set of screenshots
from a video sequence where three non-pilot robots and one
pilot robot couple into a mesh configuration, cross a gap
and decouple on the other platform. The last Section V-C
presents quantitative results of the gap-crossing performance
based on the line and mesh configuration.

A. Robot Calibration

Robots are commanded with a combination of different
motor PWM signals for a period of time, and the Vicon
software records the poses. Due to the noise, the velocity
obtained directly from two consecutive poses is unusable.
Thus, we average the linear and angular velocity across a
longer period of time (several seconds). We calculated the
mean and difference of the left and right PWM signals, and
the result is shown in Figure 5. The parameters obtained
from the experiments are kv,non-pilot = 0.0006, kω,non-pilot =
0.0142, kv,pilot = 0.0024, kω,pilot = 0.0033. Figure 5a and 5c

1https://www.cm-labs.com/vortex-studio/

(a) Non-pilot robot linear velocity (b) Non-pilot robot angular velocity

(c) Pilot robot linear velocity (d) Pilot robot angular velocity

(e) Non-pilot robot v−ω constraints (f) Pilot robot v − ω constraints

Fig. 5: Calibration results of non-pilot and pilot robot. (a) - (d): linear and
angular velocities with respect to PWM input (0 to 255). (e) (f): feasibility
region in terms of v − ω of the non-pilot and pilot robots.

show that with the same motor mean, the robot has higher
linear velocity when the angular velocity is small. As shown
in Figure 5e and 5f, the feasibility region of the non-pilot
and pilot when the linear velocity v is positive is shown
in the polygon. The points obtained from the experiment
are projected along the ω = 0 axis based on symmetry.
Similarly, the polygon is projected onto the negative v
plane. The point A = (ax, ay) and point B = (bx, 0)
are the critical points defining the polygon. We manually
label A and B by observation, and the polygon region
defined by A and B is recorded. In our experiment, we have
Apilot = (0.34,−0.561), Bpilot = (0.47, 0), Anon−pilot =
(0.037,−2.19), Bpilot = (0.11, 0). The non-pilot robot is
able to rotate in high angular velocity with low linear veloc-
ity, while the pilot robot requires a large linear velocity to
rotate. The steering distance for the pilot robot to turn is thus
larger, making it difficult to perform the coupling behavior,
which requires precise rotation. Therefore, a combination of
both robots can utilize the flexibility of the non-pilot robot,
as well as the climbing wheels of the pilot robot.

B. Combined Behavior Sequences

As shown in Figure 6, the four robots - three non-pilot
robots shown in grey and one pilot robot shown in blue,
start from unaligned positions on the left platform. The two
platforms have a height difference of 5 mm, and the gap size
is 40 mm. Due to the large steering distance of pilot robots,
they are not given a velocity command until they are coupled
with non-pilot robots, which is embedded in the algorithm.
In this case, we see that the robots are able to first form

https://www.cm-labs.com/vortex-studio/

Fig. 6: Screenshots of four robots coupling to form a mesh configuration, crossing the gap, and decouple.

(a) Line configuration (b) Mesh configuration

(c) Line configuration (d) Mesh configuration

(e) Line configuration (f) Mesh configuration

Fig. 7: Result of various number of robots crossing a gaps with 6 mm
height difference, and 20° heading angle. (a) (b) Maximum gap size the
line/mesh configuration assembly can cross against the number of robots;
(c) (d) Maximum gap size compared with the entire line/mesh assembly
length, against the number of robots; (e) (f) Average number of robots that
crossed a gap length = 25% length of the line/mesh assembly, against the
number of robots.

two line assembly based on the connection pair assignment
and then come together to form a mesh configuration. They
are able to cross the gap and reach the other platform, and
eventually decouple with each other.

C. Gap-crossing Performances

We performed experiments of various number of robots,
with line and mesh formation, of different lengths of gaps
with 6 mm height difference. The robots are coupled with a
heading angle of 20°. These two numbers are chosen based
on the experiments in [20] that 6 mm is a medium height
difference and 20° is the heading angle that gives the best
performance compared with other heading angles in most of
the experiments. We tested a system of 1, 2, 4, 6, 8, 9 robots
with gaps lengths ranging from 10 mm to 105 mm, with
5 mm increment. Each experiment is recorded five times.

We record the number of robots successfully reach the other
platform. The result of the experiments is shown in Figure 7.

Figure 7a and 7b show that the robots in either line or mesh
formation maintain the gap-crossing ability as in [20], and
can cross larger gaps with more than eight robots compared
with [20]. The line formation is able to cross larger gaps with
a small number of robots compared with the mesh formation.
The reason is that the total length of the assembly is longer
when the robots form a line compared with a mesh. As seen
in Figure 7c and 7d, the robots in mesh formation can cross
gaps with length of larger percentage of the assembly length.
For example, eight robots with two pilots are able to cross
a gap 36% their assembly length, while the same robots in
line formation can only cross a gap 21% of its assembly
length. Since the coupling mechanism will introduce a small
height drop of the robots, forming a mesh configuration
will lock and strengthen the connection, thus giving a better
performance. Robots with a pilot in the back outperform
assembly without a pilot robot since the wheels of the back
pilot robot provide additional pushing force for the assembly
to cross a gap. A pilot robot in the front performs better
compared with a back pilot since the gear wheels of the
pilot robot help itself to climb onto the platform. Overall,
the assembly with both front and back pilot outperforms
other settings. Figure 7e and 7f show the average number
of robots that crossed a given gap size of 25% length of the
entire assembly. The error bars mark the minimum and the
maximum number of robots that crossed in this setting. We
observe that with the mesh configuration, all robots can cross
the gap in most cases. Although in some cases, the system
with two pilots line formation has less robots that crossed,
the best case of the two-pilot system has more robots that
crossed compared with the other settings.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a heterogeneous robot swarm
system consists of pilot robots helping climb onto platforms
and non-pilot robots providing flexible motions to form
functional configurations. Based on our proposed system, we
developed the connection-pair-oriented configuration control
algorithm, enabling the robots to form various coupling
configurations. Our currently approach relies heavily on the
motion capture system, limiting the robots to only indoor lab
environment. Further studies would include sensor integra-
tion, motions on uneven terrains, optimality and scalability
analysis on the algorithm, dynamic reconfiguration, and
automatic configuration generation based on different tasks
and environments.

REFERENCES

[1] Sebastian Claici, John Romanishin, Jeffrey I Lipton, Stephane Bonardi,
Kyle W Gilpin, and Daniela Rus. Distributed aggregation for modular
robots in the pivoting cube model. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 1489–1496.
IEEE, 2017.

[2] Roderich Groß, Michael Bonani, Francesco Mondada, and Marco
Dorigo. Autonomous self-assembly in swarm-bots. IEEE transactions
on robotics, 22(6):1115–1130, 2006.

[3] Bahar Haghighat, Emmanuel Droz, and Alcherio Martinoli. Lily: A
miniature floating robotic platform for programmable stochastic self-
assembly. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1941–1948. IEEE, 2015.

[4] Feili Hou and Wei-Min Shen. Graph-based optimal reconfiguration
planning for self-reconfigurable robots. Robotics and Autonomous
Systems, 62(7):1047–1059, 2014.

[5] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[6] Steven M LaValle. Planning algorithms. Cambridge university press,
2006.

[7] Guanqi Liang, Haobo Luo, Ming Li, Huihuan Qian, and Tin Lun Lam.
Freebot: A freeform modular self-reconfigurable robot with arbitrary
connection point-design and implementation. In IEEE/RSJ Int. Conf.
Intell. Robots Syst., Las Vegas, USA, 2020.

[8] Chao Liu, Michael Whitzer, and Mark Yim. A distributed reconfig-
uration planning algorithm for modular robots. IEEE Robotics and
Automation Letters, 4(4):4231–4238, 2019.

[9] Chao Liu, Sencheng Yu, and Mark Yim. Motion planning for variable
topology truss modular robot. In Proceedings of Robotics: Science
and Systems, 2020.

[10] Wenhao Luo and Katia Sycara. Minimum k-connectivity maintenance
for robust multi-robot systems. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 7370–
7377. IEEE, 2019.

[11] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames,
Eric Feron, and Magnus Egerstedt. The robotarium: A remotely ac-
cessible swarm robotics research testbed. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 1699–1706.
IEEE, 2017.

[12] Chris R Reid, Matthew J Lutz, Scott Powell, Albert B Kao, Iain D
Couzin, and Simon Garnier. Army ants dynamically adjust living
bridges in response to a cost–benefit trade-off. Proceedings of the
National Academy of Sciences, 112(49):15113–15118, 2015.

[13] E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly
v-rep): a versatile and scalable robot simulation framework. In Proc.
of The International Conference on Intelligent Robots and Systems
(IROS), 2013. www.coppeliarobotics.com.

[14] John W. Romanishin, Kyle Gilpin, and Daniela Rus. M-blocks:
Momentum-driven, magnetic modular robots. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
4288–4295, November 2013.

[15] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot:
A low cost scalable robot system for collective behaviors. In 2012
IEEE International Conference on Robotics and Automation, pages
3293–3298. IEEE, 2012.

[16] David Saldana, Bruno Gabrich, Michael Whitzer, Amanda Prorok,
Mario FM Campos, Mark Yim, and Vijay Kumar. A decentralized
algorithm for assembling structures with modular robots. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2736–2743. IEEE, 2017.

[17] David Saldana, Parakh M Gupta, and Vijay Kumar. Design and control
of aerial modules for inflight self-disassembly. IEEE Robotics and
Automation Letters, 4(4):3410–3417, 2019.

[18] Tarik Tosun, Jay Davey, Chao Liu, and Mark Yim. Design and charac-
terization of the EP-Face connector. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 45–51,
October 2016.

[19] Serguei Vassilvitskii, Mark Yim, and John Suh. A complete, local
and parallel reconfiguration algorithm for cube style modular robots.
In Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No. 02CH37292), volume 1, pages 117–122. IEEE,
2002.

[20] Sha Yi, Zeynep Temel, and Katia Sycara. Puzzlebots: Physical
coupling of robot swarms. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 8742–8748. IEEE, 2021.

	I Introduction
	II Problem Formulation
	III Methodology
	III-A Single Connection Pair Alignment
	III-B Connection Pair Maintenance
	III-C Connection Pair Based Configuration Control

	IV Hardware Setup
	V Experiments and Results
	V-A Robot Calibration
	V-B Combined Behavior Sequences
	V-C Gap-crossing Performances

	VI Conclusions and Future Works
	References

