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Abstract— Road extraction is an essential step in building
autonomous navigation systems. Detecting road segments is
challenging as they are of varying widths, bifurcated throughout
the image, and are often occluded by terrain, cloud, or other
weather conditions. Using just convolution neural networks
(ConvNets) for this problem is not effective as it is inefficient at
capturing distant dependencies between road segments in the
image which is essential to extract road connectivity. To this end,
we propose a Spatial and Interaction Space Graph Reasoning
(SPIN) module which when plugged into a ConvNet performs
reasoning over graphs constructed on spatial and interaction
spaces projected from the feature maps. Reasoning over spatial
space extracts dependencies between different spatial regions
and other contextual information. Reasoning over a projected
interaction space helps in appropriate delineation of roads from
other topographies present in the image. Thus, SPIN extracts
long-range dependencies between road segments and effectively
delineates roads from other semantics. We also introduce a
SPIN pyramid which performs SPIN graph reasoning across
multiple scales to extract multi-scale features. We propose a
network based on stacked hourglass modules and SPIN pyra-
mid for road segmentation which achieves better performance
compared to existing methods. Moreover, our method is com-
putationally efficient and significantly boosts the convergence
speed during training, making it feasible for applying on large-
scale high-resolution aerial images. Code available at: https:
//github.com/wgcban/SPIN_RoadMapper.git.

I. INTRODUCTION

Among all the topographic objects found in aerial im-
ages, road is one of the essential topographic features with
numerous applications ranging from automatic navigation
and guidance systems. Extraction of roads from aerial im-
ages helps to understand the connectivity between places
and thus aid in automating navigation, disaster mitigation,
and controlling traffic. Furthermore, road detection helps
to determine the drivable areas for autonomous vehicles
so that motion planning algorithms can be constrained on
drivable roads. In addition, most of the algorithms designed
for road boundary extraction and curb detection are based
on road segmentation maps as the primary step [1], [2]. The
extraction of road boundaries and curbs can be used to further
improve the safety of autonomous driving [3], [4].

Classical methods for road segmentation involve
geometric-stochastic models [5], [6], line network extraction
[7], and snakes [8]. There have also been works that
consider the problem of road extraction as a problem
of graph extraction from images [9], [10]. Following the
popularity of deep learning methods in computer vision [11],
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Fig. 1. An overview of our proposed method. We build graphs in two
spaces: (a) spatial space and (b) a projected latent interaction space from
feature maps. Graph reasoning in spatial space extracts connectivity between
the road segments, whereas reasoning over interaction space delineates roads
from other topographies. Nodes connected with lines in (a) denote how
road segments are modeled to understand connectivity in the spatial space.
Regions marked with different colors in (b) denote how different semantics
are segregated for better road delineation in the interaction space.

[12], techniques involving ConvNets have been explored for
automatic road extraction [2], [13], [14], [15]. These works
pose road extraction as a problem of semantic segmentation
where one tries to classify the pixels corresponding to the
road from other semantics of the image.

Segmenting roads from aerial images is not a straight-
forward segmentation problem because roads appear at dif-
ferent scales in the image due to varying widths and certain
road regions are often narrow and get occluded with respect
to the terrain. Also, there exists some similarity of the road
texture with respect to nearby regions and there are chances
of occlusion due to clouds and various weather conditions.
One major problem of using ConvNets directly for road
segmentation is that they are not good at learning long-
range dependencies due to their inherent inductive biases.
In aerial images, the road structure is mostly branched
throughout the image as road is a connected topography.
Also, just using a ConvNet does not constrain the network to
learn representations of connected road segments [16]. These
issues make road segmentation from aerial images an open
and challenging problem.

In this work, we focus on improving road segmentation by
incorporating a global understanding of the image. Model-
ing dependencies and relations over regions in the image
can help in understanding connectivity between the road
segments. We note that transformer-based methods [17] are
currently becoming popular for their property of extracting
long-range dependencies. However, it is not feasible for
applications on large-scale high-resolution remote sensing
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datasets as it requires high compute power and significant
training time. Thus, we propose using graph reasoning rather
than just relying only on stacked convolutions or trans-
formers to model global dependencies. Performing graph
reasoning is light-weight and does not add on much to
computation cost like transformers.

A graph convolution [18] can extract dependencies over
distant regions making it more meaningful for using it to un-
derstand road information on a global scale in aerial images.
Graph convolutions have been explored for video recognition
[19], semantic segmentation [20] and semi-supervised clas-
sification [18]. Unlike these works, we propose performing
graph reasoning in two domains - spatial and interaction
space. In graph reasoning over spatial space, we build a
graph over the feature space to extract dependencies between
different spatial regions in the input. As we operate on
the original coordinate space, performing reasoning over
the graph would help to extract rich contextual information
for road segmentation. For graph reasoning over interaction
space, we construct a new interaction space where we model
semantics with similar information together. This causes
different semantic objects of the aerial image like roads,
buildings, clouds, trees, and other topographic features to
be modeled into different spaces. Performing graph reason-
ing over this interaction space would help in appropriate
delineation of roads from other topographies in the image.
Combining both, we propose a stand alone Spatial and Inter-
action space (SPIN) graph reasoning module which performs
reasoning in the spatial and interaction space projected from
the feature maps. Fig 1 illustrates how SPIN module helps
to make road segmentation better.

SPIN extracts long range dependencies between road
segments and is effective at delineating roads from other se-
mantics present in the image. When added to a base network,
we show that it improves the segmentation performance by
a reasonable amount. It has numerous other advantages as
well. SPIN can be plugged easily into a ConvNet architecture
after a convolutional block. As SPIN learns highly contextual
information, it increases the convergence rate of the network
by half saving a lot of training time. This property is highly
useful for training ConvNets on large-scale high-resolution
images like aerial images. Adding SPIN to a ConvNet is
also computationally effective as it adds on only 0.03M
parameters. Our proposed network consists of a feature
extractor using residual blocks, stacked hourglass modules
with skip connections for deep feature extraction and SPIN
pyramid for graph reasoning. We analyze the effectiveness
of our proposed method by conducting experiments on two
large-scale road segmentation datasets - DeepGlobe [21]
and Massachusetts Road [22] where we achieve a better
performance than existing methods in the literature.

In summary, this paper makes the following contributions:
• We propose a new module - Spatial and Interaction

Space Graph Reasoning (SPIN), which when plugged
into a ConvNet performs reasoning over graphs con-
structed on spatial and interaction space projected from
the feature maps.

• We propose a new network built using stacked hourglass
modules and SPIN pyramid for road segmentation from
aerial images.

• We conduct extensive experiments on large-scale road
segmentation datasets where we achieve better perfor-
mance than existing methods both qualitatively and
quantitatively.

• Our SPIN module is highly computationally efficient
and helps in fast network convergence which makes
training ConvNets on high-resolution aerial images
quick and effective.

II. RELATED WORK

Road segmentation: Road segmentation is a well-studied
problem in which we classify each pixel in a given aerial
image as “road” or “no road” [15]. Early research on road
segmentation primarily relied on probabilistic models to en-
hance connectivity by combining contextual prior conditions
such as road geometry [23], [24] and color intensity [25]. In
[5], geometric probability models were used to represent road
images, and then maximum likelihood estimation (MLE)
was used to predict road pixels. In [26], a model based
on high-order conditional random fields (CRF) was used to
incorporate prior knowledge of roads. However, these tradi-
tional probabilistic methods require hand-designed features
and complex optimization techniques [23].

One of the earliest attempts to automatically learn features
for detecting roads in aerial images using expert labeled
data was proposed in [1]. In this study, unsupervised learn-
ing methods such as Principal Component Analysis (PCA)
was used to initialize the feature detectors. Later, with
the introduction of ConvNets in deep learning, researchers
have investigated various ConvNet architectures to efficiently
extract roads from aerial images [27]. Among those, encoder-
decoder based architectures are widely used due to its ability
to capture relatively large spatial context [27], [15]. Exam-
ples of these include U-Net [28], LinkNet [29], ResNet18
[12] and multi-branch ConvNets [30], [31]. In addition to the
architectural changes, researchers also investigated different
types of loss functions to replace well-known binary cross-
entropy loss (BCE) to further improve the quality of road
proposals and to incorporate topological constraints. In [2],
a differentiable IoU loss function was proposed and most
of the later work on road segmentation then used it instead
of the BCE loss or combined them together for obtaining
improved performance. Instead of just formulating the road
extraction as a binary segmentation task, [30] introduced a
multi-task learning [32] approach where both segmentation
and orientation of road line segments are used to improve
the connectivity of the predicted road networks.
Graph convolutions: The main limitation of Fully Convo-
lutional Networks (FCNs) is its limited receptive field [33].
To improve the receptive field of FCNs, researchers have
proposed different solutions, such as adding pooling layers
[33], dilated convolutions [34], depth-wise convolutions [35],
etc. However, these methods generally learn relations implic-
itly and are computationally expensive [36]. Instead, graph



Fig. 2. The architecture of our proposed method. (a) We perform graph
reasoning in both spatial and interaction space. (b) The proposed SPIN
pyramid module which performs SPIN graph reasoning at multiple scales
(1, 1/2, and 1/4) of original feature map to extract multi-scale long-range
contextual information.

convolutions have the potential advantage of performing
global reasoning on feature maps with explicit semantic
meaning embedded in the graph structure. Due to this reason,
many researchers have used graph convolutions in various
computer vision tasks such as visual recognition [37], [38],
semantic segmentation [20], [36], [39] and semi-supervised
classification [18]. In [36], a graph reasoning module was
proposed to capture multiple long-range contextual patterns
of the original feature map through a data-dependent simi-
larity matrix. In contrast to [36], [20] first transformed the
original feature space into another latent coordinate space
called interaction space and performed relational reason-
ing via graph convolution in the interaction space. In our
proposed SPIN module, we combine the reasoning power
of both spatial and interaction space graph reasoning by
concatenating the individual outcomes. Further, we perform
SPIN graph reasoning on different scales of the feature maps
to learn multi-scale contextual relationships.

III. PROPOSED METHOD

A. SPIN graph reasoning

The proposed SPIN module is shown in Figure 2-(a). We
build graphs in two spaces: spatial space and a projected
latent interaction space from input feature maps. Then, graph
reasoning is performed in spatial space to improve the
connectivity between road segments and interaction space
to delineate roads from other topographies. Assuming that
spatial and interaction space graph reasoning provide differ-
ent feature representations, we concatenate the output feature
maps of both graph reasoning modules, as shown in Figure
2-(a), to extract rich global contextual information of road
segments. In order to capture multi-scale context of input
feature maps, we build SPIN pyramid by performing SPIN
graph reasoning on different scales and then aggregate them
as shown in Figure 2-(b).

In what follows, we elaborate on each block of the
SPIN module in detail. Before that, we briefly review graph
reasoning.
Graph reasoning: A graph G = (V ,E,A) is defined by
its nodes V , edges E and similarity matrix A that describes
the similarity between each and every pixel (node) in the
graph. Let X ∈ RL×C denote the input feature map where
C is the number of channels and L = W × H . Here, W
and H correspond to the width and height of X . Standard
2D convolutions only share information among the positions

in a small neighborhood defined by the filter size. In order
to achieve a large receptive field and to capture long-range
dependencies among the pixels, ConvNet architectures stack
multiple convolution layers which is highly inefficient. In
contrast, a single graph convolution layer can extract long-
range dependencies of input feature map very efficiently and
effectively. Formally, the graph convolution is defined as
[18],

X̃ = σ (AXW ) , (1)
where W is the learnable weight matrix (usually modeled
as a convolutional layer), σ(·) is the non-linear activation
function (e.g. ReLU) and, A and X are the same as
defined above. Note that the only difference between graph
convolution and conventional convolution is that in graph
convolution, we left-multiply the original feature map X
by the similarity matrix A before doing the convolution
operation.

With this background of graph reasoning, we now describe
the two main building blocks of our proposed SPIN module:
(1) Spatial space graph reasoning and, (2) Interaction space
graph reasoning.

1) Spatial space graph reasoning: The overall procedure
of spatial space graph reasoning is depicted in the red box in
Figure 2-(a). As described in the previous section, the main
intuition behind spatial space graph reasoning is to improve
the connectivity between the predicted road segments. We
first build a fully-connected graph in the spatial domain S
using the spatial similarity matrix AS and then perform
spatial graph reasoning. We now describe the computation
procedure of spatial graph reasoning in detail.
Computation of spatial similarity matrix AS : The first
step of spatial graph reasoning is to compute the spatial
similarity matrix AS ∈ RL×L. There are different similarity
metrics that have been proposed in the literature to calculate
the similarity between two given pixels. The most popular
are the Euclidean distance and the dot product. In our
implementation, we use the dot product to compute the
similarity matrix AS .

The similarity matrix AS for an input feature map X can
be represented as a multiplication of three transformations
as follows:

AS = Softmax(φS(X)Λ(X)φS(X)T ), (2)
where φS(X) ∈ RL×M is a linear transformation followed
by ReLU non-linearity and Λ(X) ∈ RM×M is the diagonal
matrix. Note that M is the dimension of the intermediate
feature map.

In this implementation, the linear transformation φS(X) is
modeled using a 1 × 1 convolution layer that reduces input
feature map dimension from C to M . The transformation
Λ(X) is represented by a global average pooling followed
by a 1×1 convolution. Then we reshape the outputs φS(X)
and Λ(X) appropriately to perform matrix multiplication
as shown in Figure 2-(a) to obtain the similarity matrix
AS ∈ RL×L.
Graph reasoning in spatial space: Once we have the
similarity matrix AS , we can perform the spatial graph
reasoning on input data according to the Eq. (1). First, we



reshape the input data appropriately and then we perform
the matrix multiplication to obtain ASX . Next, we multiply
it by the trainable weight matrix W S that is modeled as a
1 × 1 convolution layer as shown in Figure 2-(a). Finally,
we apply ReLU to obtain the spatial graph reasoned feature
matrix XS .

2) Interaction space graph reasoning: The overall pro-
cedure of interaction space graph reasoning is shown in the
green box in Figure 2-(a). As we described earlier, the spatial
space graph reasoning can improve the connectivity between
predicted road segments. We now consider projecting the
input feature space into another latent space, called the
interaction space I, where we try to delineate roads from
other objects such as buildings, trees, vehicles, etc. Next, we
build a graph that connects these features in the interaction
space and performs a relational reasoning on the graph. After
reasoning, the updated information is projected back to the
original coordinate space. In what follows, we discuss these
operations in detail.
Projection to interaction space: The first step is to project
the original feature map X to the interaction space I. This
is done by the projection function f(·) such that the features
V I ∈ RN×S in the interaction space are more friendly for
global reasoning over disjoint and distant regions, where N
is the number of nodes and S is the number of states.

In practice, we first reduce the dimension of the input
feature X with the transformation θI(X) ∈ RL×N and
formulate the projection function φI(X) ∈ RL×S as a
linear combination of input X such that the new features can
aggregate information from multiple regions. Concretely, the
input feature X is projected as VI in the interaction space
I through the projection function φI(X) as follows:

V I = θI(X)TφI(X). (3)
We implement both functions φI(·) and θI(·) as 1 × 1
convolutional layer as shown in Figure 2-(a).
Graph reasoning in interaction space: After projecting
the input feature space into interaction space, we build a
fully-connected graph in the interaction space with the node
similarity matrix AI ∈ RN×N . The similarity matrix AI is
randomly initialized and learned during back propagation in
contrast to the similarity matrix we defined for the spatial
graph reasoning that is dependent on the input data. In
addition, we use skip connection (i.e. identity matrix) that
speeds up the optimization. Following Eq. (1), the graph
convolution in the interaction space is formulated as:

ZI = AXW = ((I −AI)V I)W I , (4)
where W I is the trainable weight matrix. Here both matrices
W I and AI are implemented as 1D convolution with kernel
size of 1 as shown in Figure 2-(a).
Reverse projection to the original coordinate space: After
graph reasoning in the interaction space, we project the
output features ZI to the original coordinate as:

Y I = θI(X)TZI , (5)

XI = φ
′

I(Y I). (6)
We use the same projection matrix θ(X) to transform
features to Y I ∈ RL×S . Then we perform linear projection

Fig. 3. Proposed network for road segmentation from aerial images.

φ
′

I(·) using a 1× 1 convolution layer to transform Y I into
the original coordinate space. As a result we have the features
XI with feature dimension C at the original coordinate
space.

Once we have the spatial and interaction space graph
reasoning outputs, we combine them with the original input
feature map and then apply ReLU non-linearity to get the
final graph reasoned feature map XIS . Mathematically, we
can denote this as,

XIS = ReLU(XS + X + XI). (7)
3) SPIN pyramid: We perform our SPIN graph reasoning

at multiple scales to further increase the overall receptive
field of the network and to improve long-range contex-
tual information present in the intermediate feature maps.
Concretely, we perform SPIN graph reasoning at different
scales (1, 1/2, and 1/4) of the original feature map as shown
in Figure 2-(b). In the results and discussion section, we
conduct an ablation study to demonstrate the effect of spatial,
interaction, and SPIN graph reasoning on the segmentation
performance.

B. Network architecture

Feature extractor block: Operating the network at high-
resolution (i.e. 256 × 256) requires a large GPU memory
and computational power. Therefore, we employ a 7 × 7
convolutional layer with stride 2, followed by a residual
block and a max pooling layer to bring it down to the size
of 64 × 64. We then add two subsequent residual modules
before sending it to the hourglass module.
Bottleneck: Our proposed road segmentation network uses
stack of two hourglass modules [31] at the bottleneck. The
hourglass module captures information at different scales by
cascading series of residual modules and max pooling layers.
When the network reaches the lowest resolution, it performs
bilinear upsampling and combines features across the same
scales using skip connections. We feed forward the output
of the bottleneck to the segmentation branch.
Segmentation branch: In the segmentation branch, we use
a combination of convolution and transpose convolution
layers to upsample the feature maps to the original scale.
We then feed forward these feature maps to our proposed
SPIN pyramid. To get the output segmentation map, we feed
forward these graph reasoned feature maps from the SPIN
pyramid to the final classification layer.
Orientation learning: For orientation learning, we adopt
the same orientation learning technique described in Batra
et. al. [30]. As shown in Figure 3, our road segmentation
network is divided into two branches after the two hourglass



modules to support for both segmentation and orientation
learning. The orientation learning task is formulated as a
multi-class classification problem where, the orientation of
each road-pixel is quantized into bins resulting in a total
of 37 orientation classes. Please check the supplementary
document for more details.
Loss function: The proposed road segmentation network
utilizes predictions from intermediate feature maps to com-
pute the loss at multiple scales: ((H/4,W/4), (H/2,W/2)
and (H,W )) instead of computing it only at the original
scale. This improves network’s ability to correctly predict
road segments at multiple scales and helps to convergence
faster. In this implementation, we make use of two loss
functions: (1) segmentation loss, and (2) orientation loss. We
use differentiable SoftIoU loss to compute the segmentation
loss instead of using the BCE loss. The segmentation loss
is computed at multiple scales. The road segmentation loss
Lseg is defined as follows,

Lseg =
∑
s

(
1− SoftIoU(Y s

pred, Y
s

gt)
)
, (8)

where s denotes the scale having values
{(H,W ), (H/2,W/2), (H/4,W/4)}, Y s

pred and Y s
gt are

the predicted and ground-truth segmentation maps at scale
s, respectively. Similarly, we calculate the orientation loss
at multiple scales. The orientation loss Lorient is defined as
follows,

Lorient =
∑
s

(
1−

Nbins∑
b=0

Os
b log(Ôs

b)

)
, (9)

where Nbins is the number of bins in the quantized ori-
entation, Os

b and Ôs
b are the predicted and ground-truth

orientation maps of orientation bin b and scale s, respectively.
Finally, the overall loss function L is defined as follows,

Lfinal = Lseg + Lorient. (10)

IV. EXPERIMENTAL SETTINGS

A. Datasets

Massachusetts road dataset: The Massachusetts Roads
dataset [22] consists of train, validation and test sets with
1108, 14 and 49 images, respectively, each with a size of
1, 500 × 1, 500 pixels. Following [40], we fill the training
images into size of 1536 × 1536 and then we crop each
image into 512 × 512 patches with overlapping window
of 256 pixels to make the training set. We observed that
some parts of the images in the Massachusetts Road dataset
are partially occluded and these images severely affect the
performance of models. Hence, we removed these occluded
images from the training set. Similarly, we crop each image
in validation and test sets into 512 × 512 patches without
any overlapping window. After these series of operations,
the processed Massachusetts Road dataset contains 21782,
124, and 433 images with size of 512× 512, corresponding
to the train, validation and test set, respectively.
DeepGlobe dataset: For the DeepGlobe dataset [21], we
follow the same experimental and data preparation protocols
mentioned in [30]. The DeepGlobe dataset consists of 6226
images with resolution of 1024× 1024. Following [30], we
create splits of 4696 images for training and 1530 images

for testing. Then, we create the patches with 512 × 512
resolution with an overlapping window of 256 pixels and
this results in total of 42264 images for training. Similarly,
for the testing dataset also we create patches with resolution
of 512× 512 without any overlapping pixels and this results
in total of 6116 images.

B. Implementation details

We use random crops of resolution 256 × 256 to train
the network for the Massachusetts and DeepGlobe datasets.
We use extensive data augmentation techniques such as
image rotation, flipping, and mirroring. We use SGD
optimizer with a batch size of 32, a momentum of 0.9 and
a weight decaying of 0.0005. We use a step-learning rate
scheduler with an initial learning rate of 0.01 where steps
are scheduled at 50, 90, and 110. We reduce the learning
rate by a factor of 0.1 at each step. We train the network
for a total of 120 epochs. We implemented our model in
PyTorch and used an NVIDIA Quadro RTX 8000 GPU for
all of our experiments.

C. Performance metrics

For the DeepGlobe dataset accurate road segmentation
masks are available and hence, we evaluate the quality of
our road predictions using accurate road Intersection over
Union (IoUa) and F1 score. However, the groundtruth seg-
mentation masks of Massachusetts road dataset have constant
width and this will adversely affect the pure pixel based
metrics. So, as proposed in [42] we also use relaxed IoU
(IoUr) with buffer size of 4 in our evaluations. Furthermore,
we use Average Path Length Similarity (APLS) metric to
measure the difference between ground truth and proposal
graphs [43].

V. RESULTS

In this section, we compare the road segmentation per-
formance of our SPIN Road Mapper with existing methods,
quantitatively and qualitatively. In particular, we compare the
performance of our method with that of Seg-Net [41], U-Net
[28], LinkNet34 [29], HourGlass [31], Stack-HourGlass [31],
and Batra et al. [30].
Quantitative results: The quantitative results are summa-
rized in Table I. As can be seen from Table I, the proposed
SPIN Road Mapper achieves the state-of-the-art (SOTA)
results in terms of all the performance measures for the
Massachusetts dataset. When considering the DeepGlobe
dataset, our method achieves the SOTA results in terms
of F1, IoUr, and APLS. Furthermore, the improvement in
terms of APLS metric is significant (+1.15% and +1.02%
for Massachusetts and DeepGlobe datasets, respectively) and
which confirms that the proposed SPIN module improves the
connectivity of road segments by specially bringing gaps for
occluded areas (see Fig. 5). These qualitative results confirms
that the proposed SPIN module effectively captures the long-
range dependencies of feature maps, and thereby helps final
classifier to identify road pixels substantially well compared
to the available ConvNet architectures for road segmentation.



TABLE I
A QUANTITATIVE COMPARISON OF OUR SPIN ROAD MAPPER WITH THE SOTA BASELINES IN TERMS OF F1 SCORE, IoUr AND IoUa .

Method
Massachusetts Road Dataset [22] DeepGlobe Dataset [21]

Precision Recall F1 IoUr IoUa APLS Precision Recall F1 IoUr IoUa APLS

Seg-Net [41] 77.34 79.84 78.57 64.71 58.59 57.76 69.48 72.97 71.19 55.26 49.20 58.55
U-Net [28] 82.46 84.34 83.39 71.51 60.97 61.33 73.55 74.98 74.26 59.06 55.02 61.23
LinkNet [29] 83.25 84.63 83.93 72.32 63.12 66.62 78.34 78.85 78.59 64.73 62.75 67.41
HourGlass [31] 81.26 81.86 81.56 68.86 61.37 65.37 79.43 80.14 79.78 66.34 60.71 65.33
Stack-HourGlass [31] 80.12 83.87 81.96 69.43 62.21 67.89 79.33 79.99 79.66 66.19 62.06 69.02
Batra et al. [30] 83.34 84.61 83.97 72.37 64.44 71.34 83.79 84.14 83.97 72.37 67.21 73.12
SPIN Road Mapper (ours) 83.90 85.06 84.47 73.12 65.24 72.49 84.14 84.50 84.32 72.89 67.02 74.14

=

Fig. 4. A qualitative comparison between our SPIN Road Mapper and the
SOTA methods.

Qualitative results: For the qualitative analysis, we visualize
the predicted road maps from SegNet [41], LinkNet [29],
Stack-HourGlass [21], Batra et. al [30], and our SPIN Road
Mapper on the Massachusetts Road dataset in Figure 4.
The red boxes in Figure 4 highlight the regions where
our method performs better than the baseline methods. For
example, consider the last row of Figure 4. Roads in the
region highlighted by the red box are mostly covered by trees
and buildings (as can be seen from the input aerial image),
making it difficult for the baseline segmentation networks
to correctly identify the presence of roads. In contrast, our
method is able to predict most of the road segments due
to its ability to capture long-range dependencies between
road pixels through spatial graph reasoning, as well as its
ability to delineate roads from surrounding structures through
interaction space graph reasoning.
Ablation study: We conduct an ablation study to demon-

strate the effect of spatial, interaction and SPIN graph
reasoning on road segmentation. It can be seen from Table II
that integrating spatial and interaction space graph reasoning
to the ConvNet-based network results in increase road seg-
mentation accuracy. Combining the spatial and interaction
space graph reasoning together in SPIN pyramid results
in further improvement over the individual components. In
addition to the quantitative comparison, we also present a
qualitative comparison in Figure 5 which clearly demon-
strates how each graph reasoning technique improves the
quality of road predictions. These experiments show that out
proposed SPIN pyramid helps the network learn features with
more global contextual information resulting in an improved
performance.
Convergence: Figure 6 shows the training convergence plot
of the proposed network with and without the SPIN module.

TABLE II
QUANTITATIVE RESULTS OF ABLATION STUDY.

Method IoUa F1 APLS

ConvNet Only 83.97 66.58 73.01
ConvNet + Spatial GR 84.13 66.82 73.59
ConvNet + Interaction GR 84.12 66.76 73.52
ConvNet + SPIN GR 84.32 67.02 74.14

Fig. 5. A qualitative comparison for the ablation study.

Fig. 6. The convergence characteristic for with and without the SPIN.

We can observe that adding the SPIN module helps achieve
faster convergence. This leads to reduction in training time
which is crucial for training ConvNets on large-scale high-
resolution remote sensing datasets.

VI. CONCLUSION

We presented a Spatial and Interaction Space Graph Rea-
soning (SPIN) module that can be plugged into ConvNets
to learn distant relationships between road segments in the
feature space. Learning global dependencies are essential
while extracting complex road topology from aerial images
where most of the road segments are partially or completely
occluded by trees, buildings, or clouds. The graph reasoning
over the spatial space helps the network to extract more
dependencies between different spatial regions and other con-
textual information whereas graph reasoning over a projected
interaction space helps to delineate roads from surrounding
objects. We conduct extensive experiments and compare the
predicted road maps qualitatively and quantitatively with
existing methods. We observe that our SPIN module helps
convolutional networks to extract long-range dependencies
and thereby improve the segmentation quality. SPIN is
computationally light and also helps in faster convergence
which are crucial while training ConvNets on large-scale
high-resolutions datasets.
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pixel-wise loss for topology-aware delineation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 3136–3145.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[19] X. Wang and A. Gupta, “Videos as space-time region graphs,” in
Proceedings of the European conference on computer vision (ECCV),
2018, pp. 399–417.

[20] Y. Chen, M. Rohrbach, Z. Yan, Y. Shuicheng, J. Feng, and Y. Kalan-
tidis, “Graph-based global reasoning networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 433–442.

[21] I. Demir, K. Koperski, D. Lindenbaum, G. Pang, J. Huang, S. Basu,
F. Hughes, D. Tuia, and R. Raskar, “Deepglobe 2018: A challenge to
parse the earth through satellite images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2018, pp. 172–181.

[22] V. Mnih, Machine learning for aerial image labeling. University of
Toronto (Canada), 2013.

[23] C. Unsalan and B. Sirmacek, “Road network detection using proba-
bilistic and graph theoretical methods,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 50, no. 11, pp. 4441–4453, 2012.

[24] R. Stoica, X. Descombes, and J. Zerubia, “A gibbs point process for
road extraction from remotely sensed images,” International Journal
of Computer Vision, vol. 57, no. 2, pp. 121–136, 2004.

[25] W. Wang, N. Yang, Y. Zhang, F. Wang, T. Cao, and P. Eklund,
“A review of road extraction from remote sensing images,”
Journal of Traffic and Transportation Engineering (English Edition),
vol. 3, no. 3, pp. 271–282, 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2095756416301076

[26] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler, “A higher-
order crf model for road network extraction,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 1698–1705.

[27] A. Abdollahi, B. Pradhan, N. Shukla, S. Chakraborty, and A. Alamri,
“Deep learning approaches applied to remote sensing datasets for road
extraction: A state-of-the-art review,” Remote Sensing, vol. 12, no. 9,
p. 1444, 2020.

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[29] A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder repre-
sentations for efficient semantic segmentation,” in 2017 IEEE Visual
Communications and Image Processing (VCIP). IEEE, 2017, pp. 1–4.

[30] A. Batra, S. Singh, G. Pang, S. Basu, C. Jawahar, and M. Paluri,
“Improved road connectivity by joint learning of orientation and seg-
mentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 10 385–10 393.

[31] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in European conference on computer vision.
Springer, 2016, pp. 483–499.

[32] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7482–7491.

[33] A. Araujo, W. Norris, and J. Sim, “Computing receptive
fields of convolutional neural networks,” Distill, 2019,
https://distill.pub/2019/computing-receptive-fields.

[34] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[36] X. Li, Y. Yang, Q. Zhao, T. Shen, Z. Lin, and H. Liu, “Spatial pyramid
based graph reasoning for semantic segmentation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 8950–8959.

[37] Y. Li and A. Gupta, “Beyond grids: Learning graph representations
for visual recognition,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018, pp.
9245–9255.

[38] X. Liang, Z. Hu, H. Zhang, L. Lin, and E. P. Xing, “Symbolic
graph reasoning meets convolutions,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems,
2018, pp. 1858–1868.

[39] X. Li, L. Zhang, A. You, M. Yang, K. Yang, and Y. Tong, “Global
aggregation then local distribution in fully convolutional networks,”
arXiv preprint arXiv:1909.07229, 2019.

[40] A. Wulamu, Z. Shi, D. Zhang, and Z. He, “Multiscale road extraction
in remote sensing images,” Computational intelligence and neuro-
science, vol. 2019, 2019.

[41] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[42] V. Mnih and G. E. Hinton, “Learning to label aerial images from noisy
data,” in Proceedings of the 29th International conference on machine
learning (ICML-12), 2012, pp. 567–574.

[43] A. Van Etten, “Spacenet road detection and routing challenge-part i,”
2017.

https://www.sciencedirect.com/science/article/pii/S2095756416301076
https://www.sciencedirect.com/science/article/pii/S2095756416301076

	I INTRODUCTION
	II Related Work
	III Proposed Method
	III-A SPIN graph reasoning
	III-A.1 Spatial space graph reasoning
	III-A.2 Interaction space graph reasoning
	III-A.3 SPIN pyramid

	III-B Network architecture

	IV Experimental Settings
	IV-A Datasets
	IV-B Implementation details
	IV-C Performance metrics

	V Results
	VI Conclusion
	References

