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Abstract— While deep learning has enabled significant
progress in designing general purpose robot grasping systems,
there remain objects which still pose challenges for these
systems. Recent work on Exploratory Grasping has formal-
ized the problem of systematically exploring grasps on these
adversarial objects and explored a multi-armed bandit model
for identifying high-quality grasps on each object stable pose.
However, these systems are still limited to exploring a small
number or grasps on each object. We present Learned Efficient
Grasp Sets (LEGS), an algorithm that efficiently explores
thousands of possible grasps by maintaining small active sets of
promising grasps and determining when it can stop exploring
the object with high confidence. Experiments suggest that
LEGS can identify a high-quality grasp more efficiently than
prior algorithms which do not use active sets. In simula-
tion experiments, we measure the gap between the success
probability of the best grasp identified by LEGS, baselines,
and the most-robust grasp (verified ground truth). After 3000
exploration steps, LEGS outperforms baseline algorithms on
10/14 and 25/39 objects on the Dex-Net Adversarial and EGAD!
datasets respectively. We then evaluate LEGS in physical
experiments; trials on 3 challenging objects suggest that LEGS
converges to high-performing grasps significantly faster than
baselines. See https://sites.google.com/view/legs-
exp-grasping for supplemental material and videos.

I. INTRODUCTION

Recent advances in deep learning have enabled the de-
velopment of universal grasping systems that can robustly
grasp a wide variety of objects [23–25, 28, 29, 34].
However, these systems can still struggle to grasp objects
with adversarial [27, 35] geometries or which are significantly
out of distribution from the objects seen during training. This
problem is common in many industrial settings, in which
newly manufactured machine parts for custom applications
may look very different from the objects in the datasets
typically used for training universal grasping systems.

Recently, bandit-style algorithms have been used to aug-
ment general-purpose grasping policies by rapidly adapting
them to specific objects [11, 19, 21, 22]. Recently, Danielczuk
et al. [8] introduced Exploratory Grasping, where a robot
learns to grasp novel objects through online exploration of
grasps and stable poses. Their algorithm, Bandits for Online
Rapid Grasp Exploration Strategy (BORGES), learns robust
pose-specific grasping policies. However, BORGES limits
exploration to a fixed set of 100 grasps per stable pose,
possibly to overlooking other high-quality grasps.

In this work, we extend Danielczuk et al. [8] to explore
thousands of grasps per stable pose. Considering grasp sets
of this scale increases the likelihood of converging to a
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Fig. 1: Top: LEGS in Physical Experiments: LEGS repeatedly
attempts grasps on an object, and if the grasps are successful, it
re-drops the object into a new stable pose. Bottom: LEGS Active
Set Evolution: LEGS works by adaptively curating a small active
set of promising grasps out of a large reservoir of grasp candidates
(left). As exploration progresses, LEGS refines its active set (shown
in bolded red/green) to contain higher quality grasps (right).

robust grasp, but also makes efficient exploration challenging.
To address this challenge, we propose Learned Efficient
Grasp Sets (LEGS), which adaptively curates an active set
of promising grasps rather than restricting exploration to a
small fixed subset. The key insight is to use a combination
of priors from a universal grasping system and online trials
to maintain confidence bounds on grasp-success probabilities.
LEGS uses these bounds to (1) update the grasps in its active
set and (2) decide when to stop exploring.

This paper makes the following contributions: (1) a novel
adaptive multi-armed bandits algorithm that curates a small
set of high-performing grasps by actively removing and
resampling grasps based on performance bounds and a novel
termination condition that enables a robot to predict (with high
confidence) when it reaches a desired level of performance;
(2) a self-supervised physical grasping system where a robot
explores candidate grasps with minimal human intervention
(roughly 1 in every 100 grasp attempts); (3) simulation
and physical experiments suggesting that LEGS can identify
higher quality grasps within a fixed time horizon than prior
algorithms which do not learn an active set.

II. RELATED WORK

A. Universal Grasping Algorithms

Recent robotic grasping algorithms generalize to a wide
range of objects [18]. Open-loop algorithms synthesize grasps
and predict their quality based on the geometry of the object,
and then plan and execute a motion to attempt a high-quality
grasp without feedback [20, 23–25, 29]. Closed-loop grasp
planners that use vision-based gripper servoing [28, 34] and
RL [15, 16] have also been popular in prior work. LEGS
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is designed to leverage priors from these universal grasping
algorithms to efficiently learn a robust grasp policy for a
specific, difficult-to-grasp object [27, 35]. We use priors from
Dex-Net 4.0 [25], a general grasp planner that learns a grasp-
quality estimator from a large dataset of 3D object models
in simulation and then uses this estimator to sample and
evaluate the quality of grasps in physical trials.

B. Multi-Armed Bandits

Prior work on multi-armed bandits [31] has studied settings
where the number of actions is large compared to the
number of timesteps allocated for exploration [2, 6, 13, 14,
33, 36, 37]. One popular algorithmic framework for this
setting is called best arm identification, where the goal is
to adaptively reject a set of arms from consideration when
there is high confidence that they are suboptimal [1, 5, 17].
LEGS builds on these ideas, by adaptively filtering actions
from an active set by maintaining confidence bounds on
the reward corresponding to each action. This mechanism
makes it possible to efficiently perform best arm identification
across multiple bandits problems, where each bandit problem
represents a distinct stable pose of an object. LEGS can
quickly converge to high-quality grasps on problems with
thousands of grasps per stable pose.

C. Exploratory Grasping

Universal grasping algorithms often struggle with certain
objects [27, 35]. Danielczuk et al. [8] show that grasping
algorithms such as Dex-Net [25] are difficult to fine-tune
online on such objects, and propose Exploratory Grasping,
a problem formulation where the objective is to perform
rapid online adaptation to grasp specific, unknown objects.
To achieve this, prior works sample a fixed set of grasps on
specific object stable poses and apply multi-armed bandit
algorithms to rapidly identify high-performing candidates [11,
19, 21, 22]. Danielczuk et al. [8] extend these ideas with
BORGES, which explores grasps across all object stable
poses by using Thompson sampling and a learned Dex-Net
prior [21]. However, BORGES can often overlook high-
quality grasps since it restricts exploration to a small initial
set of grasps. To address this issue, LEGS begins with a
large set of grasp candidates and adaptively curates sets of
promising grasps by adding and removing grasp candidates
during exploration. By doing this, LEGS is able to converge
to better long-term performance than BORGES (which uses
a small fixed set of grasps), while also learning to robustly
grasp an object faster than baselines that seek to directly
explore large sets of grasp candidates.

III. PROBLEM STATEMENT

Overview: Given a difficult-to-grasp polyhedral object of
unknown geometry that rests on a planar surface and is viewed
by an overhead depth camera, we seek to learn to successfully
grasp the object in all of its stable poses.

Problem Setup: Given a polyhedral object o, let N be its
number of stable poses. Each stable pose s ∈ {1, 2, . . . N} is
associated with a landing probability λs, which indicates the

probability of the object landing in pose s when released from
sufficient height in a randomized orientation [12, 26]. Follow-
ing Danielczuk et al. [8], we model our problem as a finite-
horizon Markov Decision Process M = (S,A, T,R,H). We
let S be the set of equivalence classes of distinguishable
stable poses of the object and A be the set of all possible
grasps on the object. Thus, A =

⋃N
s∈S As, where As are the

grasps available at a stable pose s. Given a grasp action a in
stable pose s, the transition function T : S ×A× S → [0, 1]
determines the probability distribution over next stable poses.
The reward function R : S×A→ {0, 1} is binary: a grasp is
successful and R(s, a) = 1 if the grasped object does not fall
from the gripper after it is lifted, and R(s, a) = 0 otherwise.
Let psa = E[R(s, a)] be the expected success probability of
grasp a on stable pose s. We define a grasping policy as:
π : S ×A→ [0, 1], where π(a|s) denotes the probability of
selecting grasp a in pose s. We denote the finite horizon of
the MDP as H . The robot initially does not know any of the
stable poses or the number of stable poses N . If a grasp is
successful, the robot randomizes the orientation of the object
in the gripper, drops the object so that the next stable pose
s′ is determined by the landing probabilities {λs}Ns=1, and
records the observed stable pose s′.

We represent the actions, As, at each stable pose s as
candidate grasps sampled on the object. We use the same
method as Mahler et al. [25] to sample antipodal grasps on
each stable pose. We do not make any assumptions on the
grasping modality, so in practice these grasps can be sampled
from various different grasp planners, including parallel-jaw
or suction grasp planners. We denote the number of possible
grasps for pose s as Ks = |As| and the total number of
grasps over all states as K =

∑
s∈S Ks.

An important difference between our problem setting and
prior work [8] is that we consider settings in which K is
large (> 1000) and thus is of the same order of magnitude
as the exploration horizon, H . This significantly exacerbates
exploration challenges, since there is not enough time to fully
explore each grasp, motivating the key innovations in LEGS.

Assumptions: In this work, we assume access to the
following: (1) a grasp sampler which accepts as input a depth
map and outputs a set of candidate grasp configurations on the
surface of the depth map with associated robustness values;
(2) a robot/gripper that can either execute these grasps or
detect that they are in collision; (3) sufficient information in
the camera image to detect whether the object stable pose
changes; (4) an evaluation function to detect whether a grasp
is successful. We note that these assumptions are satisfied
by the system we build to instantiate LEGS in practice. In
addition, we make the following assumptions about object’s
interaction with the environment: (5) if a grasp is unsuccessful,
the object either remains in the same stable pose or topples
into another stable pose; and (6) there exists a grasp with
non-zero success probability on each stable pose. These last
two assumptions are consistent with [8].



Metrics: We define the optimality gap, ∆π as

∆π = Es∈S
[
p∗s − psπ(s)

]
=
∑
s∈S

λs ·
(
p∗s − psπ(s)

)
, (III.1)

where p∗s = maxa∈As
E[R(s, a)] and psπ(s)

= E[R(s, π(s))].
In simulation, we can evaluate the ground-truth grasp-success
probability for a given grasp with robust quasi-static grasp
wrench space analysis [38]. We thus approximate p∗s by
sampling a large number of grasps on each stable pose.
Intuitively, the optimality gap ∆π measures the expected
difference, across all stable poses, between the optimal policy,
which selects the best available grasp, and the policy π. In
physical experiments, the optimality gap cannot be computed
so we report the grasp-success rate of the learned policy π.

The objective is to find a policy that minimizes the
optimality gap for a given object within H grasp attempts.
Denoting a policy learned after H grasp attempts by πH , the
objective is to identify π∗H such that:

π∗H = arg min
πH

∆πH . (III.2)

IV. LEARNED EFFICIENT GRASP SETS

We propose Learned Efficient Grasp Sets (LEGS), a multi-
arm bandits algorithm that uses confidence bounds on grasp-
success probability to maintain a small active set of candidate
grasps. LEGS starts with an estimate of the prior success
probabilities for all grasps in a large reservoir of possible
grasps, and updates their grasp-success probabilities based on
online grasp trials using Thompson sampling as in Danielczuk
et al. [8]. However, unlike BORGES, LEGS uses the priors
and online grasp trials to construct confidence bounds on the
grasp-success probabilities for each grasp (Section IV-A).

LEGS is summarized in Algorithm 1. Once LEGS visits a
stable pose s, it checks whether it has visited s (line 4). In
Sec. VI, we describe how to recognize stable poses in the
physical setup. If the stable pose s has never been visited
(line 5), LEGS adds the stable pose to the set of visited stable
poses Ŝ (line 6) and initializes an active set of candidate
grasps, Ãs, along with the parameters of a Beta distribution
associated with each grasp in the active set (lines 7-8). We
rank the grasps in the reservoir by their estimated grasp
success probabilities under the Grasp Quality Convolutional
Neural Network (GQ-CNN) from Dex-Net 4.0 [25] and select
the k = 100 grasps with the highest values. In each iteration,
LEGS executes the grasp with the highest sampled value
from the posterior (lines 9-11), observes the outcome (line
12), and updates the posterior distribution [30] (lines 13-16).
In conjunction, LEGS also constructs confidence bounds on
each of the success probabilities of each grasp (Section IV-A).
Every n iterations, it uses these confidence bounds to identify
and remove the grasps with low robustness (Section IV-B)
(line 18), and replaces them with newly sampled grasps
where grasps are ranked by their estimated grasp success
probabilities under GQ-CNN (lines 19-20).

A. Constructing Confidence Bounds on Robustness

To determine which grasps to remove from the active
set, LEGS constructs upper and lower confidence bounds on

Algorithm 1: Learned Efficient Grasp Sets (LEGS)

1 Input: object o, grasp sampler fθ, resample interval
n, number of active grasps k

2 Initialize the set of visited stable poses Ŝ = ∅
3 for t = 1, 2, . . . do
4 Recognize the current stable pose s
5 if s /∈ Ŝ then
6 Ŝ ← Ŝ ∪ {s}
7 Use fθ to sample k grasps as the active set Ãs
8 Set αi and βi based on prior for all i ∈ Ãs
9 foreach grasp i ∈ Ãs do

10 sample φi ∼ Beta(αi + 1, βi + 1)
11 Execute grasp i = argmaxj∈Ãsφj
12 Observe reward r = R(s, i)
13 if r = 1 then
14 αi ← αi + 1
15 else
16 βi ← βi + 1
17 if t ≡ 0 (mod n) then
18 Remove the grasps in B = B` ∪ Bγ from Ãs

(see equations (IV.1) and (IV.2))
19 Sample |B| new grasps using fθ
20 For each new grasp j = 1, . . . |B|, set αj , βj

using prior from fθ and add new grasp to Ãs

grasp robustness. We model the success probability of grasp
i via Xi ∼ Beta(αi, βi), and empirically select a confidence
threshold δ. Then the percent-point function PPF(Xi, δ), the
inverse of the cumulative distribution function FXi(x), returns
the value x such that FXi(x) = δ. The (1 − δ)-lower and
-upper confidence bounds for Xi are Xi,` = PPF(Xi, δ)
and Xi,u = PPF(Xi, 1 − δ), respectively. As a grasp is
sampled more often, the interval [Xi,`, Xi,u] tightens to reflect
increased certainty in the robustness of the grasp.

B. Posterior Dependent Grasp Removal

LEGS avoids over-exploring less robust grasps by identify-
ing and removing grasps from the active set that are highly
likely to be either (1) inferior to another grasp in the active
set (locally suboptimal) or (2) below a desired global grasp
success probability threshold (globally suboptimal). Let the
highest lower confidence bound across all active grasps be:
X∗` = maxi∈Ãs Xi,`. We define the set of locally suboptimal
grasps as the set of grasps for which their (1− δ)-confidence
upper bound is worse than the (1−δ)-confidence lower bound
for the best grasp in the active set:

B` = {i : Xi,u < X∗` }. (IV.1)

Thus, B` represents the set of grasps that are likely to be
inferior to the best known grasp in the active set. However, in
the early stages of exploration, we may not yet have sampled
a high-performing grasp and B` may be empty. In these
cases, we still desire to remove and resample grasps that,
with high-confidence, are clearly low performing. Thus, given
a minimum performance threshold γ ∈ [0, 1], we define the
set of globally suboptimal grasps in the active set (denoted



Bγ): grasps which have been sampled, but are likely to have
success probability less than γ. We define Bγ as

Bγ = {i : Xi,u < γ}. (IV.2)

We denote the set of attempted grasps in the active set as P ,
and let the index of the currently known best grasp be i∗.
The full set of grasps removed by LEGS is constructed by
taking the union of the above sets: B = (B` ∪ Bγ)∩P \{i∗}.
This allows LEGS to remove grasps which are unlikely to
outperform the best known grasp in the current active set.

C. Early Stopping

Rather than setting the exploration horizon H to a fixed
value, we can set a performance threshold and let LEGS stop
exploring once it has high confidence that it has achieved the
desired threshold. This early stopping condition allows LEGS
to efficiently allocate exploration time by only continuing to
explore objects that it cannot yet robustly grasp.

Given a user-specified, minimum performance threshold
ρmin ∈ [0, 1], we want to detect when, with high likelihood,
the true performance of LEGS is above this threshold. More
formally, given a confidence parameter δstop ∈ [0, 1], we want
to calculate a (1−δstop)-confidence lower bound, denoted by
p`, on the true expected performance of the grasping policy π,
i.e., we want to find p` such that Pr

(
p` ≤ Es∈S [psπ(s)

]
)
≥

1−δstop. Then, the robot can stop exploring when p` ≥ ρmin.
We cannot directly compute Es∈S [psπ(s)

] since we do not
know the true stable pose distribution S. Thus, we take a
Bayesian approach where we approximate p` by sampling
likely values of Es∈S [psπ(s)

] given the observed data and then
by taking the δstop-percentile of these samples [3, 4]. First,
for each observed stable pose, s, we estimate the expected
performance of the best grasp as p̂∗s = maxi∈As

αi
αi+βi

, where
αi and βi are the parameters of the Beta posterior distribution
over the success probability of grasp i. To reason about
the performance of LEGS, we must account for uncertainty
over the stable pose distribution, parametrized by the drop
probabilities λ1, . . . , λN . However, N is unknown. Thus, we
model our belief over drop probabilities using a Dirichlet
posterior distribution over N̂ + 1 drop probabilities, where N̂
is the number of observed stable poses and the +1 allocates
probability mass to unobserved stable poses.

Assuming a uniform Dirichlet prior, we take the empirical
drop counts c1, . . . , cN̂ for N̂ observed stable poses, and sam-
ple from the posterior distribution over stable pose drop proba-
bilities, Pr({λs}N̂+1

s=1 | c1, . . . , cN̂ , 0). Due to conjugacy [10],
the desired posterior distribution is also a Dirichlet distribution
with parameters (α1 = c1 +1, . . . , αN̂ = cN̂ +1, αN̂+1 = 1).
Given a sample, {λ′s}N̂+1

s=1 , from the above Dirichlet posterior,
we transform it into a sample from the posterior over expected
grasp robustness: p′π =

∑N̂
s=1 p̂

∗
s ·λ′s. where we conservatively

assume that the robot will fail to grasp the object in any
unseen poses. We calculate a (1 − δstop)-confidence lower
bound on the overall grasp robustness by finding the δstop
percentile, p̂` = PPF(p′π, δstop), using M samples of p′π .

V. SIMULATION EXPERIMENTS

A. Experimental Setup

We first evaluate LEGS in Exploratory Grasping with
a variety of adversarial objects in simulation. Same as in
Danielczuk et al. [8], we consider 14 Dex-Net 2.0 Adversarial
objects [24] and all 39 EGAD! Adversarial evaluation
objects [27]. We use Dex-Net 4.0 [25] to sample a large
reservoir of K = 2000 grasps for each stable pose. We also
use GQ-CNN to set the Beta prior for LEGS following the
method from [8, 21]. Using the method outlined in Section IV,
we update the active grasp set after every n = 100 timesteps
and use δ = 0.05 for constructing grasp confidence intervals
with upper confidence threshold γ = 0.2. All experiments
use a time horizon of H = 3000. We run 10 trials of each
algorithm with 10 rollouts per trial, where each trial involves
sampling a different reservoir of grasps, and each rollout for
a trial involves running a grasp exploration algorithm.

B. Baselines

We compare LEGS against five baseline algorithms: Dex-
Net, Tabular Q-Learning (TQL), BORGES (Ks = 100),
BORGES (Ks = 2000), and LEGS (-AS). Dex-Net greedily
chooses the best grasp evaluated by Dex-Net 4.0 [25] for each
stable pose and does not do any online exploration. BORGES
(Ks = 100) leverages a prior calculated by GQ-CNN to
seed grasp success probability estimates, and then performs
Thompson Sampling for each encountered stable pose to
explore an initial active set of 100 grasps sampled on each
of the poses. While BORGES (Ks = 100) is provided with
the same initial active set as LEGS, unlike LEGS, BORGES
(Ks = 100) does not update its set over time. However,
different from [8], it is not guaranteed that there will exist
successful grasps on all stable poses when Ks = 100. This
implies that BORGES (Ks = 100) may not be able to transit
between stable poses. The Ks = 100 Upper Bound refers to
the optimality gap if on each stable pose, the best grasp in the
active set is selected. BORGES (Ks = 2000) is identical to
BORGES (Ks = 100), but instead directly explores the full
reservoir of Ks = 2000 sampled grasps. TQL implements
tabular Q-learning on the full reservoir of Ks = 2000 sampled
grasps where each pose is a separate state s and each action
a is a grasp on that pose and a Q-table Q[s, a] is constructed
to keep track of the corresponding 1-step Q-values. The
values in the Q-table are initialized using the GQ-CNN prior
and actions are chosen based on an ε-greedy policy [32]
with ε = 0.1. Finally, LEGS (-AS) is not provided with an
initial active set, but instead operates on the full reservoir of
Ks = 2000 grasps and uses the posterior dependent removal
procedure in Section IV-B to remove grasps from the reservoir.

C. Experimental Results

We first study aggregated results of LEGS and baselines
over objects in the Dex-Net Adversarial and EGAD! eval-
uation datasets in Table I. We find that LEGS performs
better than or equal to the baseline algorithms on 10 out
of 14 objects in the Dex-Net Adversarial dataset, and on
25 out of 39 objects in the EGAD! evaluation dataset. In



Dataset Dex-Net TQL BORGES
(Ks = 100)

Ks = 100
Upper Bound

BORGES
(Ks = 2000) LEGS (-AS) LEGS

Dex-Net 0.56± 0.07 0.23± 0.08 0.13± 0.07 0.08± 0.04 0.04± 0.03 0.22± 0.06 0.04± 0.03
EGAD! 0.59± 0.03 0.32± 0.04 0.25± 0.04 0.13± 0.03 0.17± 0.03 0.28± 0.04 0.14± 0.03

TABLE I: Grasping in Simulation Aggregated Results: We show the optimality gap (mean ± standard error) achieved by LEGS and
baselines after H = 3000 steps of exploration averaged over the objects in the Dex-Net Adversarial and EGAD! evaluation datasets. LEGS
achieves a lower optimality gap than all baselines, indicating that LEGS is able to discover new high-performing grasps.

Fig. 2: Simulated Grasping Experiments Case Study: We report the performance of LEGS and baselines on four specific objects to
investigate how object properties affect performance. For each object, we include a 3D rendering of the object and the number N of stable
poses (left), a histogram of the ground truth grasp success probabilities over 2000 sampled grasps (middle), and learning curves (right).

comparison, the best performing baseline algorithm, BORGES
(Ks = 2000), only performs at least as well as rest of the
algorithms on 5 out of 14 Dex-Net Adversarial objects and
14 out of 39 EGAD! evaluation dataset. On all of these
objects we find that Dex-Net, which is not updated online,
has high optimality gap, motivating online grasp exploration.
The improvement for LEGS over LEGS (-AS) and BORGES
(Ks = 2000) indicates the increased efficiency of restricting
exploration to a small active set, while the gap between
LEGS and BORGES (Ks = 100) indicates the importance of
updating this active set over time to prune poor performing
grasps while discovering new, high-quality grasps outside of
the initial active set. BORGES (Ks = 100) cannot outperform
the success rate of the best grasp in its initial set (Ks = 100
upper bound). By contrast, LEGS, retains the efficiency of
only exploring a small set of grasps while also being able
to adapt this set over time to obtain successful grasps on
difficult-to-grasp stable poses and reach a lower optimality
gap. TQL learns much more slowly than BORGES because it
fails to leverage the structure in the grasp exploration problem
and does not learn separate policies for each stable pose.

In Figure 2, we study LEGS and baselines on specific
objects. We show two objects (Climbing Hold and C3) where
LEGS converges faster to high performing grasps than prior
algorithms and two objects (F6 and Turbine Housing) where
LEGS does not outperform all baselines. We find that when
high performing grasps are abundant, LEGS may converge
to suboptimal grasps. However, when there are only few
successful grasps, LEGS can converge to good grasps much
faster than baselines. If high quality grasps are already in
the active set, LEGS can rapidly distinguish them from other
grasps. If the active set does not contain successful grasps,
LEGS can quickly replace bad grasps in the active set.

D. Early Stopping Results

Next, we study the accuracy and effectiveness of the early
stopping criterion (Section IV-C). We test the proposed high-
confidence performance bound across all objects in the Dex-
Net Adversarial object set (individual results per object are
reported in the supplement). We check whether LEGS has
reached the stopping condition every 100 grasps for a horizon
of H = 3000 total grasp attempts and use δstop = 0.05,
resulting in a 95%-confidence lower bound p̂`. We sample
M = 3000 samples to estimate p̂`.

We first test how often the predicted bound is a true lower
bound on performance. We find that, on average, across all
Dex-Net Adversarial objects, our empirical lower bound is a
95.8%-accurate lower bound on the true performance over the
true stable pose distribution. Thus, p̂` forms an empirically
valid (1− δstop)-confidence lower bound. We next test the
tightness of our lower bound. On average, the difference
between the true performance of LEGS and our empirical
lower bound is only 2.97%. These results suggest that our
lower bound is highly accurate and tight enough to provide a
practical signal for when the robot can safely stop exploring.

We next study, in simulation, the use our high-confidence
bounds on performance for early stopping. As described in
Section IV-C, given a user-specified, minimum performance
threshold, ρmin, the robot stops exploring when the lower
confidence bound p̂` is greater than ρmin. When the robot
chooses to stop exploring the object, we evaluate the ground
truth performance of the learned policy and evaluate whether
the true performance is also above the threshold ρmin. We
evaluate a wide range of thresholds and plot the results in
Figure 3. Results suggest that we can achieve highly accurate
early stopping, allowing the robot to accurately terminate
exploration well before the full horizon of 3000 steps.



Fig. 3: Early Stopping Threshold Sensitivity: We evaluate early
stopping over the Dex-Net Adversarial object set in simulation with a
range of stopping thresholds, ρmin. We use a 95%-confidence lower
bound on expected grasp robustness. Left: We plot the accuracy
averaged over all objects and find that our empirical lower bound
(Section V-D) is highly accurate across all stopping thresholds, ρmin.
Right: We plot the number of steps before stopping, averaged across
all objects. Intuitively, the required exploration time increases with
higher performance thresholds. Importantly, the average number of
steps before stopping is much lower than the 3000-step horizon.

VI. PHYSICAL EXPERIMENTS

In this section, we discuss our experimental setup for
physical experiments, the methods we used to enable
intervention-free grasp exploration on a physical robot and
results evaluating the performance of LEGS and BORGES
(Ks = 2000) across 3 physical objects.

A. Experimental Setup

To deploy exploratory grasping algorithms on a physical
robot, we modify the perception system introduced in Daniel-
czuk et al. [8] to sample grasps and identify changes in the
object stable pose. We capture a depth image of the object
from an overhead camera, deproject it into a point cloud
using the known camera intrinsics, demean the point cloud,
and apply 3600 evenly spaced rotations to the point cloud
around the camera’s optical axis. We measure the chamfer
distance between the rotated point clouds with previously
cached point clouds and find the pair of point clouds that
serves as the closest match. As in Danielczuk et al. [8], if at
least 80 % of the points are less than 0.02 mm away from the
closest points in the cached point cloud, we classify the two
point clouds as belonging to the same stable pose. If none
of the cached point clouds satisfies this condition, the point
cloud is cached and treated as a new stable pose. If there
exists a matching point cloud, we further align the translation
and rotation of the point cloud via iterative closest point [7].

Upon discovery of a new stable pose, we use Dex-Net
4.0 [25] to sample, evaluate, and cache grasps in the grasp
reservoir. Thus, LEGS can explore grasps on objects with
unknown geometries and unknown numbers of stable poses.

B. Self-Supervised Exploratory Grasping with LEGS

Danielczuk et al. [8] find that re-dropping the object during
experiments often cause it to fall out of the workspace,
requiring extensive human effort to reset the object. To enable
the robot to collect grasp data without human intervention,
we introduce strategies to prevent the object from toppling out
of the workspace while maintaining access to a wide variety
of grasps. We drop the object within a bowl (Fig.1), where
the object’s rebound height is lower than the rim of the bowl.

Fig. 4: Physical Experiments Results: We compare LEGS with
BORGES (Ks = 2000) on three objects (Bar Clamp, Pawn, and Pipe
Connector) from the Dex-Net Adversarial Dataset [24] in physical
experiments. All physical experiments are completed within 3 hours.
LEGS significantly outperforms BORGES (Ks = 2000) on Bar
Clamp and Pawn, with minor improvement on Pipe Connector.

The bowl allows the object to stay in the visible range of the
overhead camera. However, the bowl’s rim can be an obstacle
to grasps. We introduce two autonomous reset behaviors to
address this: (1) we center the object above the bowl before
dropping the object, ad (2) when the object topples near the
boundary, the robot pushes the object towards the center of
the bowl to improve grasp access [9].

C. Experimental Results

Figure 4 shows learning curves from physical experiments
comparing LEGS with BORGES (Ks = 2000) on three
challenging objects from the Dex-Net Adversarial Dataset
[24]. We run 3 trials with 1 rollout per trial for each object. We
find that on 2 out of the 3 objects, LEGS is able to outperform
BORGES (Ks = 2000) and identify high-performing grasps
within a few hundred timesteps of online exploration.

VII. DISCUSSION

We present Learned Efficient Grasp Sets, an algorithm
which efficiently explores large sets of grasps by adaptively
constructing a small active set of promising grasps. Experi-
ments suggest that LEGS identifies high-performing grasps
more efficiently than baseline algorithms across 53 objects
in simulation experiments and on three challenging objects
in physical trials. We also propose a novel early stopping
condition by computing a high-confidence lower bound on
the expected grasp performance. Simulation results suggest
that this high-confidence lower bound is highly accurate and
tight. In future work, we will analyze LEGS to determine
how the quality of the Dex-Net prior and the distribution
over grasp success probabilities affect its convergence rate.
Moreover, we will search for possible ways for LEGS to
generalize across different stable poses and objects.
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APPENDIX

We select the hyperparameters based on the ablation studies done on the Bar Clamp object in the Dex-Net 2.0 adversarial objects [24].
Specifically, we perform ablation studies on two hyperparameters: s the strength of GQCNN prior and δ for constructing grasp confidence
intervals. For each ablation experiments, we run 10 trials of each algorithm with 10 rollouts per trial, where each trial involves sampling a
different reservoir of grasps, and each rollout for a trial involves running a grasp exploration algorithm. All experiments are run over a
time horizon of H = 3000. Our experiments (Table I) show that this set of hyperparameters tuned on a single object can be applied across
many objects.

A. Sensitivity to Prior Strength
The effect of the strength of GQCNN prior is first studied in Li et al. [21]. In Danielczuk et al. [8], s is set to 5. Our sensitivity

experiments show that when more grasps are sampled on each stable pose, s = 1 shows the best result. In this set of experiments, δ = 0.07.

Strength of Prior Bar Clamp

s = 0 0.285± 0.055
s = 1 0.125± 0.036
s = 2 0.128± 0.038
s = 3 0.171± 0.041
s = 4 0.148± 0.036
s = 5 0.187± 0.042

TABLE II: Sensitivity to GQCNN prior strength s: We show the optimality gap (mean ± standard error).

B. Sensitivity to Confidence Interval Parameter
We also performed sensitivity experiments on δ for constructing confidence intervals for all grasps. Intuitively, using a small δ will lead

to a larger confidence interval, which may slow down the updates to the active set. Using a large δ will lead to a smaller confidence interval,
which may lead to false positives when identifying grasps with low success rate. In our ablation experiments, we find that δ = 0.05 gives
the best performance on the bar clamp object. In this set of experiments, s = 1.

Confidence Parameter Bar Clamp

δ = 0.01 0.129± 0.040
δ = 0.05 0.103± 0.031
δ = 0.10 0.156± 0.043
δ = 0.15 0.148± 0.041
δ = 0.20 0.214± 0.051
δ = 0.25 0.174± 0.044

TABLE III: Sensitivity to confidence interval parameter δ: We show the optimality gap (mean ± standard error).
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