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Abstract— In Simultaneous Localization And Mapping
(SLAM) problems, high-level landmarks have the potential to
build compact and informative maps compared to traditional
point-based landmarks. In this work, we focus on the param-
eterization of frequently used geometric primitives including
points, lines, planes, ellipsoids, cylinders, and cones. We first
present a unified representation based on quadrics, leading to
a consistent and concise formulation. Then we further study
a decomposed model of quadrics that discloses the symmetric
and degenerated properties of a primitive. Based on the decom-
position, we develop geometrically meaningful quadrics factors
in the settings of a graph-SLAM problem. Then in simulation
experiments, it is shown that the decomposed formulation has
better efficiency and robustness to observation noises than base-
line parameterizations. Finally, in real-world experiments, the
proposed back-end framework is demonstrated to be capable
of building compact and regularized maps.

I. INTRODUCTION

Geometric primitives such as points, lines, and planes
have been widely used in SLAM to represent the 3D en-
vironment thanks to their simplicity. Many state-of-the-art
graph-SLAM systems utilize one or a combination of those
primitives to formulate the back-end optimization, estimating
the states of the robot and landmarks simultaneously. Despite
the simplicity, however, those primitives have limitations in
representing more complex shapes in the environment, e.g.
curved surfaces.

Recently, high-level landmarks embedded with semantic
labels have been shown to significantly improve the per-
formance of SLAM, localization, and place recognition [1]
[2]. To include semantic information into the optimization
framework of graph-SLAM, abstract shapes, such as cuboids
[3] or ellipsoids [4], have been used to represent the geometry
of objects. However, those shapes mainly capture the scene
layout rather than the geometric details, resulting in less
accurate metric representation. In fact, how to represent high-
level geometric information in SLAM optimizations still
remains an open problem [5].

In this work, we propose to use quadrics as a unified
representation of geometric primitives. Quadrics, as a general
algebraic representation of second-order surfaces, are able
to represent 17 types of shapes [6] and have only been
introduced to computer vision and SLAM very recently.
We can roughly break down the ongoing research into two

∗ These authors contribute equally to this work.
Weikun Zhen is with the Department of Mechanical Engineering, Huai

Yu, Yaoyu Hu and Sebastian Scherer are with the Robotics Institute. All
authors are with the Carnegie Mellon University, Pittsburgh, PA 15213.
{weikunz,huaiy,yaoyuh,basti}@andrew.cmu.edu

l
Fig. 1: Top: A simple mock-up environment with cylinders
and planes. Left: Map represented by compact high-level
shapes. Right: Map represented by dense low-level points.

categories: Firstly, ellipsoid, as a special type of quadrics
with a closed shape, is used to approximate the shape and
pose of objects [4]. Secondly, the representation of low-level
landmarks, namely points, lines and planes, can be unified
using quadrics, leading to a compact formulation of graph-
SLAM with heterogeneous landmarks [7].

Our work aligns with these two directions of research and
extends the prior works in two aspects: Firstly, since quadrics
have the power to represent various shapes, some of which
are quite frequently seen in man-made environments (e.g.
cylinders and cones), we can potentially include more types
of primitives in SLAM and still keep a unified and concise
formulation. Secondly, it is noticed that quadrics can be
symmetric and degenerated, which could cause ambiguous
estimation in SLAM. However, those properties are not
readily available from quadrics representation. Therefore, we
are particularly interested in finding out how the quadrics
representation implicitly encodes the geometric properties,
and hope the insights would lead us to a geometrically mean-
ingful formulation of quadrics SLAM. Our main contribution
can be summarized as:

• A unified representation of high-level geometric primi-
tives using quadrics is proposed. A wider spectrum of
shapes is included, while previous works only consider
points, lines, planes, or ellipsoids for SLAM.

• A new decomposed representation of quadrics is pro-
posed. The decomposed representation is geometrically
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meaningful in that it explicitly models the degeneration
and symmetry of quadrics.

• A novel decomposed quadrics factor is systematically
formulated based on geometric error metrics.

• Experiments in simulation and the real world are con-
ducted to show the proposed quadrics-based back-end
framework is robust, efficient and lightweight.

The rest of this paper is structured as follows: Section II
discusses the prior work on SLAM landmark representation.
Section III covers the fundamentals of quadrics and Section
IV details the formulation of quadrics factors. In Section
V, experiments in simulation and real world are presented.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we review the low-level and high-level
geometric landmark representations used in SLAM.
Low-level landmarks: Points are the most popular landmark
representation in state-of-the-art SLAM systems [8] [9],
providing a sparse feature-based or dense point cloud based
representation of the environment. Differently, lines (edges)
and planes are sometimes referred to as high-level landmarks
and have been shown to improve the robustness and accuracy
of SLAM [10]. Representation for lines include a point
plus a direction [11], Plücker coordinates [12] and a pair
of endpoints [13]. Planes are usually represented with a
normal and a distance [14] as a non-minimal representation.
Kaess [15] proposes to use unit quaternion as a minimal
representation of planes and formulates the plane factors in
a graph-SLAM problem. As another minimal representation,
Geneva et al. [16] choose to use the closest point on a
plane to the origin as the representation of planes. Although
geometrically meaningful, each type of landmark requires
a special implementation to be used in the factor graph
framework.

To mitigate this issue, there are efforts to unify the
representation of low-level landmarks. SPmap [17] is per-
haps the earliest attempt to develop a generic framework
for SLAM landmarks and showed how 2D line-segments
representation can be unified. Closely related to our work,
Nardi et al. [7] and Aloise et al. [18] introduce the concept
of matchables as a unified representation of points, lines
and planes in 3D. Differently, our representation extends to
higher-order surfaces such as cylinders and cones and bridges
the algebraic expression with the geometric meanings.
High-level landmarks: There is a vast literature on object-
level or semantic SLAM, especially as deep learning is
being used successfully for object detection. However, we
realize a review of general semantic SLAM is beyond the
scope of this work. Instead, we are more interested in the
underlying geometry. Aligning with this line of research,
Salas et al. [19] use pre-defined mesh models to represent
detected objects which is difficult to generalize to unobserved
objects. After that, more general shape representations are
used. Yang et al. [3] fit cuboids as bounding boxes to describe
objects. Papadakis et al. [20] extract predefined spheres while
Nicholson et al. [4] propose to use ellipsoids to approximate

TABLE I: Quadrics Representation of Primitives

Primitives Canonical C Scale S Is

Point diag([1 1 1 0]) diag([1 1 1 1]) [0 0 0]

Line diag([1 1 0 0]) diag([1 1 1 1]) [0 0 0]

Plane diag([1 0 0 0]) diag([1 1 1 1]) [0 0 0]

Cylinder diag([1 1 0 − 1]) diag
([

1
a

1
b
1 1

])
[1 1 0]

Cone diag([1 1 − 1 0]) diag
([

1
a

1
b
1 1

])
[1 1 0]

Ellipsoid diag([1 1 1 − 1]) diag
([

1
a

1
b

1
c
1
])

[1 1 1]

size, position and orientation of objects. Tschopp et al. [5]
demonstrate that superquadrics have the advantage of phys-
ically meaningful parameterization. However, those methods
assume bounded shapes, thus are not suitable to represent
degenerated shapes such as a partially observed cylindrical
structure. Different from those approaches, our work studies
the degeneration behaviors of high-order shapes represented
as quadrics.

III. QUADRICS BASICS

A. Quadrics Representation

Quadrics are defined implicitly by the zero contour of a
two-degree algebraic function:

Ax2 +By2 + Cz2+2Dxy + 2Eyz + 2Fxz+

2Gx+ 2Hy + 2Iz + J = 0
(1)

There are 10 parameters but only 9 degrees of freedom due to
the ambiguity of scale. The shape function (1) has a compact
matrix form:

xTQx = 0 (2)

where

x =


x
y
z
1

 Q =


A D F G
D B E H
F E C I
G H I J


Despite the 17 subtypes of quadrics, we consider four shapes,
namely coincident planes, ellipsoids, elliptic cylinders and el-
liptic cones, that appear most frequently in man-made struc-
tured environments. Additionally, we also consider points
and lines as degenerated ellipsoids and cylinders respectively.

B. Quadrics Composition

A given quadrics Q contains three pieces of fundamental
information: type (e.g. plane, cylinder etc.), size (e.g. radius
of sphere and cylinders), and pose in 3D space, which can
be encoded in three corresponding matrices.

1) Canonical Matrix C: The canonical form of a quadrics
is obtained by aligning quadrics axes to the coordinate axes.
In the canonical form, Q is reduced to canonical matrix C.
For quadrics discussed in this paper, C is always a diagonal
matrix, whose pattern uniquely determines the shape type.
Table I summaries the canonical matrices of the considered
quadrics in this paper.



2) Scale Matrix S: The canonical matrix C represents
quadrics of unit length. For example, C = diag(1, 1, 1,−1)
defines a unit sphere. To scale the unit quadrics, a diagonal
scale matrix S is used. However, except ellipsoids, the other
quadrics types in Table I are degenerated, meaning scaling
in some directions won’t affect the geometric shape. For
example, a plane can’t be scaled at all. Therefore, we use
Is ∈ {0, 1}3 to indicate the directions that can be scaled.

3) Transformation Matrix T: Let T ∈ SE(3) be the
transform matrix between two frames. Then a given Q in
one frame can by transformed to the other frame by:

Q′ = T−TQT−1 (3)

4) Composition: Any quadrics Q can be constructed by
the composition of the three matrices:

Q = T−TSTCST−1 (4)

In preparation for the mathematical derivations later in this
paper, we explicitly rewrite (4) as:

Q =

[
RT −RT t
0 1

]T [
D 0
0 d

] [
RT −RT t
0 1

]
=

[
RDRT −RDRT t
∗ tTRDRT t + d

]
=

[
E l
lT k

] (5)

where D and d are diagonal blocks of STCS. E, l, k are
corresponding blocks of the resulting Q.

C. Quadrics Decomposition

A given Q can be decomposed to disclose its geometric
properties, which allows for an intuitive interpretation and
eventually leads to a decomposed quadrics model.

1) Type Identification: In practice, we are more interested
in identifying ellipsoids, cylinders and cones from a given Q.
Quadrics Shape Map (QSM) [21] can be used to determine
the types of quadrics by analyzing the distribution of the
eigenvalues of E. In simulation experiments, we assume the
quadrics types are known, while in real-world experiments,
quadrics types are determined using QSM.

2) Scale Identification: We first normalize the given Q to
remove the scale ambiguity:

Q =

∣∣∣∣∣
∏
λE
i∏
λQ
i

∣∣∣∣∣Q (6)

where λE
i and λQ

i are nonzero eigenvalues of E and Q
respectively. Specially, for cones, Q is normalized by the
negative eigenvalue of E. Then the scale parameters can be
recovered by: ab

c

 =

√√√√√
∣∣∣∣∣∣
1/λE

1

1/λE
2

1/λE
3

∣∣∣∣∣∣ (7)

assuming a ≤ b ≤ c. In degenerated cases, certain eigen-
values will be zeros. Then the scale along those directions
becomes undefined as specified in Is.

TABLE II: Degeneration characterized by eigenvalues

eig(E) Rotation Translation Example

λ1 6= λ2 6= λ3
non-degenerate
IR = [1, 1, 1]

non-degenerate
It = [1, 1, 1]

ellipsoid

λ1 6= λ2 = λ3
v1 degenerate
IR = [1, 0, 0]

non-degenerate
It = [1, 1, 1]

ellipsoid (2
equal axes)

λ1 = λ2 = λ3
degenerate

IR = [0, 0, 0]
non-degenerate
It = [1, 1, 1]

sphere,
point

λ1 = 0
λ2 6= λ3 6= 0

non-degenerate
IR = [1, 1, 1]

v1 degenerate
It = [0, 1, 1]

elliptic
cylinder

λ1 = 0
λ2 = λ3 6= 0

v1 degenerate
IR = [1, 0, 0]

v1 degenerate
It = [0, 1, 1]

circular
cylinder,
line

λ1 6= 0
λ2 = λ3 = 0

v1 degenerate
IR = [1, 0, 0]

v2,3 degenerate
It = [0, 1, 1]

plane

3) Pose Identification: Isolating pose information from
the given Q is to find R and t that represent the transform
between the observation frame and the quadrics canonical
frame, or local frame. According to (5), the rotation can be
found from eigenvalue decomposition of E = VDVT , while
recovering t involves solving Et + l = 0. However, recov-
ering R and t needs to consider several special situations:
• V is not necessarily a valid rotation matrix. The direc-

tion of eigenvector v can be identical or opposite to the
column of R, due to the symmetry of quadrics.

• When E has nonzero eigenvalues only, t can directly
recovered as t = −E−1l

• When E has zero eigenvalues, t is only partially con-
strained.

• When E has two equal eigenvalues, Q becomes revolu-
tion quadrics, where the rotation around the other axis
becomes degenerated.

The above situations are caused by the degeneration and
symmetry of quadrics. To systematically handle these issues,
we model the pose of quadrics from the perspective of
constraints, which will be further elaborated on in the next
section. In Table II, we summarize all possible situations of
degeneration and illustrate with examples.

IV. QUADRICS IN FACTOR GRAPHS

A. Pose-Quadrics Constraints

To constrain the rotation, we choose to align the columns
of R (noted as ri) to corresponding non-degenerate eigen-
vectors vi. An rotation activation vector IR ∈ {0, 1}3 is
defined to mark the direction to be enforced (see Table II).
Further more, to consistently handle the situations where
vi is opposite to ri, cross product is used to measure the
unsigned direction alignment error:

C(ri) = vi × ri = 0, (for IR
i = 1) (8)

As to translation, the constraint equation is:

C(t) = Et + l = VDVT t + l = 0 (9)



Similarly, translation degeneration indicator It ∈ {0, 1}3 can
be defined and we can further decompose the equation and
enforce the constraints explicitly:

C(t) = λiv
T
i t + vTi l = 0, (for It

i = 1) (10)

Equation (10) provides an geometric interpretation of trans-
lation constraints. One such equation defines a constraining
plane with normal vector vi and distance vTi l/λi. Therefore,
t is constrained to a point, line or plane due to the intersec-
tion of 3, 2 or 1 such constraining planes, respectively.

Finally, the scale constraints can be found by directly
comparing to the eigenvalues:

C(s) = s2
i − λi = 0, (for Is

i = 1) (11)

Equation (8) - (11) translate the observation of Q into a set
of constraints parameterized by the tuple (IR, It, Is,V,D, l)
where the geometric properties are explicitly represented.

B. Error Function

Given the robot pose (Rr, tr) and the quadrics in the
world frame (Rq, tq, sq), the error function of observed
quadrics in the robot body frame is defined as the residual
vector of a constraint set:

e =

eR

et

es

 =

 diag(IR) (V ⊗∆R)
T

diag(It)(DVT∆t + VT l)
diag(Is)(s2

q −Λ)

 (12)

where ⊗ means column-wise cross product. ∆R = RT
r Rq

and ∆t = RT
r (tq − tr) are the rotation and translation

of quadrics pose transformed into the robot frame. Λ =
[λ1, λ2, λ3] is the vector of eigenvalues stored in D. Here,
eR is a 3 × 3 matrix and will be vectorized before being
stacked into the error vector.

C. Observation Uncertainty and Weighting

One direct benefit of using decomposed constraint repre-
sentation is that it allows easy incorporation of uncertainties,
or weights, to measure the strength of (8)-(11). We adopt
a simple approach to compute the weight of a shape as
tanh(N), where N is the number of points. The adopted
strategy reduces the weights of small shapes that tend to
have higher uncertainty in fitted parameters.

D. Solving the Factor Graph

Given a graph with quadrics, the cost function is con-
structed by accumulating the errors of each observation:

f =
∑

eTΩe (13)

where Ω = diag(Σ−1
θq
,Σ−1

tq
,Σ−1

sq ) is the information matrix
characterizing the weight of each component. In Algorithm
1, we report the basic steps of Levenberg–Marquardt (LM)
method [22] for graph optimization. Sparsity is preserved
by line 10 and 11, where only relative blocks of b and H
are updated. Sparse Cholesky factorization is applied to solve
line 13. We refer the readers to [8] [23] for more information
about the sparse structure of factor graph and to Appendix I
for the derivation of Jacobians for quadrics factors.

Algorithm 1 LM Algorithm for Quadrics Factor Graph

1: Input: Initial states X0 ∈ R(9M+6N)×1 of N poses, M
quadrics landmarks, and K observations {Qk}

2: Output: Optimized states X∗

3: Decomposition: Qk → (IR
k , I

t
k, I

s
k,Vk,Dk, lk)

4: Initialization: X← X0

5: while not converged do
6: for each observation do
7: Pose Jacobian: Jr =

[
∂e
∂Rr

, ∂e
∂tr

]
8: Quadrics Jacobian: Jq =

[
∂e
∂Rq

, ∂e
∂tq

, ∂e
∂sq

]
9: Evaluate observation error: e =

[
eR ; et ; es

]
10: Update b: b← b +

[
· · · JTr Ωe · · · JTq Ωe · · ·

]

11: Update H: H← H +


...

...
··· JT

r ΩJr ··· JT
r ΩJq ···

...
...

··· JT
q ΩJr ··· JT

q ΩJq ···
...

...


12: end for
13: Compute LM update: ∆ = −(H + λI)−1b
14: Apply update: X← X � ∆
15: end while
16: Return X∗ = X

* λ in line 13 is the LM damper updated in each iteration [24].

E. Baseline Parameterizations

In this section, we discuss two baseline parameterizations
as a comparison to the decomposed representation.

1) Full Parameterization: One could formulate the
quadrics observation error using the full paramterization,
namely the 10-D quadrics vector q:

q =
[
A B C D E F G H I J

]T
(14)

Then the observation error is evaluated by first transforming
the q into robot body frame and then compute the difference
with observation q̄:

e = q̄−
(
TT
r (q)

∧
Tr

)∨ ∈ R10×1 (15)

where operator (·)∨ and (·)∧ compute the quadrics vector
and matrix respectively. About the full representation:
• The observation model has a simpler expression and

easy to implement;
• The metric is algebra error instead of geometric error,

which could introduce bias to estimation [25].
• It is difficult to interpret the uncertainties of q.
2) Regularized Full Parameterization: Inspired by [4], we

implement another baseline where the structure of quadrics
are explicitly modeled:

e = q̄−
(
TT
r QTr

)∨ ∈ R10×1 (16)

In here, Q is constructed as in (4) from the quadrics
states (Rq, tq, sq). Equation (16) explicitly models rotation,
translation and scale of quadrics, but still computes the
algebra error. Compared to (15), the type of quadrics is



TABLE III: Perturbation Configurations

Initialization Noise σx0 Observation Noise σq̄
(σθr , σtr , σθq , σtq , σsq ) (σθ̄q , σt̄q , σs̄q )

Low (L) (1◦, 0.1, 1◦, 0.1, 0.01) (1◦, 0.1, 0.01)

Medium (M) (5◦, 0.5, 5◦, 0.5, 0.02) (2◦, 0.2, 0.02)

High (H) (50◦, 5.0, 50◦, 5.0, 0.05) (5◦, 0.5, 0.05)
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Fig. 2: Convergence plot using decomposed and full quadrics
factors at increasing initialization and observation error. Each
configuration is repeated 10 times. Color codes: decomposed
(blue), full (red), regularized-full parameterization (orange)

now treated as prior knowledge and therefore the estimation
is regularized. From now on, we use decomposed (D), full
(F) and regularized-full (RF) parameterization to denote the
proposed, baseline 1 and baseline 2 respectively.

V. EXPERIMENTS

A. Simulation

1) Synthetic Environment: The synthetic environment, as
shown in Fig. 3, is a manhattan-like world that contains
15 quadrics landmarks of different types. The quadrics are
randomly generated in a bounded space (6m×6m×1m). The
simulated robot trajectory is shown as the red curve which
contains 50 frames whose x-axis points to the origin. For
each frame, the robot will sense the surrounding environment
and the nearest K = 10 quadrics are observed.

2) Noise Simulation: There are 2 types of noise to be
simulated. Firstly, the robot poses {Rr, tr} and quadrics
parameters {Rq, tq, sq} are perturbed according to Gaussian
noise σx0

= (σθr
, σtr , σθq , σtq , σsq ). This generates the

initial guess for factor optimization. Secondly, each quadrics
observation is perturbed in terms of rotation, translation and
scale, according to Gaussian noise σq̄ = (σθ̄q

, σt̄q , σs̄q ). This
gives a set of noisy observations {Q̄}. Table III defines 3
levels of noise: low (L), medium (M) and high (H) which will
be used to test the behaviors of different parameterizations.

3) Solving Factor Graph: To directly observe the behavior
of the proposed quadrics factor, we choose to construct the
factor graph only containing pose-quadrics factors and a prior
factor of the first robot pose.

TABLE IV: Trajectory and Quadrics Error by Noise Config-
urations

σq̄-σx0

Rotation (rad) Translation (m) Quadrics
D F RF D F RF D F RF

L-L 0.055 0.049 0.048 0.152 0.218 0.213 0.102 0.143 0.138
M-L 0.125 0.112 0.110 0.310 0.548 0.515 0.211 0.362 0.312
H-L 0.309 0.306 0.335 0.803 2.070 1.854 0.614 1.050 0.950

L-L 0.059 0.060 0.058 0.163 0.222 0.211 0.106 0.141 0.135
L-M 0.057 0.053 0.051 0.157 0.259 0.252 0.104 0.173 0.169
L-H 0.058 0.062 0.264 0.180 0.265 0.856 0.121 0.198 0.527

The convergence behavior under various noise levels us-
ing different parameterizations is reported in Fig. 2. The
upper plot shows the error-iteration curves of increasing
observation noise. In this test, the initialization noise is at
a low level. In the lower plot, we report the convergence
behavior under increasing initialization noise. In this test,
the observation noise is kept at a low level. We observe
that the decomposed representation has a faster convergence
rate, especially at a high noise level. Besides, the curves
of decomposed parameterization also tend to have fewer
variations, which indicates the cost function using geometric
error has better convexity.

We then qualitatively evaluate the converging basin for
different parameterizations. In Fig. 3, we compare the op-
timized robot poses and quadrics to the ground truth under
high initialization noise. It is observed that the optimized
quadrics and robot poses stay closer to the ground truth
when using decomposed parameterization, indicating a wider
converging basin. Additionally, the optimized quadrics with
full parameterization will change the type to compensate for
noises, while shapes using the other two parameterizations
are well regularized.

For the above 6 noise configurations, we also compare the
final optimized states to the ground truth. For trajectories, we
compute the absolute trajectory error (ATE). For quadrics,
we directly compare the quadrics vector. In the case of de-
composed representation, the quadrics vector is reconstructed
using (4). Table IV shows the trajectory and quadrics errors
in 6 noise configurations. Note that the errors are averaged
across 10 tests sharing the same noise configurations. It
is observed that decomposed parameterization consistently
has smaller translation and quadrics errors. Although the
regularized parameterization performs better in most cases
in terms of rotation, the difference is small.

4) More Discussions: Through the experiments, we also
found that the estimation accuracy of full and regularized-full
parameterization is quite sensitive to the translation and scale
perturbation of observation Q̄. Even a small perturbation
would cause the final result to converge to a local minimum
(see large errors of F and RF in Table IV). This can be
explained by their correlation in Q. From (3), we can see that
t and D are multiplied in−RDRT t = l. In the case of small
quadrics, small size noise will result in dramatic changes in
the values of D due to the inverse relationship. Then during
optimization, t tends to compensate for the amplified effects
of scale noise thus leading to inaccurate estimation.



Fig. 3: Optimization results using decomposed (left), full (middle), and regularized-full (right) parameterizations. Ground
truth trajectories and quadrics are visualized as solid curves and meshes respectively. Optimized poses and quadrics are
drawn as frames and transparent surfaces respectively. Types of simulated shapes include points, lines, planes, ellipsoids,
spheres, cylinders, and cones.

Fig. 4: Qualitative comparison of point cloud map before
(left) and after (right) quadrics graph optimization.

B. Raw Data

To validate the proposed method using raw data, we use
an Ouster OS1 LiDAR to map a room with cylinders and
planes (see Fig. 1). As this work is focused on the backend,
a simple front-end on top of a LiDAR odometry [26] is
implemented. Firstly, shapes are extracted from selected laser
scans (one scan per second) using the RANSAC method
proposed in [27]. Then quadrics are associated incrementally
by computing the Taubin distance [28] of shape points to
existing quadrics in the map. If the averaged distance is
smaller than a threshold, then two quadrics are matched.
Otherwise, a new quadric is created and added to the map.
Once all scans are processed, we obtain a list of quadrics
each of which has a list of frame views. Quadrics are further
pruned to only keep those with more than 6 views. Finally,
a graph consist of robot poses and quadrics is obtained.

In the back-end stage, the graph is optimized using the
LM algorithm presented in Algorithm 1. Mapping results
are compared qualitatively with the LiDAR odometry and
reported in Fig. 4. From the shown point clouds, we can
see that the proposed quadrics-based back-end can gener-
ate better-aligned point clouds without any post-processing,
meaning the robot trajectory is optimized. Additionally, the
quadrics estimation is regularized and refined as well. For
instance, in the zoomed-in views, the central axis (shown as
the blue z-axis) of cylinders lies closer to the shape center
in optimized maps, while the initial estimation is slightly
off due to inaccurate shape fitting. Finally, although the

visualization is using point clouds, the optimization only
involves 9 quadrics (shown in Fig. 1 plus a hidden ceiling
plane), making the framework lightweight.

It is worth mentioning that in this experiment, the number
of scanned points on cylinders is much smaller than those
on planes, limiting the contribution of cylinder observations
to the pose optimization. However, those observations help
to recover more accurate shapes, as shown in the zoomed-in
views of Fig. 4.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we unify the geometric primitive represen-
tation using quadrics, which generalizes to a wide spectrum
of shapes. Additionally, we provide a decomposed repre-
sentation of quadrics that explicitly discloses the geometric
properties of shapes such as degeneration and symmetry.
Then based on the decomposition, we show that the obser-
vation of quadrics can be translated into constraints to robot
poses, and thus the formulation of quadrics factors in graph-
SLAM is developed. In simulation experiments, we show
that the decomposed quadrics factors utilize shape priors and
optimize a geometric error, which makes it more stable and
efficient than the baseline formulations. Finally, in a simple
real-world environment, we demonstrate the map is more
compact and regularized using the quadrics-based back-end
framework.

Several unsolved questions could potentially be the di-
rections of future work. Firstly, to make use of quadrics
in a practical SLAM pipeline, the front-end still remains
challenging. Instead of a simplistic front-end for the proof-
of-concept, a practical one would need to solve quadrics
extraction fastly and accurately. Secondly, it is not clear how
to estimate the covariance matrix of quadrics fitting from
partially observed data in a principled way that models the
anisotropic nature of uncertainty. Finally, since high-level
shapes have been shown to significantly reduce the number
of landmarks in the map while still capture the overall layout,
detecting loop-closure in lightweight maps would be another
interesting direction to explore.
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APPENDIX I

Following the notation convention of the paper, the quadric
states in the world frame is represented by (Rq, tq, sq),
and the robot pose is (Rr, tr). Therefore, the state vector
involved in a single observation is x = [Rr, tr,Rq, tq, sq].

To simplify the presentation, we derive the Jacobian matrix
based on a single observation, while the complete Jacobian
can be constructed by filling in per observation Jacobians.
As presented in the paper, the observation error is given by

e =

eR

et

es


=

 diag(IR) (V ⊗∆R)
T

diag(It)(DVT∆t + VT l)
diag(Is)(s2 −Λ)

 ∈ R15

(17)

where ⊗ means column-wise cross product. ∆R = RT
r Rq

and ∆t = RT
r (tq − tr) are the rotation and translation

of quadrics pose transformed into the robot frame. Λ =
[λ1, λ2, λ3] is the vector of eigenvalues which are stored as
the diagonal elements of D. Here, eR is a 3× 3 matrix and
will be vectorized and then stacked into the error vector.

Then we have the derivative ∂e
∂x ∈ R15×15 as

∂e

∂x
=


∂eR

∂Rr

∂eR

∂t

∂eR

∂Rq

∂eR

∂tq

∂eR

∂sq
∂et

∂Rr

∂et

∂t

∂et

∂Rq

∂et

∂tq

∂et

∂sq
∂es

∂Rr

∂es

∂t

∂et

∂Rq

∂es

∂tq

∂es

∂sq

 (18)

Note that the first dimension size 15 is the number of
constraints or the error terms. The above Jacobian can be
simplified by identifying zero blocks:

∂e

∂x
=


∂eR

∂Rr
0

∂eR

∂Rq
0 0

∂et

∂Rr

∂et

∂t

∂et

∂Rq

∂et

∂tq
0

0 0 0 0
∂es

∂sq

 (19)

Now we rewrite error terms explicitly to prepare for the



derivation of ∂e
∂x :

eR =

 · · ·
[vi]×RT

r Rqui
· · ·

 ∈ R9×1

et =

 · · ·
λiu

T
i RT

q (tq − t) + uTi RT
q Rrl

· · ·

 ∈ R3×1

es =

 · · ·
s2
i − λi
· · ·

 ∈ R3×1

(20)

where ui are unit vectors:

u1 = (1, 0, 0)T , u2 = (0, 1, 0)T , u3 = (0, 0, 1)T (21)

APPENDIX II
LINEARIZATION

Computing Jacobian involving Rr and Rq requires lin-
earization which can be achieved by applying the small angle
approximation:

Rr = RrδR, δRr ≈ I + [wr]× (22)

and
Rq = RqδRq, δRq ≈ I + [wq]× (23)

where [·]× is the skew-symmetric operator:

[w]× =

 0 −w3 w2

w3 0 −w1
−w2 w1 0

 (24)

and I is the identity matrix. Now we apply the anti-
commutative rule of cross product

a× b = [a]×b

=− b× a = −[b]×a
(a,b ∈ R3) (25)

to linearize the error terms w.r.t. rotation Rr and Rq:

ēR|Rr
=

 · · ·
[vi]×(I + [wr]×)TRT

r Rqui
· · ·


=

 · · ·
[vi]×(I− [wr]×)RT

r Rqui
· · ·


=

 · · ·
[vi]×RT

r Rqui − [vi]×[wr]×RT
r Rqui

· · ·


=

 · · ·
[vi]×RT

r Rqui + [vi]×[RT
r Rqui]×wr

· · ·



(26)

ēR|Rq =

 · · ·
[vi]×RT

r Rq(I + [wq]×)ui
· · ·


=

 · · ·
[vi]×RT

r Rqui + [vi]×RT
r Rq[wq]×ui

· · ·


=

 · · ·
[vi]×RT

r Rqui − [vi]×RT
r Rq[ui]×wq

· · ·


(27)

ēt|Rr =


· · ·

λiu
T
i RT

q (tq − t)
+uTi RT

q Rr(I + [wr]×)l
· · ·



=


· · ·

λiu
T
i RT

q (tq − t)
+uTi RT

q Rrl + uTi RT
q Rr[wr]×l

· · ·



=


· · ·

λiu
T
i RT

q (tq − t)
+uTi RT

q Rrl− uTi RT
q Rr[l]×wr

· · ·



(28)

ēt|Rq
=


· · ·

λiu
T
i (I + [wr]×)TRT

q (tq − t)
+uTi (I + [wr]×)TRT

q Rrl
· · ·



=


· · ·

λiu
T
i (I− [wr]×)RT

q (tq − t)
+uTi (I− [wr]×)RT

q Rrl
· · ·



=


· · ·

−λiuTi [wr]×RT
q (tq − t)

−uTi [wr]×RT
q Rrl + · · ·
· · ·



=


· · ·

λiu
T
i [RT

q (tq − t)]×wr

+uTi [RT
q Rrl]×wr + · · ·
· · ·



(29)

In the linearized cost function et|Rq , constant terms not
related to x are omitted. The error terms are linearized in
that now they are linear w.r.t. wr and wq . Finally, from the
above linearized equations, we can have the Jacobian blocks:

∂eR

∂Rr
=

 · · ·
[vi]×[RT

r Rqui]×
· · ·


∂et

∂Rr
=

 · · ·
−uTi RT

q Rr[l]×
· · ·


∂eRr

∂Rq
=

 · · ·
−[vi]×RT

r Rq[ui]×
· · ·


∂et

∂Rq
=

 · · ·
λiu

T
i [RT

q (tq − t)]× + uTi [RT
q Rrl]×

· · ·



(30)

As to Jacobian w.r.t. translation and scale, it is straight



forward:
∂et

∂tr
=

 · · ·
−λiuTi RT

q

· · ·


∂et

∂tq
=

 · · ·
λiu

T
i RT

q

· · ·


∂es

∂sq
=

· · ·2si
· · ·


(31)

The computed Jacobian blocks can then be filled into (19)
and finally used to construct the complete Jacobian matrix
used in the LM method (see Algorithm 1).


