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Discovering Synergies for Robot Manipulation
with Multi-Task Reinforcement Learning

Zhanpeng He and Matei Ciocarlie

Abstract— Controlling robotic manipulators with high-
dimensional action spaces for dexterous tasks is a challenging
problem. Inspired by human manipulation, researchers have
studied generating and using postural synergies for robot
hands to accomplish manipulation tasks, leveraging the lower
dimensional nature of synergistic action spaces. However, many
of these works require pre-collected data from an existing
controller in order to derive such a subspace by means of
dimensionality reduction. In this paper, we present a framework
that simultaneously discovers both a synergy space and a multi-
task policy that operates on this low-dimensional action space
to accomplish diverse manipulation tasks. We demonstrate that
our end-to-end method is able to perform multiple tasks using
few synergies, and outperforms sequential methods that apply
dimensionality reduction to independently collected data. We
also show that deriving synergies using multiple tasks can
lead to a subspace that enables robots to efficiently learn new
manipulation tasks and interactions with new objects.

I. INTRODUCTION

Recent advances show promise towards building competent
robots hands that are able to achieve complex manipulation
tasks. Many of these robots are designed to be versatile for
general manipulation tasks and have numerous degrees of
freedom. For example, the Shadow Hand can accomplish
various in-hand manipulation tasks: finger pivoting, sliding,
and gaiting a cube [|]. However, using robots with such
high-dimensional control spaces remains a challenge in
both model-based control and model-free methods. For
model-based methods, such as model-predictive control, it is
difficult to derive an accurate model due to the manipulators’
high degrees of freedom. Even when an accurate model
exists, model-based methods are computationally expensive
when using high-dimensional state spaces. In the case of
model-free methods, even when it is indeed possible to
learn robust policies for manipulation tasks, the training
process still requires large amounts of robot experience to
accommodate the large action space of highly dexterous hands.
Finally, highly actuated hands are difficult and expensive to
manufacture, and can be fragile in use. From all of these
perspectives, using robot hands with a very high dimensional
control space remains a challenge.

In contrast, humans can achieve many manipulation tasks
in a synergistic way. They can achieve efficient object inter-
actions by selecting hand postures from a small configuration
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Fig. 1: Example of multi-task synergy discovery. The DiscoSyn
algorithm can discover manipulation synergies such as the 3-
dimensional linear synergy set shown in (a), while simultaneously
deriving control policies that use these synergies for manipulation
tasks such as the valve turning task shown in (b). Learned synergies
also facilitate subsequent learning of new manipulation tasks, such
as the top-down screwdriving task shown in (c).

space [2][3][4], even though human hands can reach a
large number of postures. Inspired by human manipulation,
roboticists have also explored the concept of motor synergies
in the context of robotic manipulation, looking to find a
low-dimensional subspace of postures that allow for efficient
planning for grasping tasks. Such a subspace has generally
been extracted by performing dimensionality reduction on
ample amounts of task solution data collected via simulations
or human demonstrations.

However, collecting such data for dimensionality reduction
can be slow and expensive since this process requires an
expert with domain knowledge of the robotic task to generate
solutions. Even when such data exist, the extracted synergies
can be biased if the solutions that they are learned on lack
variety. Furthermore, although human hands inspire many
designs of robot manipulators, these have different kinematic
structures, and robots do not necessarily accomplish tasks in
the same ways as humans. Therefore, synergies generated
from human collected data might not be helpful for robot
manipulation, and discovering synergies directly using robotic
hands remains an essential problem.

While many works on synergies focus on grasping, finding
such a subspace can be helpful in many others manipulation
tasks, and such a subspace could potentially be shared across
multiple tasks. For example, using a screw driver from a top-
down pose and turning a cylindrical dial can be achieved using
similar hand postures to grasp the target object. Learning
synergies from a number of diverse tasks exhibiting complex



dynamics could lead to a subspace that in turn contains
diverse hand postures. Such a subspace can potentially provide
efficient exploration while interacting with new objects and
hence allow for learning a control policy faster for an unseen
task.

Finally, although linear synergies are well studied in the
field of grasping, they can have limited applicability since
linear models have limited capacity. We would like to discover
linear synergies when feasible, but also allow for the flexibility
of learning non-linear synergies which are more capable of
expressing diverse hand postures.

In this work, we present DiscoSyn, a framework that
simultaneously discovers a synergy space and control policies
that leverage this space for manipulation. Instead of extracting
hand synergies from pre-collected control data, our method
builds on multi-task reinforcement learning, which allows us
to learn policies for multiple tasks that can share a synergy
space. The results of our framework include both a policy that
selects task-specific sequences of low-dimensional actions,
and a synergy model shared across all tasks which projects
these synergistic actions back to the original high-dimensional
action space. We summarize our contributions as follows:

o To the best of our knowledge, we are the first to propose
an algorithm that can discover synergies shared across
multiple manipulation tasks and simultaneously learn
policies that select actions from the synergy space.

« We demonstrate that our framework can learn both linear
synergies, which have the advantage of being easily
interpretable, and non-linear synergies, which provide
a larger space that can be more suitable for learning
diverse manipulation tasks.

« We show evidence that the learned synergies allow an
agent to explore new environments efficiently and can
be used to learn previously unseen tasks.

II. RELATED WORK

Inspired by human-like manipulation, robotics researchers
have attempted to leverage synergistic manipulation for a wide
range of applications. Several works [4][S][6][7][8][O1[10][11]
applied dimensionality reduction on hand postures to study
this behavior. These works follow the same sequential
pipeline: their approaches first gather high-dimensional ac-
tions and extract synergies using by applying dimensionality
reduction techniques, such as Principal Component Analysis
(PCA), and show that a few principal components (PC’s) can
explain most of the variance. However, these only study linear
synergies and most of them only work on grasping tasks. Our
work, in contrast, focuses on control synergies of robotic
hands that are useful for multiple dexterous manipulation
tasks and do not place constraints of the form of synergies.
Another key feature of our framework is that it does not rely
on pre-collected data. Our agent finds solutions for multiple
tasks when discovering synergies.

To find solutions for robotic tasks automatically, our
framework utilizes reinforcement learning, which has shown
promising results in learning different manipulation tasks
[12][13][14][15]. Nagabandi et al. [16] propose a model-based

method that learns a dynamics model of the environment
and then multiple tasks such as a Baoding ball, weight
pulling, and valve turning. OpenAl et al. [|1] demonstrate
the effectiveness of model-free methods, such as Proximal
Policy Optimization (PPO)[17], on learning dexterous in-hand
manipulation. However, all of these works learn policies
on the full-dimensional action space. Our work leverages
these advances of RL algorithms, but also allows an agent to
discover a low-dimensional action space that can be used to
learn new tasks efficiently.

To discover synergies across different tasks, we place our
agents in multiple environments. Researchers have extensively
studied learning multiple tasks simultaneously using RL and
find that multi-task RL can leverage shared information across
different tasks [18][19][20][21]. Hausman et al. [22] proposed
a framework that learns continuous task representations
and a task-dependent policy. Yu et al. [23] investigate the
performance of various multi-task RL algorithms; for example,
multi-task soft actor-critic, on several multi-task sets (Meta-
world). Sodhani et al. [24] present a method that leverages
languages as context to learn representations of a task to
facilitate learning of multiple tasks. All of these works show
promising results on learning multiple tasks considering
extracting prior knowledge to learn unseen tasks. To achieve
this, many previous works show the generalization ability
of their task representation and try to find an appropriate
representation for an unseen task. Our work, focused on
robot hands, proposes a synergy model that contains hand
configurations that allow for efficient exploration of unseen
manipulation tasks and objects.

The closest work to ours is Group Factor Policy Search
(GrouPS)[25], which integrates Group Factor Analysis (GFA)
with RL. GrouPS designs the policy to be of a particular
structure, which can be further interpreted as a linear synergy
model, and directly applies policy search using this policy.
While it shows promising results on extracting synergies
from a two-arm grasping task, it can only use a linear policy
in a single task setting. On the other hand, our framework
provides the flexibility of choosing the structure of both the
task-dependent policy and the synergy model and we are thus
able to apply it to more complex manipulation tasks. While
GrouPS focus on learning synergies on a single grasping task,
our work emphasizes the importance of extracting synergies
from multiple manipulation tasks that require more dexterous
motor skills.

III. APPROACH

Our method aims to extract control synergies among diverse
tasks which provide a compact subspace for agents to derive a
policy efficiently. We employ a general definition of a synergy
— a manifold that encodes a subset of high-dimensional control
commands. A point z € R in synergy space represents a
low-dimensional action, which can then be projected to a
point a € R in the original high-dimensional action space
using a synergy model p(a|z). The parameters ¢ of this
model effectively determine the synergy space. For example,
if we choose to use a deterministic linear synergy model,
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Fig. 2: Overview of DiscoSyn. Observations from each task are fed to the task-dependent policy head 7:qsx to derive low dimensional
actions z. Then, the synergy model p takes the z as inputs and infer the full dimensional actions a that can be directly applied to the

environment.

then ¢ € R**? encapsulates a matrix, and p represents the
multiplication of z by ¢. However, the general notation
introduced here allows for more general, potentially non-
linear or non-deterministic synergy models. The first key
goal of our approach is thus to learn the parameters ¢ that
determine the behavior of a synergy model appropriate for a
given set of manipulation tasks.

In addition to learning the synergy model p(a|z), the second
key goal of our framework is to simultaneously learn task-
conditioned policies that find task solutions by generating
sequences of low-dimensional actions z. Critically, we force
our agent to discover shared synergies among different tasks
by only using one synergy model to decode these low-
dimensional solutions.

In summary, our agent takes observations from a task, and
generates an low-dimensional action with a task-conditioned
policy. This synergistic action is then projected back into a
full-dimensional action using a synergy model shared across
all tasks. Finally the full-dimensional action is applied to the
environment.

A. Multi-task Reinforcement Learning

To realize this framework, we train our agent via multi-
task RL in multiple Markov Decision Processes (MDP’s).
An MDP is identified by a tuple of (S, A, T, ptran), Where
S € R™ represents the state space, and A € R! denotes the
action space, r is the reward function 7(s, a) and peay is the
probability of transitioning to the next state s’: piran(s']s, a).
We formally define our problem of multi-task RL as follows.
We assume that we have access to a set of tasks N/ =
[1,2,..., N], which may vary in any aspects of a standard
MDP. The goal of multi-task RL is to learn a task-conditioned
policy m(als,n) that maximizes the average expected returns
across all the tasks, or E,,x[Ex[> ;277" (ar, s¢)]], where
v; is the discounted factor at time step .

B. Synergy learning with multi-task RL

To integrate synergy learning with multi-task RL, our
policy comprises a tasks-conditioned component 74,5, Whose
outputs are low-dimensional actions z, and a synergy model
p that takes low-dimensional actions and recovers the full
dimensional actions a: p(a|z). Hence, as shown in Fig. 2, an
action can be computed from a state and the task identity by
m(als,n) = masr(2]s, n)p(al2).

Our goal is to discover a synergy space that is com-
pact but still contains diverse postures that are efficient
for learning different tasks. While learning hand syner-
gies with multiple tasks can potentially lead to such a
diverse space, we encourage our policy to learn diverse
solutions in the full-dimensional action space of each
task by employing maximum-entropy RL. Specifically, in-
stead of optimizing for the general multitask expected
return, we optimize for a maximum-entropy expected return:
maxy Er nen { S0 (r™(se, ar) + oH[mg(als:, n)])]

By itself, the objective function does not provide intuitions
about optimizing the synergy space. However, we can derive a
lower bound' of the entropy term H[rg(as|s¢,n)] by applying
Jensen’s Inequality:

Hlmg(at|st,n)] = Ex[—log mg(ar|st, n)]

> Ery(a,z]s,n) [log( ((alazz Zi)}
|

—Ero(a,zs,n) [ log q(z]at) (1)
+ H[ﬂe(zt\St, ﬂ)} + E.,re(z|5,n) [H[p¢(at|zt)]}

Equation 1 gives us an intuition on how to optimize
for such a lower action space. The first term suggests
that the low dimensional actions should be identifiable by

A detailed proof is included in https://roamlab.github.io/discosyn/.


https://roamlab.github.io/discosyn/

- B,
|, ¢ SN
Taskset #1 \\\ S\
Valve/Furning #0 Valye-Furning #1
=
R
Taskset #2 W

ram '

Dice R'e-orientating Yalve Turning

Vs >
e | 1

.

SRR

,“1\1

Valve' Turhing #2 Valve Turning #3

Weight Pulling

Fig. 3: Two task sets are used to test DiscoSyn. Task set #1: Turning valves with different number of handles. Task set #2: Four tasks that
have different goals (represented as different reward functions) and different dynamics (represented as different transition functions).

the full-dimensional actions. The second term and third
term encourage our agent to find diverse solutions for each
task. Since the true distribution g(z|a) is not tractable, we
approximate it by learning a discriminator gy (z|a) from
sampled data. In summary, we optimize our task-conditioned
policies and the synergy model using an extended reward:

‘C(ev ¢) = max E’Tr(a,z\s,n) [Z ’Yif(stv Qt, Zt, n)] 2
& teT =0

where

7(8t, at, ze,m) = 1" (8¢, at) + a1 EBpen [H (o (2] 8¢, 1))
+ ag log gy (2] ar)
+ asH (pg(ai]2)) 3)
Here, a1, ag, as are constant. Algorithm 1 shows the

procedure of co-optimizing a task-dependent policy and a
synergy model. We use PPO to optimize 7 and p.

Algorithm 1 DiscoSyn training

1: while returns have not converged do

2:  Sample a batch of tasks n € N

3:  Sample H trajectories using the current policy
Trask (2|8, n)p(alz) for each sampled task

4:  Optimize discriminator ¢ using collected (z, a)

5:  Optimize 745, and p with Eq. 2

6: end while

C. Implementation Details

1) Task-conditioned policy: One naive implementation of
the task-conditioned policy 7.4 can be a single model whose
inputs combine the state s and task identity n. However, we
empirically found that using a single model fails to learn
all the tasks. This can be caused by conflicts in gradients
since the tasks we include in our task set require an agent to
perform diverse motor skills. Hence, we employ a multi-head
structure for m;4s1, including N models while training our
agent with N tasks. When our agent encounters task n, we
pick the nth model and feed the observation input to derive
a low dimensional action z.

2) Synergy model: The framework presented so far does
not specify the concrete form of the synergy model p(a|z).
We have used it in this work to learn two forms of synergies:
linear and non-linear.

Linear synergies produce a manifold that can be interpreted
analytically and can be useful in robotic hand design since
they provide intuitions for underactuation mechanisms. To
learn linear synergies, we employ the dimensionality reduction
view also used in other works and treat our synergy model
as a reversed process of dimensionality reduction.

We parameterize our linear synergy models with a matrix
¢ € RY*?, In the case of using a deterministic synergy model,
we can derive a full-dimensional action a by multiplying z
by ¢. In this work, during training, we use stochastic synergy
models to encourage exploration. Thus, we treat the product
of z and ¢ as parameters of the full-dimensional action
distribution. Specifically, in our experiments, we use normal
distributions and calculate the mean by a.eqn = 2 - ¢. Then,
we model the standard deviation using a vector in the same
shape as @.neqn. During testing, we remove the stochasticity
of our synergy model by only using @,,eqn as our action
output a for stable hand behaviors.

On the other hand, although non-linear synergies are
difficult to interpret, non-linear models have a larger capacity
to produce diverse hand postures, potentially increasing
versatility. To learn non-linear synergies, we can use any non-
linear models for p(a|z). Here, we use multi-layer perceptrons
(MLP) to learn non-linear synergies.

D. Learning unseen tasks using learned synergy model

DiscoSyn presents a method to learn a hand configuration
space for robot manipulation tasks. This space is generally
of much smaller dimensionality than the original full di-
mensional action space, and thus provides an opportunity to
speed up learning of new tasks, i.e. tasks not included in
the original set that the synergy model was learned on. To
learn a previously unseen task n/, where n’ ¢ N, we take
a learned synergy model p(a|z), freeze the parameters of
p, and directly optimize a task-dependent policy 7 (z|s,n’),
whose outputs are lower-dimensional actions z.
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Fig. 4: Training curves for task set #1.
IV. EXPERIMENTS AND RESULTS

A. Synergies discovery and baselines

To test if our method can discover synergies for multiple
tasks, we apply DiscoSyn on two training task sets. As shown
in Fig 3, each task set contains four manipulation tasks; we
will discuss their design considerations below. Although these
tasks have different observation spaces, we use a multi-headed
structure network for the task-dependent policy msqsk (2|8, )
(see Sec. III-C). Hence, the input dimension can be different
for each head. We also test our method using different
numbers of dimensions for the z space, which corresponds to
the number of synergies we extract. We evaluate the policy
learning performance, as well as the ability to extract low
dimensional representations for the high dimensional actions,
along with the explained variance of the data.

One of the key features of DiscoSyn is the ability to
simultaneously learn policies and synergies. To evaluate
its performance, we compare against a sequential baseline
that produces synergies via dimensionality reduction on pre-
collected solutions of each task. For this baseline, we first
generate task solutions by training independent polices for
each task, and collect trajectories using the learned RL
agents. Then, we apply dimensionality reduction to these
data; we use PCA as a linear method to compare against
the linear version of DiscoSyn, and a neural-network-based
auto-encoder as a non-linear method to compare against the
non-linear version of DiscoSyn. After applying the chosen
dimensionality reduction method to extract synergies, we
finally then attempt to train a policy that operates on the
resulting low dimensional action space to learn each task.

B. Task sets

We apply our method to learn manipulation tasks to 20-
DoF simulated Shadow hand. We design the two task sets to
be different across different characterstics of an MDP and to
require the hand to interact with different objects.

1) Task set #1: This set contains four tasks that only vary
on the transition model and have the same reward function.
Specifically, we ask the hand to turn counter-clockwise
different types of valves (with different number of handles).

Valve0 Valvel Valve2 Valve3

PCA4
AE4
PCA6
AE6
DiscoSyn3-L
DiscoSyn3-NL
DiscoSyn4-L
DiscoSyn4-NL

TABLE I: Task set #1 results. Each row shows the results of a method
and the name of the method represent: the underlying mechanism to
extract synergies, the number of synergies and the type of synergy
model (L for linear and NL for non-linear). For example, DiscoSyn3-
L represent using DiscoSyn with 3 linear synergies.

Valve Weight
Pulling

NN NN S
SN X % % %
NN R
NANENE NN N

Dice Screwing

PCA4
AE4
PCA6
AE6
DiscoSyn4-L
DiscoSyn4-NL
DiscoSyn6-L
DiscoSyn6-NL

TABLE II: Task set #2 results.

NSNSSSSSNSx
AN NN
NSNS X X% X% X% %
NSNS SNAKNS

2) Task set #2: This set contains four tasks that vary
on both the transition model and the reward function: dice
reorienting, weight pulling, valve turning, and screwing. We
design this task set to require the manipulation in different
degrees of freedom. For example, the dice has 6 DoF, while
the screw only has a hinge and sliding joints.

C. Performance

As shown in Table I, DiscoSyn can learn all the tasks in
task set #1 using 3 synergies with both linear and non-linear
synergies”. On the other hand, for the more challenging task
set #2, our method learns all the tasks using 6 synergies but
fails to tackle the whole task set using 4 linear synergies. With
non-linear synergies, DiscoSyn can find a low-dimensional
subspace that can allow for policy learning for all four tasks
in task set #2.

As shown in Table I, the sequential baseline with linear
(PCA) synergies only learns 2 out of 4 tasks from task set #1,
even when using 6 synergies. On the other hand, the sequential
baseline with non-linear (AE) synergies can perform 3 out of
4 tasks with 4 synergies. For taskset #2, the PCA baseline only
learns 2 out of 4 tasks with 6 synergies, and only learns one
task with 4 synergies. In both task sets, the AE performance
does not degrade with a decreased number of dimensions of
the latent space, which can be explained by the large capacity
of AE models.

2 For more details about polices and synergy models, please
find more training curves, detailed task descriptions and videos on:
https://roamlab.github.io/discosyn/.
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Fig. 5: Training curves of learning the sparse goal-condition valve
turning with a pretrained synergy model (in blue) and in full
dimension action space with standard RL (in orange).

D. Learning unseen tasks with learned synergies

In this experiment, we test if the learned synergies can be
leveraged for learning new tasks. We design new test tasks for
both sets: 1. turning a differently-shaped (cylindrical) valve;
2. turning a known valve in a different direction (clockwise);
3. using a screwdriver in a different direction (top-down).
We use the cylindrical valve to test if the synergy model can
be used to interact with novel-shape objects, the CW valve
turning task to see if the synergy model can provide rich
learning signals for another task with a seen object, and the
top-down screwing to test if the synergies help learning task
with different dynamics.

We find that, with learned synergies, an agent can learn
all of these tasks efficiently (representative runs of the
learned policy can be found in the video accompanying
the submission). We attribute this to the learned synergies
providing rich interaction between the manipulator and the
objects and hence rich reward signals that lead to fast learning
of unseen tasks.

While our synergy models can be transferred to unseen
tasks, we further test whether the synergies learned allows
for efficient explorations. We design a sparse reward task that
requires the hand to turn the valve to a specific goal joint
position. The agent is only rewarded by 1 if the distance
between the valve joint position and the target is smaller than
a threshold o; otherwise the reward is 0. As shown in Figure
5, an agent using learned synergies observes rewards within
a few time steps and starts learning the task, while a PPO
agent operating on the full dimensional action space requires
more than 40,000 steps to see the first reward signals.

V. DISCUSSION

1) Can DiscoSyn discover synergies while simultaneously
learning tasks? Our results show that we can extract 3-, 4-,
and 6-synergy spaces, and our policies learn to accomplish
all tasks in the experimental sets. Furthermore, given the
structure of our framework, the lower-dimensional action
space always explains 100% of the variance of the high-
dimensional actions.

On the other hand, applying PCA on independently learned
policies only achieves explained variance of 62.8%, 50.8%
and 41.5% using 6, 4 and 3 respectively for task set #1, and
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Fig. 6: t-SNE visualization of low dimensional actions selected by
our policy for task set #1 (a) and task set #2 (b).

only slightly higher variance for task set #2. This implies
that the actions learned from standard RL do not result in a
linear structure. When forced to learn a policy confined to
the already-defined lower dimensional space, the sequential
baseline fails to solve all tasks.

Figure 1 presents some of the hand postures our framework
learns and shows how our learned synergies are used in the
training and test tasks. Our policy uses hand postures from
the synergy space to interact with the object and also to
transition to the next gait cycle.

2) How is DiscoSyn affected by the training tasks? Our
results show that the diversity of a task set does influence
the learning of the synergy model. This is expected: if a task
set contains many different tasks, the capacity of z space
needs to be larger. Our experimental results show that we
cannot learn a linear synergy model with 4 synergies for task
set #2 while DiscoSyn can use as few as 3 synergies for
task set #1. We also visualize how each task utilizes the z
space for both task sets. Since the tasks in task set #1 are
similar, they share a large portion of the z space. On the other
hand, in task set #2, which contains more diverse tasks, the
task-dependent policies tend to occupy different parts of the z
space. For example, the valve turning and dice re-orientation
only overlap in a small space.

VI. CONCLUSIONS

Our results show that DiscoSyn is able to learn synergies
that are effective for multiple manipulation tasks, while
simultaneously learning policies that operate on this low
dimensional action space in an end-to-end manner. We also
demonstrate that the learned synergy model can be reused
for unseen task and allows for efficient exploration during
transfer. Compared to a classic pipeline that extracts synergies
on existing control data, our method can use fewer synergies
to solve multiple tasks. We note that, in its current stage,
DiscoSyn is limited by requiring a pre-defined number of
latent dimensions. In the future, we hope to equip DiscoSyn
with the ability to discover the dimensionality of the smallest
synergy space needed for a set of task, and also to apply its
results to the design of underactuated robotic hands.
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