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Abstract— Finger-gaiting manipulation is an important skill
to achieve large-angle in-hand re-orientation of objects. How-
ever, achieving these gaits with arbitrary orientations of the
hand is challenging due to the unstable nature of the task. In
this work, we use model-free reinforcement learning (RL) to
learn finger-gaiting only via precision grasps and demonstrate
finger-gaiting for rotation about an axis using only on-board
proprioceptive and tactile feedback. To tackle the inherent
instability of precision grasping, we propose the use of initial
state distributions that enable effective exploration of the state
space. Our method can learn finger gaiting with better sample
complexity than the state-of-the-art. The policies we obtain are
robust to noise and perturbations, and transfer to novel objects.
Videos can be found at https://roamlab.github.io/learnfg/

I. INTRODUCTION

Dexterous in-hand manipulation [1] is the ability to move
a grasped object into a desired pose within the hand. Humans
routinely use in-hand manipulation to perform tasks such as
re-orienting a tool from the initial grasp into a useful pose,
securing a better grasp on the object, exploring the shape of
an unknown object, etc. Thus, robotic in-hand manipulation
is an important step towards the general goal of manipulating
objects in cluttered and unstructured environments such as
in a kitchen or a warehouse. However, versatile in-hand
manipulation remains a long standing challenge.

A whole spectrum of methods have been considered for
in-hand manipulation; online trajectory optimization methods
[2] and model-free deep reinforcement learning (RL) [3]
stand out for highly actuated dexterous hands. Model-based
online trajectory optimization methods have succeeded in
generating complex behaviors for dexterous robotic ma-
nipulation, but not for finger-gaiting as these tasks fatally
exacerbate their limitations: transient contacts introduce large
non-linearities in the model, which also depends on hard-to-
model contact properties.

While RL has been successful in demonstrating diverse in-
hand manipulation skills both in simulation and on real hands
[4], the policies obtained are object-centric and require large
training times. In many cases, these policies do not transfer
to arbitrary orientations of the hand as they expect the palm
to support the object during manipulation —a consequence
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Fig. 1: A learned finger-gaiting policy that can continuously re-
orient the target object about the hand z-axis. The policy only uses
sensing modalities intrinsic to the hand (such as touch and proprio-
ception), and does not require explicit object pose information from
external sensors.

of the policies being trained in a palm-up hand orientation,
which simplifies training. In other cases, the policies require
extensive external sensing involving multi-camera systems to
track the fingers and/or the object, systems that are hard to
deploy outside the lab.

Tactile feedback has the potential to enable robust and
generalizable in-hand manipulation [5] and to eliminate the
need for external sensing. However, integrating tactile feed-
back with RL is a challenge of its own. Besides the general
difficulty of simulating the transduction involved, tactile
feedback is often high dimensional which can prohibitively
drive up the number of training samples required. Hence,
prior works using RL for in-hand manipulation either avoid
using tactile feedback altogether, or consider tasks requiring
fewer training samples where it is feasible to learn directly
on a real hand.

We too use RL, but focus on learning finger-gaiting
(manipulation involving finger substitution and re-grasping)
and finger-pivoting (manipulation involving the object in
hinge-grasp) skills. Both skills are important towards en-
abling large-angle in-hand object re-orientation: achieving
an arbitrarily large rotation of the grasped object around a
given axis, up to or even exceeding a full revolution. Such
a task is generally not achievable by in-grasp manipulation
(i.e. without breaking the contacts of the original grasp) and
requires finger-gaiting or finger-pivoting (i.e. breaking and
re-establishing contacts during manipulation); these are not
restricted by the kinematic constraints of the hand and can
achieve potentially limitless object re-orientation.

We are interested in achieving these skills exclusively
through using fingertip grasps (i.e precision in-hand ma-
nipulation [6]) without requiring the presence of the palm
underneath the object, which enables the policies to be used
in arbitrary orientations of the hand. However, the task of
learning to manipulate only via such precision grasps is a
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significantly harder problem: action randomization, respon-
sible for exploration in RL, often fails as the hand can easily
drop the object.

Furthermore, we would like to circumvent the need for
cumbersome external sensing by only using internal sensing
in achieving these skills. The challenge here is that the
absence of external sensing implies we do not have informa-
tion regarding the object such as its global shape and pose.
However, we posit that internal sensing by itself can provide
object information sufficient towards our goal.

We set out to determine if we can even achieve finger-
gaiting and finger-pivoting skills purely through intrinsic
sensing in simulation, where we evaluate both proprioceptive
feedback and tactile feedback. To this end, we consider the
task of continuous object re-orientation about a given axis,
aiming to learn finger-gaiting and finger-pivoting without
object pose information. With this approach, we hope to learn
policies to rotate object about cardinal axes and combine
them for arbitrary in-hand object re-orientation. To overcome
challenges in exploration, we propose collecting training
trajectories starting from a wide range of grasps sampled
from appropriately designed initial state distributions as an
alternative exploration mechanism.

We summarize the contributions of this work as follows:
1) We learn finger-gaiting and finger-pivoting policies

that can achieve large angle in-hand re-orientation
of a range of simulated objects. Our policies learn
to grasp and manipulate only via precision fingertip
grasps using a highly dexterous and fully actuated
hand, allowing us to keep the object in a stable grasp
without the need for passive support at any instance
during manipulation.

2) We are the first to achieve these skills by making use of
only intrinsic sensing such as proprioception and touch,
while also generalizing to multiple object shapes.

3) We present an exhaustive analysis of the importance of
different internal sensor feedback for learning finger-
gaiting and finger-pivoting policies in a simulated
environment using our approach.

II. RELATED WORK

Early model-based work on finger-gaiting [7][8] [9] [10]
and finger-pivoting [11] generally make simplifying assump-
tions such as 2D manipulation, accurate models, and smooth
object geometries which limit their versatility. More recently,
Fan et al. [12] and Sundaralingam et al. [13] use model
based online optimization and demonstrate finger-gaiting in
simulation. These methods either use smooth objects or
require accurate kinematic models of the object, which make
these methods challenging to transfer to real hands.

Andrychowicz et al. [4] demonstrate finger-gaiting and
finger-pivoting using RL, but as previously discussed, their
policies cannot be used for arbitrary orientations of the
hand. This can be achieved using only force-closed precision
fingertip grasps, but learning in-hand manipulation using
only these grasps is challenging with few prior work. Li et al.
[14] learn 2D re-orientation using model-based controllers to

ensure grasp stability in simulation. Veiga et al. [15] demon-
strate in-hand reorientation with only fingertips but these
object centric policies are limited to small re-orientations
via in-grasp manipulation and still require external sensing.
Shi et al. [16] demonstrate precision finger-gaiting but only
on a lightweight ball. Morgan et al. [17] also show precision
finger-gaiting but with an under-actuated hand specifically
designed for this task. We consider finger-gaiting with a
highly actuated hand, a harder problem due to poor sample
complexity stemming from additional degrees of freedom.

Some prior work [18][19][20] use human expert trajecto-
ries to improve sample complexity for dexterous manipula-
tion. However, these expert demonstrations are hard to obtain
for precision in-hand manipulation tasks and even more so
for non-anthropomorphic hands. Alternatively, model-based
RL has also been considered for some in-hand manipulation
tasks: Nagabandi et al. [21] manipulate boading balls but
use the palm for support; Morgan et al. [17] learn finger-
gaiting but with a task specific under-actuated hand. How-
ever, learning a reliable forward model for precision in-hand
manipulation with a fully dexterous hand can be challenging.
Collecting data involves random exploration, which, as we
will discuss later, has difficulty exploring in this domain.

Prior work using model-free RL for manipulation rarely
use tactile feedback as tactile sensing available on real hand
is often high dimensional and hard to simulate [4]. Hence,
van Hoof et al. [22] propose learning directly on a real
hand, but this limits them to tasks learnable on real hands.
Veiga et al. [15] learn a higher level policy through RL,
while having the low level controllers exclusively deal with
tactile feedback. However, this method deprives the policy
from leveraging rich tactile feedback beneficial in other
challenging tasks. While Melnik et al. [23] show that tactile
feedback improves sample complexity in such tasks, they use
high-dimensional tactile feedback with full coverage that is
hard to obtain on a real hand. We consider low-dimensional
tactile feedback covering only the fingertips.

Contemporary to our work, Chen et al. [24] show in-
hand re-orientation without support surfaces that generalizes
to novel objects. The policies exhibit complex dynamic
behaviors including occasionally throwing the object and re-
grasping it in the desired orientation. We differ from this
work as our policies only use sensing that is internal to the
hand, and always keep the object in a stable grasp so as to be
robust to perturbation forces at all times. Furthermore, our
policies require a number of training samples that is smaller
by multiple orders of magnitude, a feature that we attribute to
efficient exploration via appropriate initial state distributions.

III. LEARNING PRECISION IN-HAND RE-ORIENTATION

In this work, we address two important challenges for
precision in-hand re-orientation using reinforcement learn-
ing. First, we propose a hand-centric decomposition method
for achieving arbitrary in-hand re-orientation in an object-
agnostic fashion. Next, we identify that a key challenge
of exploration for learning precision in-hand manipulation
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Fig. 2: Hand-centric decomposition of in-hand re-orientation into
re-orientation about cardinal axes.

skills can be alleviated by collecting training trajectories
starting at varied stable grasps. We use these grasps to
design appropriate initial state distributions for training. Our
approach assumes a fully-actuated and position-controlled
(torque-limited) hand.

A. Hand-centric decomposition
Our aim is to push the limits on manipulation with only

intrinsic sensing, and do this in a general fashion without
assuming object knowledge. Thus, we do so in a hand-
centric way: we learn to rotate around axes grounded in the
hand frame. This means we do not need external tracking
(which presumably needs to be trained for each individual
object) to provide object-pose.1 We also find that rewarding
angular velocity about desired axis of rotation is conducive to
learning finger-gaiting and finger-pivoting policies. However,
learning a single policy for any arbitrary axis is challenging
as it involves learning goal-conditioned policies, which is
difficult for model-free RL.

Our proposed method for large-angle arbitrary in-hand re-
orientation is thus to decompose the problem of achieving
arbitrary angular velocity of the object into learning separate
policies about the cardinal axes as shown in Fig. 2. The
finger-gaiting policies obtained for each axis can then be
combined in the appropriate sequence to achieve the desired
change in object orientation, while side-stepping the diffi-
culty of learning a goal-conditioned policy.

We assume that proprioceptive sensing can provide current
positions q and controller set-point positions qd. We note that
the combination of desired positions and current positions
can be considered as a proxy for motor forces, if the
characteristics of the underlying controller are fixed. More
importantly, we assume tactile sensing to provide absolute
contact positions ci ∈ R3 and normal forces tin ∈ R on
each fingertip i. With known fingertip geometry, the contact
normals t̂in ∈ R3 can be derived from contact positions ci.

Our axis-specific re-orientation policies are conditioned
only on proprioceptive and tactile feedback as given by the
observation vector o:

o = [q, qd, c
1 . . . cm, t1n . . . t

m
n , t̂

1
n . . . t̂

m
n ] (1)

where m is the number of fingers. Our policies command
set-point changes ∆qd.

B. Learning axis-specific re-orientation
We now describe the procedure for learning in-hand re-

orientation policies for an arbitrary but fixed axis. Let k̂ be

1We note that there exist applications where specific object poses are
needed at a task level, and for such cases we envision future work where
a high-level object-specific tracker makes use of our hand-centric object-
agnostic policies to achieve it.

𝜙 < 𝜙max

k^

ω

nc≥ 3

Fig. 3: Learning axis conditional continuous re-orientation k̂. We
use the component of angular velocity ω about k̂ as reward when
the object is in a grasp with 3 or more fingertips, i.e nc ≥ 3.

the desired axis of rotation. To learn axis-specific policy πk̂

that continuously re-orients the object about the desired axis
k̂ we use the object’s angular velocity ω along k̂ as reward as
shown in Fig 3. However, to ensure that the policy learns to
only use precision fingertip grasps to re-orient the object, we
provide this reward if only fingertips are in contact with the
object. In addition, we require that at least 3 fingertips are in
contact with the object. Also, we encourage alignment of the
object’s axis of rotation with the desired axis by requiring
the separation to be limited to φmax.

r = min(rmax,ω.k̂) I[nc ≥ 3 ∧ φ ≤ φmax]

+ min(0,ω.k̂) I[nc < 3 ∨ φ > φmax] (2)

The reward function is described in (2), where nc is the
number of fingertip contacts and φ is the separation between
the desired and current axis of rotation. Symbols ∧, ∨, I
are the logical and, the logical or, and indicator function,
respectively. Notice that we also use reward clipping to avoid
local optima and idiosyncratic behaviors. In our setup, rmax

and φmax are both set to 0.5. Although the reward uses the
object’s angular velocity, we do not need additional sensing
to measure it as we only train in simulation with the intent
of zero-shot transfer to hardware.

C. Enabling exploration with domain knowledge

A key issue in using reinforcement learning for learning
precision in-hand manipulation skills is that a random ex-
ploratory action can easily disturb the stability of the object
held in a precision grasp, causing it to be dropped. This dif-
ficulty is particularly acute for finger-gaiting, which requires
fingertips to break contact with the object and transition
between different grasps, involving different fingertips, all
while re-orienting the object. Intuitively, the likelihood of
selecting a sequence of random actions that can accomplish
this feat and obtain a useful reward signal is very low.

For a policy to learn finger-gaiting, it must encounter these
diverse grasps within its training samples so that the policy’s
action distributions can improve at these states. Consider
taking a sequence of random actions starting from a stable
l-finger grasp. While it is possible to reach a stable grasp
with an additional finger in contact (if available), it is more
likely to lose one finger contact, then another and so on
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Fig. 4: (a) Sampling fingertips around the object. (b) Diverse
relevant initial grasps sampled for efficient exploration.

until the object is dropped. Over multiple trials, we can
expect to encounter most combinations of l − 1 grasps. In
this setting, it can be argued that starting from a stable grasp
with all m fingers in contact leads to maximum exploration.
Interestingly, as we will demonstrate in Sec IV-A, we found
this to be insufficient.

Our insight is to observe that through domain knowledge
we are already aware of the states that a sufficiently ex-
ploratory policy might visit. Using domain knowledge in
designing initial distributions is a known way of improving
sample complexity [25][26]. Thus, we use our knowledge of
relevant states in designing the initial states used for episode
rollouts and show that it is critical for learning precision
finger-gaiting and finger-pivoting.

We propose sampling sufficiently-varied stable grasps rel-
evant to re-orienting the object about the desired axis and
use them as initial states for collecting training trajectories.
These grasps must be well distributed in terms of number of
contacts, contact positions relative to the object, and object
poses relevant to the task. To this end, we first initialize the
object in an random pose and then sample fingertip positions
until we find a stable grasp as described in Stable Grasp
Sampling (SGS) in Alg. 1.

In SGS, we first sample an object pose and a hand pose,
then update the simulator with the sampled poses towards
obtaining a grasp. We advance the simulation for a short
duration, ts, to let any transients die down. If the object has
settled into a grasp with at least two contacts, the pose is used
for collecting training trajectories. Note that the fingertips

Algorithm 1 Stable Grasp Sampling (SGS)
Input:ρobj , ρhand, ts, nc,min . object
pose distribution, hand pose distribution, simulation settling
time, minimum number of contacts
Output: sg . simulator state of the sampled grasp

1: repeat
2: Sample object and hand pose: xs ∼ ρobj , qs ∼ ρhand
3: Set object pose in the simulator with xs

4: Set joint positions and controller set-points with qs

5: Step the simulation forward by ts seconds
6: Find number of fingertips in contact with object, nc
7: until nc ≥ nc,min

8: Save simulator state as sg

could be overlapping with the object or with each other as
we do not explicitly check this. However, due to the soft-
contact model used by the simulator (MuJoCo [27]) the inter-
penetrations are resolved during simulation. An illustrative
set of grasps sampled by SGS are shown in Fig 4b.

To sample the hand pose, we start by sampling finger-
tip locations within an annulus centered on and partially
overlaps with the object (Fig 4a). Thus, the probabilities of
each fingertip making contact with the object and of staying
free are roughly the same. With this procedure, not only do
we find stable grasps relevant to finger-gaiting and finger-
pivoting, we improve the likelihood of discovering them, thus
minimizing training wall-clock time.

IV. EXPERIMENTS AND RESULTS

For evaluating our method, we focus on learning precision
in-hand re-orientation about the z- and x- axes for a range of
regular object shapes. (The y-axis is similar to x-, given the
symmetry of our hand model.) Our object set, which consists
of a cylinder, sphere, icosahedron, dodecahedron and cube,
is designed so that we have objects of varying difficulty
with the sphere and cube being the easiest and hardest,
respectively. For training, we use PPO [3]. We chose PPO
over other state-of-the-art methods such as SAC primarily
for training stability .

For the following analysis, we use z-axis re-orientation
as a case study. In addition to the above, we also train
z-axis re-orientation policies without assuming joint set-
point feedback qd. For all these policies, we study their
robustness properties by adding noise and also by applying
perturbation forces on the object (Sec IV-B). We also study
the zero-shot generalization properties of these policies (Sec
IV-C). Finally, through ablation studies we present a detailed
analysis ascertaining the importance of different components
of feedback for achieving finger-pivoting (Sec IV-D).

We note that, in simulation, the combination of qd and q
can be considered a good proxy for torque, since simulated
controllers have stable and known stiffness. However, this
feature might not transfer to a real hand, where transmissions
exhibit friction, stiction and other hard to model effects. We
thus evaluate our policies both with and without joint set-
point observations.

A. Learning finger-gaiting manipulation

Fig 6a shows the learning curves for object re-orientation
about the z-axis for a range of objects from using our method
of sampling stable initial grasps to improve exploration. We
also show learning curves using a fixed initial state (grasp
with all fingers) for representative objects. First, we notice
that the latter approach does not succeed. These policies
only achieve small re-orientation via in-grasp manipulation
and drop the object after maximum re-orientation achievable
without breaking contacts.

However, when using a wide initial distribution of grasps
(sampled via SGS), the policies learn finger-gaiting and
achieve continuous re-orientation of the object with signif-
icantly higher returns. With our approach, we also learn
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Fig. 6: Average returns for (a) z-axis re-orientation and (b) x-axis
re-orientation. Learning with wide range of initial grasps sampled
via SGS succeeds, while using a fixed initial state fails.

finger-pivoting for re-orientation about the x-axis, with learn-
ing curves shown in Fig 6b. Thus, we empirically see that
using a wide initial distribution consisting of relevant grasps
is critical for learning continuous in-hand re-orientation
and that our method results in superior sample-complexity
over the state-of-the-art i.e PPO without the use of initial
state distribution. Fig 5 shows our finger-gaiting and finger-
pivoting policies performing continuous object re-orientation
about z-axis and x-axis respectively.

As expected, difficulty of rotating the objects increases
as we consider objects of lower rotational symmetry from
sphere to cube. In the training curves in Fig 6, we can
observe this trend not only in the final returns achieved by

the respective policies, but also in the number of samples
required to learn continuous re-orientation.

We also successfully learn policies for in-hand re-
orientation without joint set-point position feedback, but
these policies achieve slightly lower returns. However, they
may have interesting consequences for generalization as we
will discuss in Sec IV-C.

B. Robustness

Fig. 7 shows the performance of our policy for the most
difficult object in our set (cube) as we artificially add white
noise with increasing variance to different sensors’ feedback.
We also increasingly add perturbation forces on the object.
Overall, we notice that our policies are robust to noise and
perturbation forces of magnitudes that can be expected on a
real hand.

In particular, our policies show little drop in performance
for noise in joint positions, but are more sensitive to noise
in contact feedback. Nevertheless, they are still robust, and
achieve high returns even at 5mm error in contact position
and 25% error in contact force. Interestingly, for noise in
contact position, we found that drop in performance arises
indirectly through the error in contact normal t̂in (computed
from contact position cin). As for perturbation forces on the
object, we observe high returns even for high perturbation
forces (1N) equivalent to the weight of our objects. Our
policies are robust event without joint-setpoint qd feedback
with similar robustness profiles.

C. Generalization

We study generalization properties of our policies by eval-
uating it on different objects in the object set. We consider
the transfer score, which is the ratio Rij/Rii where Rij is the
average returns obtained when evaluating the policy learned
with object i on object j.
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Fig. 8 shows the cross transfer performance for policies
trained with all feedback. We note that the policy trained on
the sphere transfers to the cylinder and vice versa. Also, the
policies trained on icosahedron and dodecahedron transfer
well between themselves and also perform well on sphere
and cylinder. Interestingly, the policy trained on the cube
does not transfer well to the other objects. When not using
joint set-point position feedback qd, the policy learned on the
cube transfers to more objects. With no way to infer motor
forces, the policy potentially learns to rely more on contact
feedback which aids generalization.

D. Observations on feedback

While our work provides some insight w.r.t the important
components of our feedback through our robustness and
generalization results, many interesting questions remain. We
are particularly interested to discover what aspects matter
most in contact feedback. To answer such questions, we run
a series of ablations holding out different components. For
this, we again consider learning finger-gaiting on the cube
as shown in Fig 9.

Based on this ablation study, we can make a number
of observations. As expected, contact feedback is essential
for learning in-hand re-orientation via finger-gaiting; the
policy does not learn finger-gaiting with just proprioceptive
feedback (#4). More interesting, and also more surprising, is
that explicitly computing contact normal tin and providing
it as feedback is critical when excluding joint position set-
point qd (#6 to #10). In fact, the policy learns finger-
gaiting with just contact normal and joint position feedback
(#10). However, while not critical, contact position and
force feedback are still beneficial as they improve sample
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Fig. 9: Ablations holding out different components of feedback. For
each experiment, dots in the observation vector shown above the
training curve indicate which of the components of the observation
vector are provided to the policy.

efficiency (#6, #7).

V. CONCLUSION

In this paper, we focus on the problem of learning in-
hand manipulation policies that can achieve large-angle
object re-orientation via finger-gaiting. To facilitate future
deployment in real scenarios, we restrict ourselves to using
sensing modalities intrinsic to the hand, such as touch and
proprioception, with no external vision or tracking sensor
providing object-specific information. Furthermore, we aim
for policies that can achieve manipulation skills without
using a palm or other surfaces for passive support, and which
instead need to maintain the object in a stable grasp.

A critical component of our approach is the use of
appropriate initial state distributions during training, used to
alleviate the intrinsic instability of precision grasping. We
also decompose the manipulation problem into axis-specific
rotation policies in the hand coordinate frame, allowing for
object-agnostic policies. Combining these, we are able to
achieve the desired skills in a simulated environment, the first
instance in the literature of such policies being successfully
trained with intrinsic sensor data.

We consider this work to be a useful step towards future
sim-to-real transfer. To this end, we engage in an exhaustive
empirical analysis of the role that each sensing modality
plays in enabling our manipulation skills. Specifically, we
show that tactile feedback in addition to proprioceptive
sensing is critical in enabling such performance. Finally, our
analysis of the policies shows that they generalize to novel
objects and are also sufficiently robust to force perturbations
and sensing noise, suggesting the possibility of future sim-
to-real transfer.
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