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Abstract— Informative planning seeks a sequence of actions
that guide the robot to collect the most informative data to
build a large-scale environmental model or learn a dynamical
system. Existing work in informative planning mainly focuses on
proposing new planners and applying them to various robotic
applications such as environmental monitoring, autonomous
exploration, and system identification. The informative planners
optimize an objective given by a probabilistic model, e.g.,
Gaussian process regression (GPR). In practice, the ubiquitous
sensing outliers can easily affect the model, resulting in a
misleading objective. A straightforward solution is to filter out
the outliers in the sensing data stream using an off-the-shelf
outlier detector. However, informative samples are also scarce
by definition so they might be falsely filtered out. In this paper,
we propose a method to enable the robot to re-visit the locations
where outliers were sampled besides optimizing the informative
planning objective. The robot can collect more samples in the
vicinity of outliers and update the outlier detector to reduce
the number of false alarms. We achieve this by designing a
new objective for the Pareto Monte Carlo tree search (MCTS).
We demonstrate that the proposed framework performs better
than applying an outlier detector naively.

I. INTRODUCTION

Intelligent robots need to sense the environment with
onboard sensors and use the collected data to understand
their surroundings before performing other subsequent tasks.
Informative planning [1] seeks a sequence of actions that
allow the robot to obtain the most informative data, i.e., the
data that contributes the most to learning the environment
model while minimizing the cost of traveling and sampling.
Typically, the level of informativeness for sampling data from
a certain location is quantified by the reduction of predictive
uncertainty in a probabilistic model. For example, when
dealing with spatial phenomena, a common choice for the
probabilistic model is Gaussian process regression (GPR),
and mutual information or variance/entropy reduction are
commonly used to quantify the information contained in the
data [2, 3].

Many informative planners have been proposed during the
last two decades [4–9]. The majority of the literature assumes
the sensing data is the ground-truth value corrupted by
Gaussian noise. In practice, however, sensing data typically
contains outliers due to various reasons. For instance, when
facing specular reflection, LiDAR returns false values of
maximum range even though the beams hit obstacles. When
multiple exteroceptive sensors are in use, cross-talks among
them also cause “random measurements” [10]. In outdoor
environments, unexpected fast transient obstacles, such as
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(a) Chlorophyll level over time (b) Ground-truth model and data

(c) GPR without outliers (d) GPR with outliers

Fig. 1. (a) Chlorophyll-a sensing data. The orange and red points are
outliers [11]. (b) Ground-truth environmental model. Green points are
normal data points, and red points are outliers. Red and blue colors on the
surface indicate high and low values, respectively. (c) GPR without outliers
accurately predicts the environment and provides informative confidence
bounds (i.e., the upper and lower black grids). (d) GPR with outliers
leads to inaccurate “flat” prediction and uninformative uncertainty estimates,
which further affects the performance of downstream informative planners.

insects, fish, or large dust particles, can also induce inevitable
outliers. In addition, sensor wear and tear (e.g., worn probes),
among other incomprehensible reasons that cause occasional
hardware malfunction, can also introduce outliers. A Gaus-
sian model can be easily distorted by outliers, rendering
the “optimal” informative sampling decisions computed from
such a model sub-optimal. Fig. 1 illustrates a scenario where
outliers mislead the modeling and planning performances.

A straightforward idea to mitigate the influence of outliers
is to filter them out from the sensing data stream using an
off-the-shelf outlier detector. However, this leads to a high
false-alarm rate because informative samples and outliers are
statistically similar: they both change the model significantly
and are observed less frequently. Otherwise, the informative
samples would not bring much additional information. To
reduce the high false-alarm rate, we propose to optimize
two objectives simultaneously. In addition to the original
information-seeking objective, the other objective encourages
re-visiting the locations where outliers were sampled. In
this way, the robot can collect more samples in the region
where outliers are detected frequently and update the outlier
detector to reduce the number of false alarms. We implement
this idea by designing a new objective in the recently
proposed Pareto Monte Carlo tree search [12]. We show
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that the proposed framework performs better than naively
applying a state-of-the-art outlier detector.

Although dealing with outliers is essential in practical ap-
plications of informative planning algorithms, it has not been
well discussed in the literature to the best of our knowledge.
The contribution of this paper is to point out the interesting
interplay between informative samples and outliers: outliers
can also be viewed as “extremely informative samples”. We
developed a practical approach to significantly reduce the
number of false alarms due to the interplay.

II. RELATED WORK

Informative planning has attracted growing interest, es-
pecially in the application of autonomous environmental
monitoring [13]. Informative planning extends the optimal
sensor placement problem [14] by considering the traversal
costs and motion constraints of the mobile robots. Starting
from the seminal work [15], various recursive greedy al-
gorithms have been proposed [1, 16, 17]. These methods
are based on the submodularity of the objective function
and provide a performance guarantee. The submodularity
requirement has been relaxed to monotonicity [18]. Dynamic
programming (DP) based methods do not require the ob-
jective function to have these special properties. In [2], a
sequence of informative waypoints is selected via DP by
assuming the underlying map to be in a rectangular and
sliced shape. This framework was extended to arbitrary
continuous space by connecting the informative waypoints
via traveling salesman problem solver [19]. This framework
is lifted to online planning by integrating sparse GPs [3].
To develop an efficient planner, Hollinger and Sukhatme
[7] extend sampling-based motion planners to robotic in-
formation gathering algorithms. Recently, this framework
has been extended to online variants [4, 20]. Monte-Carlo
tree search (MCTS) based methods are conceptually similar
to sampling-based informative planners and have recently
garnered great attention [6, 12, 21–23]. Instead of randomly
growing the search tree, the MCTS expands tree nodes in
a best-first search manner [24]. Since Gaussian processes
have been the de facto standard for modeling spatiotemporal
phenomena in many environmental monitoring applications,
Bayesian optimization becomes a natural choice for informa-
tive planning [8, 25, 26]. New frameworks for informative
planning are constantly emerging with attractive mechanisms
such as evolutionary methods [5, 27, 28] and imitation
learning [9]. Many of the existing works employ GPR as the
probabilistic model. Compared to the large body of work
in informative planners, investigations on the probabilistic
model in the informative planning framework are relatively
sparse. Methods using online sparse GPs [29] have been
proposed to tackle the computational bottleneck. The mixture
of GPs [30, 31] has also been applied to capture environmen-
tal non-stationarity. Different from the existing efforts, we
investigate the effects of sensing outliers on model learning
and informative planning. To the best of our knowledge, this
is the first time that outliers in informative planning have
been discussed.
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Fig. 2. System diagram. (1) The Autonomous Surface Vehicle (ASV)
collects depth measurements via the down-facing sonar. (2) An outlier
detector keeps track of the outlier density across spatial locations (3) and
passes the filtered data to the probabilistic model (4). The outlier density
(5) and the predictive standard deviation (6) are fed to the multi-objective
informative planner to guide the robot to collect the next batch of data.

III. PROBLEM FORMULATION

Let T , {1, 2, . . . , T} be the set of decision epochs. At
time t ∈ T , a robot with a fully observed state st ∈ S collects
scalar measurement yt via its sensor and takes an action
at, arriving at the next state st+1 with transition probability
p(st+1|st, at). In this work, we assume the transition to
be known and deterministic, and focus on inferring the
noise-free environment state fenv from its noisy observation
collected so far y = [y1, . . . , yN ]ᵀ. One example is to
estimate an elevation map from range sensor measurements.
In this case, the elevation map is a function fenv(x) of the
input spatial locations x ∈ RD. The robot maintains an
internal model f of the environment learned from the noisy
observations y. The model is updated after taking new obser-
vations into account. Ideally, informative planning should use
error reduction as the reward signal for the planner. Let fe(a)
be a function that quantifies the modeling error reduction
after incorporating the data obtained by taking an action
sequence a, and fc(a) be a function that returns the cost
of executing a. Informative planning solves the following
optimization problem given an available budget B,

a? = argmax
a∈A

fe(a), s.t. fc(a) ≤ B, (1)

where A is the space of all possible action sequences. How-
ever, the ground-truth environment state fenv is unknown,
hindering the computation of error reduction. Informative
planning bypasses this problem by utilizing a surrogate
reward function fi(a) given by a probabilistic model instead
of fe(a). Typically, fi(a) quantifies the informativeness of
the data obtained by taking actions a by measuring the
reduction in predictive uncertainty of the probabilistic model.

IV. METHOD

Fig. 2 illustrates the system with different modules and
their relationship at a high level. The outlier detector takes
raw sensing data, filters out the outliers, and outputs an
outlier matrix indicating the density of outliers at each



location (Section IV-A). The clean data is fed into the GPR
model which produces the predictive mean and standard
deviation at each location (Section IV-B). The standard
deviation matrix and the outlier matrix together form the
multi-objective reward for the Pareto Monte Carlo tree search
(Section IV-C). Finally, the robot collects samples along the
optimal trajectory given by the planner.

A. Copula-Based Outlier Detection

COPula-based Outlier Detector (COPOD) is one of the
top performing outlier detector that is efficient and tuning-
free [32]. It is available in the open-source PyOD library [33]
and can be readily used in our problem. Firstly, COPOD fits
empirical left tail cumulative distribution functions (CDFs)
Fl
1(y) . . . ,F

l
O(y) using

Fl
o(y) = P((−∞, y]) = 1

N

N∑
n=1

I(yn,o ≤ y), (2)

and empirical right tail CDFs Fr
1(y) . . . ,F

r
O(y) by replacing

y with −y, where O is the observation dimension. The
skewness vector b = [b1, . . . , bO] is also computed using
the standard estimation formula

bo =
1
N

∑N
n=1 (yn,o − yo)

3√
1

N−1
∑N

n=1 (yn,o − yo)
2
3 , (3)

where the overline yo denotes the mean. Then, we apply
F l
o(y) and F r

o (y) on each sample to get the empirical
copula observations ln,oand rn,o, respectively. The skewness
corrected empirical copula observations are given by

sn,o =

{
ln,o if bo < 0,

rn,o otherwise.
(4)

Lastly, for each dimension, we compute the probability of
observing a point at least as extreme as each yn,o. The
outlier score is the maximum negative log probability given
by the left-tail, right-tail, and skewness-corrected empirical
copula. Intuitively, outliers should occur less frequently,
which means that the tail probabilities should be small, or
equivalently, its negative log probabilities should be large.
We refer the reader to [32] for more details.

B. Gaussian Process Regression

A Gaussian process (GP) is a collection of random vari-
ables, any finite number of which have a joint Gaussian
distribution [34]. We place a Gaussian process prior over
the function

f(x) ∼ GP(m(x), k(x,x′)) (5)

which is specified by a mean function m(x) and a covariance
function k(x,x′) (a.k.a. kernel). Popular choices of kernel
functions include Matérn and Gaussian kernels. In this paper,
we use a zero mean and the anisotropic Gaussian kernel

k(x,x′) = α2 exp

(
−1

2

D∑
d=1

(xd − x′d)2

`2d

)
. (6)

The amplitude α2 controls the variance of the random
functions and `d defines the lengthscale, which informally
can be thought of as the “radius of a neighborhood” in the d-
th dimension. GP Regression (GPR) augments the model by
assuming observations are corrupted by an additive Gaussian
white noise

p(y|x) = N (y|f(x), σ2). (7)

We will collect the parameters into θ , {α, `d, σ} which are
termed as hyperparameters.

According to the definition of GP and the likelihood in
Eq. (7), the joint distribution of the observations y and a set
of latent function values f? at arbitrary test input locations
X? is a multivariate Gaussian distribution[

y
f?

]
∼ N

(
0,

[
Ky K?

Kᵀ
? K??

])
, (8)

where Ky = Kx + σ2I, Kx is the covariance matrix given
by the covariance function evaluated at each pair of obser-
vations, K? is the covariance matrix between observations
and the test function values f?, and K?? is the covariance
matrix of the test function values. The predictive distribution
for GPR is a conditional Gaussian distribution

p(f?|y) = N (f?|µ,Σ), where (9)

µ = K
ᵀ
?K−1y y, (10)

V = K?? −K
ᵀ
?K−1y K?. (11)

Learning in Gaussian process regression refers to deter-
mining appropriate values of the hyperparameters, and the
common approach is to maximize the log marginal likelihood
of the observations

ln p(y|θ) = −1

2

(
y
ᵀ
K−1y y + ln det(Ky) +N ln(2π)

)
,

(12)
where det(·) denotes the matrix determinant.

C. Pareto Monte Carlo Tree Search

We treat the informative planning problem as a sequential
decision making problem and approximate the solution using
Monte Carlo tree search (MCTS) [24]. A node in the tree
contains a state/pose and some statistics. The MCTS iterates
in four steps: node selection, expansion, simulation, and
back-propagation. We now describe the reward function and
each step of the MCTS in detail.
Reward Functions. The reward of an action should be the
amount of the “informativeness” of the collected data by
taking this action. A natural choice for measuring infor-
mativeness is the mutual information between the visited
locations and the remainder of the space [14]. However,
calculating entropy involves the determinant computation of
the predictive covariance matrix of the GPR in Eq. (11),
which is computationally costly. A cheaper approximation is
the reduction in the trace of the predictive covariance matrix,
namely, variance reduction. Observing that the predictive
uncertainty at a location becomes very small after sam-
pling at that location, we further simplify the maximization
of variance reduction to simply maximizing the sum of



(a) (b)

Fig. 3. (a) A matrix storing the outlier count at each spatial location. (b)
A smoothed version of (a) using a Gaussian kernel. The smoothed outlier
occurance matrix serves as one of the reward map in Pareto Monte Carlo
tree search to revisiting sampling locations with outliers.

predictive standard deviation along the sampling trajectory.
To encourage re-visiting the locations where outliers were
detected, another reward is the number of outlier occurrence.
For better planning efficiency, we pre-compute the predictive
standard deviation and the number of outliers on a query
grid representing all discretized sampling locations before
the tree search process. When evaluating the reward function
values, we simply access the corresponding matrix elements.
To better guide the robot, we also filter the outlier occurrence
matrix via a Gaussian kernel. Fig. 3 shows the outlier
occurrence matrix and its smoothed version.
Selection. As a best-first search algorithm, MCTS selects
nodes that are expected to have a high reward but at the same
time try other nodes sufficiently to avoid greedy choices. We
trade-off exploration and exploitation using the tree policy.
A well known tree policy is the upper confidence bound
(UCB) [35, 36]. We recursively select child nodes with the
highest UCB value until a node with unexpanded children is
found. For node j, the UCB value adapted to our problem
is defined by

UCBj = fij + C

√
2 logNp

Nj
, (13)

where Np is the number of times that the parent of node j
has been selected and Nj is the number of times that node
j has been selected. The average reward fij encourages the
selection of nodes that currently look the most promising and
thus stimulates exploitation. The value of the second term is
large when Nj is small, which encourages exploring node
i if it is not selected enough times. Constant C balances
between the exploration and the exploitation which should
be set to a similar scale as the rewards.

For vector reward given by the multiple reward functions,
we use the Pareto variant of UCB proposed in [12]:

PUCBj = fij + C

√
4 logNp + lnDr

2 ∗Nj
, (14)

where fij is the average reward vector and Dr is the
dimensionality of this vector. When selecting the best child
node, we first compute the Pareto optimal set from the Pareto

Algorithm 1 The Proposed Framework
1: Collect the initial training data
2: Initialize and optimize gpr with the initial data
3: Initialize the outlier matrix outlier to be zeros
4: while has sampling budget do
5: mean,std=gpr.predict(x test)

6: trajectory=PUCT(pose,std,outlier)

7: Follow trajectory and sample new data
8: Train the outlier detector on all collected data
9: Filter out the outliers in the new data

10: gpr appends the new data and optimize for several itera-
tions

UCB vectors of all child nodes. The vectors in the Pareto
optimal set cannot be improved for any objective without
hurting other objectives. We then randomly select a child
node from this set because the Pareto optimal solutions are
considered equally optimal if no preference information is
given. We refer the reader to [12] for further details of how
Pareto MCTS balances multiple objectives. When the UCB
tree policy is applied to a MCTS, the algorithm is commonly
referred to as UCT. Similarly, we use PUCT to represent
Pareto UCB applied to MCTS.
Expansion. We randomly select an action from the selected
node and delete this action from the list of available actions.
We then take this action and calculate the corresponding
reward. A new node is created based on the new state and
reward. We append this new node to the children list of the
selected node.
Simulation. The goal of this step is to estimate the expected
reward of the action of the newly expanded node by ex-
ecuting a default/rollout policy. Here we define the rollout
policy to be “moving forward” for some steps. This policy is
designed to estimate the expected reward along the direction
of executing an action.
Back-propagation. We add the average reward received in
simulation to each node along the selection path and increase
the number of visits of these nodes. These four steps are
repeated until the computational budget for the robot has
reached. We recursively select the child node with the highest
number of visits to get the final informative action sequence.

(a) (b)

Fig. 4. (a) The Bezier curve to generate a priori sampling path for
collecting initial training data for the initial optimization of the GPR and
computing data pre/post-processing statistics. (b) Final predictive standard
deviation of UCT-NONE.



(a) ρ = 0.05 (b) ρ = 0.10

(c) ρ = 0.15 (d) ρ = 0.10

Fig. 5. Root mean squared errors of the proposed PUCT-COPOD and other three baselines. UCT-BEST filters outliers with the ground-truth labels,
so it serves as a best-case baseline; UCT-NONE, which is the worst case baseline, does not filter outliers at all. UCT-COPOD directly applies the outlier
detector to the sensing data stream. Parameter ρ controls the number of outliers: higher value indicates more outliers (MO) while lower value means less
outliers (LO). In (a)-(c), the outlier detector only filters out the outliers in the newly acquired batch without changing the historical data. In (d), the outlier
detector re-examine all the historical data at each decision epoch. (a) Performance difference of all the methods is insignificant when the number of outliers
is very small. (b) PUCT-COPOD and UCT-COPOD are both in between the best-case baseline and the worst-case baseline after collecting 1000 samples
while PUCT-COPOD performs better. At the early stage, UCT-COPOD is even worse than UCT-NONE because it filters out some informative samples. (c)
When the number of outliers increases, UCT-COPOD loses advantage over UCT-NONE. The performance of PUCT-COPOD is also affected but its still
better than UCT-COPOD and UCT-NONE. (d) Both PUCT-COPOD and UCT-COPOD are ineffective if the detector filters outliers in all historical data.

D. Overall Framework

Algorithm 1 summarized main steps of the proposed
framework. First, we collect the pilot data following a path
that does not depend on the informative planning framework.
For example, we will use Bezier curve in Fig. 4 (a). The
pilot data is used for an initial optimization of the GPR hy-
perparameters through Eq. (12) and computing the statistics
for pre/post-processing of the data. In a decision epoch, the
robot searches for an optimal trajectory using PUCT based
on the predictive standard deviation given by the GPR and
the outlier matrix given by the outlier detector. The robot
then collects samples along the trajectory. Finally, we detect
outliers in this batch of new samples, get rid of them, feed
the clean data to the GPR, and optimize the hyperparameters
for several iterations.

V. EXPERIMENTAL RESULTS

We would like to answer the following questions.
• How do outliers affect an informative planning system

if they are not filtered out? To answer this question,
we use the standard GPR and UCT without any outlier
detector as the worst-case baseline (UCT-NONE).

• What is the ideal performance if we have a perfect
outlier detector? We use the ground-truth outlier labels
as the prediction of a perfect outlier detector. We refer
to this best-case competitor as UCT-BEST.

• What if we simply apply an off-the-shelf detector to
deal with the outliers? In this method, we use COPOD
to get rid of outliers (UCT-COPOD).

• Is the proposed method able to mitigate the negative
effect of outliers? We denote our proposed method as
PUCT-COPOD.

Considering that the second question requires the ground-
truth outlier labels and to better understand the results,
we inject some “spike” outliers to the sensing data which
are similar to those in Fig. 1 (a). The robot collects a
batch of data along the planned trajectory in each decision
epoch. We randomly select ρ portion of the batch for outlier
injection. Specifically, we first sample a random amplitude
uniformly from the range [1, 2] with a random sign. Then,
the amplitude is multiplied with the data range of the
batch computed by the 0.05 and 0.95 quantiles. We use
the elevation map of the Mount Saint Helens, shown in
Fig. 6a, as the environment. The planar robot follows the
Dubins car dynamics:

[
ẋ1, ẋ2, θ̇

]
=
[
v cos θ, v sin θ, u

]
, u ∈

U , where x = [x1, x2]
ᵀ ∈ R2 and θ ∈ [0, 2π) are the

position and orientation of the vehicle, u is the control input
that represents the robot’s steering angle. We set the linear
velocity v to be a constant and only control the steering angle
u. The possible steering angles [−0.15, 0.15] (in radians) are
discretized into 5 choices.

The GPR is initialized using 100 training samples gen-



(a) Ground truth (b) PUCT-COPOD (c) UCT-COPOD

Fig. 6. Final predictive means of PUCT-COPOD and UCT-COPOD.

(a) UCT-COPOD (b) PUCT-COPOD

Fig. 7. The absolute error maps and training samples after cleaning
the outliers of (a) UCT-COPOD and (b) PUCT-COPOD, respectively. Many
informative samples at the high-variability region are falsely filtered out in
(a), leading to some high-error “holes”. As a comparison, (b) shows that
the proposed method can mitigate this effect to some extent.

erated by a Bezier curve shown in Fig. 4 (a) and opti-
mize the hyperparameters for 500 iterations. This a priori
Bezier sampling path can be applied to any environment
for collecting the pilot data for the initial GPR optimization
and computing data pre/post-processing statistics. The path
circles around the whole environment to help us get a
sense of the workspace extent and a rough estimate of the
observation range. Using the statistics computed from the
initial training data, all inputs X will be scaled to the range
of [−1, 1] and all observations y will be standardized to
have zero mean and unit variance. We use 500 tree search
iterations and 5 rollout iterations. The sampling budget is set
to 2000 samples.

Fig. 5 shows the root mean squared error (RMSE) of
the four methods versus the number of training samples.
When the number of outliers is very small (ρ = 0.05 in
Fig. 5 (a)), the difference among all the methods is negligible.
After increasing ρ to 0.1, as expected, the error of UCT-
BEST drops drastically and reaches the lowest error. After
the decrease at the beginning, the error of UCT-None is
actually increasing. The inclusion of outliers not only makes
the prediction deteriorated but also messes up the standard
deviation (see Fig. 4 (b)), which further affects the down-
stream informative planning. The result of UCT-COPOD is
interesting — although the final error is lower than that of
UCT-NONE, it is the worst at the beginning. The reason for
this can be seen from Fig. 7 (a). Many informative samples at
the high-variability region are falsely filtered out, leading to
some high-error “holes”. As a comparison, Fig. 7 (b) shows

that the proposed method can mitigate this effect to some
extent. This brings better RMSE curve to PUCT-COPOD
in Fig. 5 (b). When there are more outliers (ρ = 0.15),
UCT-COPOD loses the advantage over UCT-NONE. The
performance of PUCT-COPOD is also affected but its still
better than UCT-COPOD and UCT-NONE. Finally, we also
study the case where the detector filters outliers in all the
historical data instead of the newly acquired batch. Both
PUCT-COPOD and UCT-COPOD are ineffective in this case.
One way to understand the result is that, when the robot
has not sampled the volcanic area, the detector can easily
detect extremely high or low values because the detector
is trained on the historical data sampled from the flatland.
However, after collecting samples from the volcanic area and
retaining the detector, it is difficult for the detector to dis-
tinguish the aforementioned extreme values and the normal
elevation measurements around the volcanic area during re-
examination. In addition to the quantitative difference in the
error reduction, the final predictions of the proposed method
and the baseline are also qualitatively different. Fig. 6 shows
that the prediction of PUCT-COPOD is closer to the ground-
truth environment than that of UCT-COPOD.

VI. CONCLUSION

We present a framework to enable the robot to re-visit the
locations where outliers were sampled besides optimizing
the conventional informative planning objective. This is
very different from existing informative planning approaches
which mainly focus on planners that optimize over uncer-
tainty or confidence based informativeness, which can be
easily deteriorated by various sensing outliers, resulting in
a misleading objective and sub-optimal sampling behaviors.
We propose an approach to filter out the outliers from the
sensing data stream using an off-the-shelf outlier detector.
By designing a new planning objective with a Pareto variant
of Monte Carlo tree search, our new framework allows the
robot to collect more samples in the vicinity of the outliers
and update the outlier detector to reduce the number of false
alarms. Results show that the proposed framework performs
much better than only applying the outlier detector.

VII. ACKNOWLEDGEMENT

We gratefully acknowledge the support of NSF grants with
grant numbers 1906694, 4848921, and 4848922. We also
thank the valuable comments from anonymous reviewers.



REFERENCES

[1] Amarjeet Singh, Andreas Krause, Carlos Guestrin,
William J Kaiser, and Maxim A Batalin. Efficient
planning of informative paths for multiple robots. In
Proceedings of the 20th International Joint Conference
on Artifical intelligence (IJCAI), volume 7, pages 2204–
2211, 2007.

[2] Nannan Cao, Kian Hsiang Low, and John M Dolan.
Multi-robot informative path planning for active sens-
ing of environmental phenomena: A tale of two algo-
rithms. In Proceedings of the International Conference
on Autonomous Agents and Multi-agent Systems (AA-
MAS), pages 7–14, 2013.

[3] Kai-Chieh Ma, Lantao Liu, Hordur K Heidarsson, and
Gaurav S Sukhatme. Data-driven learning and planning
for environmental sampling. Journal of Field Robotics
(JFR), 35(5):643–661, 2018.

[4] Lukas Maximilian Schmid, Michael Pantic, Raghav
Khanna, Lionel Ott, Roland Siegwart, and Juan Nieto.
An efficient sampling-based method for online infor-
mative path planning in unknown environments. IEEE
Robotics and Automation Letters (RA-L), 2020.
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