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Abstract

Communication is a important factor that enables
agents work cooperatively in multi-agent reinforce-
ment learning (MARL). Most previous work uses
continuous message communication whose high
representational capacity comes at the expense
of interpretability. Allowing agents to learn their
own discrete message communication protocol
emerged from a variety of domains can increase
the interpretability for human designers and other
agents.This paper proposes a method to generate
discrete messages analogous to human languages,
and achieve communication by a broadcast-and-
listen mechanism based on self-attention. We show
that discrete message communication has perfor-
mance comparable to continuous message com-
munication but with much a much smaller vocab-
ulary size.Furthermore, we propose an approach
that allows humans to interactively send discrete
messages to agents.

1 INTRODUCTION

Communication allows agents to share information so that
they can perform tasks cooperatively. There has been ex-
isting work on using deep reinforcement learning (RL) to
produce communication protocols. For example, Comm-
Net [Sukhbaatar and Fergus| [2016], a recurrent commu-
nication model, averages the hidden states for centralized
communication. IC3Net [[Singh et al.,[2019]], an extension
on CommNet, adopts a more complicated but similar cen-
tralized aggregation approach to communication. Instead of
centralized aggregation and averaging, TarMAC [Das et al.}
2019]] use multi-headed attention to distribute information
to other agents. BiCNet [Peng et al.,[2017] and ATOC [Jiang
and Lul 2018]] both use a bidirectional recurrent network as
a communication channel. They fix the positions of agents

in the bidirectional recurrent network to specify their roles.
DICG [Li et al.l 2021]] uses graph convolution to implicitly
pass information between agents.

However, typically, existing multi-agent communication ap-
proaches use continuous messages to communicate. They
use real-valued vectors to encode messages. Human lan-
guages, however, use discrete characters and words. An
advantage of continuous messaging is its representational
capacity, but it can be at the expense of interpretability from
the perspective of human designers or other agents.

We propose a deep RL model for agents to learn to generate
their own discrete message protocols. Our model produces
discrete messages by identifying the maximum element
in message vectors, resulting in greater stability than sam-
pling. The model adopts a broadcast-and-listen procedure
to send and receive messages. It uses self-attention mech-
anism [[Cheng et al., [2016] to aggregate messages sent by
other agents. The model is differentiable and therefore can
be learned end-to-end. [Evtimova et al.|[2018] use bit-string
messaging to learn emergent communication in referential
games for two agents. Our approach is applicable to any
number of agents.

We compare the performance of discrete message communi-
cation with continuous message communication in a variety
of domains, showing that discrete message communication
has comparable performance to continuous message com-
munication with a much smaller vocabulary size. We also
study the effects of communication bandwidth and vocab-
ulary size on discrete message communication, using the
metrics positive listening and positive signaling, where pos-
itive listening indicates received messages are influencing
agents’ behaviors in some way, and positive signaling indi-
cates an agent is sending messages that are related in some
way with its own observations or actions [Lowe et al.,[2019]
Jaques et al.| 2019]]. Furthermore, we propose an approach
for human-agent interaction using discrete message commu-
nication, demonstrating its interpretability.



2 BACKGROUND

We represent the problem as a Dec-POMDP [Oliehoek
and Amato, [2016] defined by the tuple
(Z,8,{AY )V, T,Z,R,0,y), where T = {1,...,n}
is the set of agents, S is the global state space, A’ is the
action space of the ith agent, and Z is the observation space
for an agent. The discrete communication vocabulary set is
defined by V = {0, 1}?, where b is the band width of com-
munication. A message from V is therefore a binary vector.
The transition function defining the next state distribution is
given by 7 : S x [[; A/ xS — [0, 1]. The reward function
is R: S x [[; A’ — R, and the discount factor is y € [0, 1).
The observation model defining the observation distribution
from the current state is O : S X Z — [0, 1]. Each agent i
has a stochastic policy 7 conditioned on its observations o;.
The discounted return is G; = Y,;7 Y'r,41, where r, is the
joint reward at step 7. The joint policy 7 induces a value
function V*(s;) = E[G; | 5;] and an action-value function
O™ (s;,a;) = E[Gy | s1,a,], where a, is the joint action. The
advantage function is A" (s;,a;) = Q" (st,a,;) — V™ (s).

2.1 POLICY OPTIMIZATION

We use policy optimization to maximize the expected dis-
counted return. Given policy Ty parameterized by 0, the
surrogate policy optimization objective is [Schulman et al.|

2017]:
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where we use the generalized advantage estimation
(GAE) [Schulman et al.| [2016] to estimate A, at time step
t, and the expectation I, [-] indicates the empirical average
over a finite batch of samples. In practice, we use the clipped
PPO objective [[Schulman et al.,[2017] to limit the step size
for stable updates. The entropy bonus is also added to en-
courage exploration. The objective to maximize becomes
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the policy given state s;, the clipping parameter € and the
entropy coefficient § are hyperparameters. In the context
of centralized training but decentralized execution, we em-
ploy a parameter sharing strategy whereby each agent in a
homogeneous team uses identical copies of policy parame-
ters [Gupta et al., 2017].
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2.2 SELF-ATTENTION

Self-attention mechanism [Cheng et al.,2016] emerged from
the natural language processing community. It is used to

relate different positions of a single sequence. The difference
between self-attention and standard attention is that self-
attention uses a single sequence as both its source and target
sequence. It has been shown to be useful in image caption
generation [Liu et al. 2018| [Yu et al.l |2020] and machine
reading comprehension [[Cheng et al.} 2016, Yu et al., [2018]].

The attention mechanism has also been adopted recently
for multi-agent reinforcement learning. The relations be-
tween a group of agents can be learned through attention.
Igbal and Sha [2019] use attention to extract relevant in-
formation of each agent from the other agents. Jiang and
Lu/[2018]] use self-attention to learn when to communicate
with neighboring agents. Wright and Horowitz| [2019] use
self-attention on the policy level to differentiate different
types of connections between agents. Jiang et al.| [2020] use
multi-head dot product attention to compute interactions
between neighboring agents for the purpose of enlarging
agents’ receptive fields and extracting latent features of ob-
servations. [Li et al|[2021] use multiplicative self-attention
to implicitly build coordination graphs by weighting the
graph edges with attention weights.

We use self-attention to learn the attention weights between
agents. The attention weights are used to differentiate the im-
portance of messages in the public communication channel
for each agent.

3 APPROACH

We use a broadcast-and-listen mechanism to achieve agent
communication. Instead of building agent-pair specific com-
munication channels, our model has a public ‘chat room’
to allow agents to share information. To selectively receive
information, each agent differentiates the importance of mes-
sages from other agents by weighting them using attention
weights. Then, agents aggregate the publicly broadcast mes-
sages using a weighted sum. The aggregated messages are
concatenated with other agent-specific vectors to selection
actions for agents. Fig. [T shows the network architecture. It
demonstrates the information flow between an agent pair,
which can be easily vectorized for any number of agents.

In detail, we first pass n observations {o;}}_, of n agents
through a parameter sharing observation encoder f, parame-
terized by 6,. The observation encoder outputs observation
embeddings {e;}"_;:

ei = f,(0::6,), fori=1,...,n. 3)

We then compute the attention logits {c;}?_, and the mes-
sage logits {u;}?_, with the parameter sharing attention
encoder f, parameterized by 6, and the parameter sharing
message encoder f;, parameterized by 0, for all observation
embeddings {e;}!_;:

ci = falei;0a), Wi= fm(ei0p) fori=1,...,n. “)



Observation

Agenti Encoder f, concat
o
Augme.ntedA Action Policy ©
Embedding é;
Attention Message
Encoder f, Encoder f,
Attention Message m =Y. -
(| Logits¢; Logits y; assrt =l TUT
|
[ é argmax
|
I ¥
P A’ftentlon Disc. Message m;
Multiplicative > Weights w;; g
Attention W, <><><
with Softmax ™ Attention Disc. Message m h
Weights w; L gem;

L @ argmax

Atteption Mes.sage
Logits ¢; Logits p;
Attention Message
Encoder f, Encoder f,
Observation \

Agent j —>

Encoder f,

Mgager,j = Zi:l.,...‘n wjilm;

Augmented
Embedding ¢;

Action Policy

concat

Figure 1: Network architecture

We use multiplicative attention [Luong et al.l [2015]] to com-
pute the attention scores and then softmax to obtain the
attention weights. For an arbitrary pair of agents i and j, the
attention score s;; and the attention weight w;; of agent i
towards agent j are:

e exp(sij)
] — .
Y1 exp(sik)
The multiplicative attention operation is parameterized by
a square matrix W,. The attention scores and weights can

be efficiently computed for all i, j pairs (including i = j, i.e.
self-attention weights).
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Instead of sampling from distributions, we use the arg max
operation to extract discrete messages from message logits
for the agents to broadcast. We adopt two approaches to
formulate discrete messages: one-hot and bit-string. For a
given message bandwidth b:

* One-hot: with a message logit vector u; € R?, the kth
entry of Mone-noti € {0, 1}7 is given by

1 if k=argmax;—__p Wi,

(6)

Mone-hot,ik = .
onehott 0 otherwise.

The resulting vocabulary size |V| of one-hot encoded

messages is b. An example of an one-hot encoded

message with bandwidth b = 5 can be mgpe-not =
[0,0,1,0,0].

* Bit-string: we first need a message logit vector U; €
R?”, the kth entry of Mpitstring,i € {0, 1}” is given by

1 ifk= argmaxje (x k+5} Mil»
0 otherwise.

(N

Mbit-string,ik =

The resulting vocabulary size |V| of bit-string encoded
messages is 2°. An example of a bit-string encoded
message with bandwidth b = 5 can be mpieguing =
[1,0,0,1,1].

With the messages m; and attention weights w;;, agents can
aggregate the messages: Maggri = Y.j—; Wijim;.

For agent i, we then concatenate the observation embedding
e, the attention weights w; = {w;;}'_,, the message logits
u; and the aggregated message mggr; to form an augmented
embedding é; = [e;; Wi; lis Maggri-

The concatenation creates several skip connections in the
computation graph. They compensate for the gradient cut-
off at the argmax operation and boost the gradients of the
network components closer to the input head. The aug-
mented embedding é; is then passed through a parameter
sharing action policy 7 parameterized by 6 to infer action
a; = ﬂ(éi;eﬂ;).

®

Continuous message communication can be achieved by cir-



cumventing the arg max operation in the network architec-
ture and use message logits L; as the message to broadcast.

In summary, our model uses one round of communication,
making the representational capacity of the communication
protocols especially important.

4 EXPERIMENTS

We perform experiments and analysis for discrete message
communication by (1) analyzing the effects of bandwidth
and vocabulary size and comparing with continuous mes-
sage communication; (2) analyzing the importance of self-
attention for discrete message communication; (3) analyzing
positive listening and signaling; and (4) introducing human
interaction with agents by using discrete message communi-
cation.

We show the results obtained from three environments:
Pulling Levers [Sukhbaatar and Fergus), [2016], Predator-
Prey [Bohmer et al, [2020] [Li et all, 2021]], and Multi-
Walker [Gupta et all, 2017, [Terry et al., [2020]. These en-

vironments have challenging tasks that must be performed
cooperatively to achieve high returns. Using only local in-
formation cannot achieve high returns.

We use PPO [Schulman et al.} 2017] for policy optimization

(see Section[2.T). A multi-layer perceptron (MLP) baseline
(value function) with global state is used for reducing the
variance of advantage estimation with GAE
during training.

4.1 ANALYSIS FOR BANDWIDTH AND
VOCABULARY SIZE

We compare the performance of communication protocols
with various bandwidth and vocabulary size. The metric
used is the average return. Average return indirectly mea-
sures the effects of communication on behaviors (i.e. posi-
tive listening). Continuous message communication is used
as a baseline.

4.1.1 Pulling Levers

Pulling Levers [Sukhbaatar and Fergus, [2016] is a simple
multi-agent multi-armed bandit task that requires commu-
nication to achieve high a score. There are n levers in the
task. In each round, n agents are randomly sampled from a
total of N participants. The action of each agent is to select
a lever to pull. The reward of one round is given by the ratio
between the number of unique levers pulled by the agents
and the number of levers n. The maximum reward per round
is therefore 1, meaning each pulled lever is unique in that
step. The theoretical expected reward of randomly pulling
levers is 1 — (“-1)". The observation o; for each agent is the
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Figure 2: Returns of Pulling Levers (5 levers, 20 total par-
ticipants) with various communication protocols.
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Figure 3: Returns of Pulling Levers (5 levers, 100 total
participants) with various communication protocols.

one-hot encoding of its ID number. Choosing levers with-
out communication in this game will be similar to acting
randomly.

A zero baseline (value function) is used for training the
pulling levers environment, since the global state (observa-
tion) is not related to return. Each episode consists of 50
rounds, and reward for one episode is summed over rewards
from each round. Results are averaged over 5 random seeds.

Fig.[2|shows the normalized average returns of various com-
munication protocols with n =5 and N = 20. The communi-
cation protocols and their vocabulary sizes |V| are labeled on
the horizontal axis: ‘no’ stands for no communication, ‘c’
means continuous message, ‘b’ means bit-string, ‘o’ means
one-hot, and the number following the letter is the band-
width b of communication. A red dashed line is over-plotted
to indicate the expected return with random action.

From Fig. [2, No communication shows the performance
close to acting randomly. Continuous message works the
best. The performance differences between continuous mes-
sage bandwidths are not significant, since continuous mes-
sage with any bandwidth can effectively encode an infi-



Figure 4: Predators are marked in blue, and prey are marked
in red. The cyan grids are the capture range of predators. An
example of successful capture is predator 2 and 6 capturing
prey 3. An example of a single-agent capture attempt that
results in a penalty is predator 3 capturing prey 8 alone.

nite number of meanings. Discrete message communication
shows inferior performance due to its limited representa-
tional capacity. Generally, the performance of discrete mes-
sage communication increases when the vocabulary size
increases. This is particularly true for bit-string encoding.
The 32-bit-string works the best among discrete communi-
cation, since its vocabulary size is 232 ~ 4 x 10°. This size
is beyond human’s cognitive range. The average vocabulary
size of native English speakers is around 20000, while 6000
to 7000 are sufficient for understanding most communica-
tion [Rosenberg and Tunney, 2008]]. The vocabulary sizes of
the one-hot messages are within a human’s cognitive range,
and their performance are not too far off comparing with
continuous and bit-string messaging. The performance of
one-hot messaging drops as the bandwidth increases beyond
128. This result indicates that overly large bandwidths are
harmful for learning emergent communication protocols.

Fig. [3|shows the normalized average returns for n =5 and
N = 100. The trend of the results is consistent with N = 20.

4.1.2 Predatory-Prey

We use a Predatory-Prey environment similar to that de-
scribed by Bohmer et al.|[2020] and [Li et al.| [2021]]. The
environment consists of a 7 x 7 grid world with 4 predators
and 4 prey. We control the movement of predators to capture
prey. The prey move by hard-coded and randomized rules
to avoid predators. If a prey is captured, the agents receives
a reward of 10. However, the environment penalizes any
single-agent attempt to capture prey with a negative reward
—0.5; at least two agents are required to be present in the
neighboring grid cells of a prey for a successful capture.
Fig. @ illustrates the environment and the reward mecha-
nism. The agents have a vision range of 2 grids from itself.
We engineer the agent’s observation so that we can remove
other agents positions away from an agent’s field of view.
That means an agent can now only see the prey but not the
other agents. The combination of agent invisibility and the
single-agent capture-attempt penalty makes the task even
harder. Cooperation is necessary to achieve a high return in

- - = No Comm., Agent Visible

- - — No Comm., Agent Invisible
R e

32—+

Average Return

30 + —:E ______________

n0.TnoF c4 8 cl6 c32 b4 b5 b6 bS bI6 b32 o8 0l6 032 o6d
VI 0 0 © o o o 16 32 64 256 216 22 § 16 32 64

Communication Protocols

Figure 5: Returns of the 4-agent Predator-Prey with various
communication protocols.

this environment. We set the episode length to 50 steps, and
impose a step cost of —0.1.

The results are shown in Fig.[5} Results are averaged over 5
random seeds. We ran experiments for various communica-
tion protocols. In particular, no communication with agent
visibility (no_T) and no communication without agent visi-
bility (no_F) form the performance upper-bound and lower-
bound respectively. In the former setting, each agent has the
richest information about the other agents, whereas in the lat-
ter setting, each agent has the scarcest information. Agents
are set to invisible for all the other communication protocols.
The dashed lines mark the upper and lower bounds. (The
labels on the horizontal axis follow the convention defined

in Sectiond.T-T|and Fig.[2])

The performance of all the communicative methods falls
within the upper and lower bounds. We can see similar
increasing patterns for increasing bandwidth as in Sec-
tion f.1.1] for Pulling Levers, which indicates that richer
information transmission comes with higher bandwidth
(up to a certain limit). Continuous messaging performs the
best, followed by bit-string messaging. Bit-string messaging
matches continuous messaging performance as its vocab-
ulary size increases to 232. One-hot messaging is slightly
better than bit-string messaging when their vocabulary sizes
are same. All the discrete communication protocols outper-
form no communication by a large margin.

4.1.3 Multi-Walker

The previous two domains consist of discrete observation
and action spaces. We would like to examine the consistency
of discrete message communication in a more challenging
continuous observation and action space task. In the Multi-
Walker environment [[Gupta et al.| 2017, |Terry et al., 2020],
n bipedal robot agents try to carry a bar-shaped package
and move forward as far as possible as illustrated in Fig. [f]
The agents receive positive rewards for moving forward
and negative reward for moving backward. Large negative
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Figure 6: An illustration of the Multi-Walker environment
with 3 agents.
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Figure 7: Returns of the 3-agent Multi-Walker with various
communication protocol.

rewards are given if the an agent falls or the package falls.
The task is a combination of learning robotic locomotion
and inter-agent cooperation.

In the original observation design, each agent receives an
observation composed of physical properties of its legs and
joints, as well as LIDAR readings from the space immedi-
ately in front and below the robot. The original observation
also includes information about neighboring walkers, and
the package. To emphasize the necessity of communication,
we engineer the observation space to remove LIDAR read-
ings and information about neighboring walkers. The result-
ing engineered observation therefore is only composed of
the agent’s own physical properties and information about
the package. The information about the other agents is now
only accessible from communication.

The results are shown in Fig. [7for 3 agents averaged over
5 random seeds. We ran experiments for various communi-
cation protocols. In particular, we ran experiments with no
communication with neighbor visibility and LIDAR turned
on (original observation configuration, labeled with no_T),
and also no communication without neighbor visibility and
LIDAR (observation configuration with scarcest info, la-
beled with no_F).

The results show observe that communicative methods out-
perform the original observation configuration no_T. This
can be explained by the fact that no_T only has neigh-
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Figure 8: Average return comparison between self-attention
and uniform attention from the 4-agent Predator-Prey. Uni-
form attention bars are shaded and labeled with ua suffix.

bor information available for each individual agent, while
communicative methods can pass the information of non-
neighboring agents to each other, providing a wider percep-
tion field. Continuous messaging with low bandwidth (c4)
has poor performance. Continuous messaging with larger
bandwidth (> 8) has much better performance, within which
c16 performs best. Bit-string messaging performs worse
than continuous messaging and one-hot messaging. In con-
trast with Pulling Levers and Predator-Prey, the performance
of bit-string messaging deteriorates when the bandwidth
or vocabulary size increases. And the variance in perfor-
mance also greatly increases accordingly. One-hot messag-
ing has similar performance as continuous messaging in
Multi-Walker, among which 032 performs the best. The
performance dramatically drops (below no_F) as the band-
width increases to 256. Similar to Pulling Levers, overly
large bandwidths are harmful for learning emergent commu-
nication protocols.

4.2 ABLATION WITH SELF-ATTENTION

In this analysis, we try to see the contribution of the self-
attention to message aggregation. We run self-attention abla-
tion experiments in the 4-agent Predator-Prey environment
(the same as Section[4.1.2). In Fig.[8] we show the perfor-
mance comparison of communication protocols with self-
attention (non-shaded) and their counterparts with uniform
attention (shaded and with the ua suffix). The results are
averaged over 5 random seeds. Uniform attention means
that we circumvent the multiplicative attention operation
and assign equal attention weight 1/n to each agent.

We observe that uniform attention poses a much more signifi-
cant negative performance impact on the discrete messaging
than on the continuous messaging. Possible explanations
are that continuous messages can make up for the difference
in attention weights by messages themselves, but different
bit-string messages can have drastically different meanings
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Figure 9: Positive listening analysis on the 4-agent Predator-
Prey environment: predicting agent i’s actions a; using the
masked aggregated messages 7iaqqr; received by agent i.
Data are collected from evaluation trajectories of five ran-
dom runs.

and their limited representational power cannot replace the
contributions of learned self-attention weights.

4.3 POSITIVE LISTENING AND SIGNALING OF
COMMUNICATION

We design supervised learning tasks 2021] to

measure positive listening and signaling of communication.

4.3.1 Positive Listening

Positive listening quantifies the degree to which received

messages are influencing an agent’s behaviors [Lowe et al.
2019, Jaques et al, [2019]. It can be measured with a super-

vised learning task by using the masked aggregated message
Maggr,i Teceived by agent i to predict agent i’s actions. The
masking is done to remove agent i’s contribution to the
aggregated message.

To compute the masked aggregated message riqgqgr,i, We first
mask the self-attention weight w;; to zero w;; = 0, then re-
normalize the attention weights w;; = wi;/ Yi—1 Wi, and
finally compute the masked aggregated message using the
re-normalized attention weights mgger; = 3. j—

We formulate the supervised learn task as d; = f(ifaggri; )
with loss L = CrossEntropy (d;,a;) 2021]. The-
oretically, with a finite amount of data, if mgg.; is more
correlated with a;, i.e. if positive listening is strong, the clas-
sifier f(-;¢) can produce a higher action prediction accuracy.
We use a simple multi-layer perceptron (MLP) classifier pa-
rameterized by ¢, with a single 128-unit hidden layer and
ReLU as activation.

Results of five random runs from Predator-Prey are shown
in Fig.[9] Environment configuration is the same as that in
Section [d.1.2] In general, higher bandwidths or larger vo-
cabulary size can bring a stronger positive listening for all
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Figure 10: Positive signaling analysis on the 4-agent
Predator-Prey environment: predicting agent i’s actions a;
using the message m; sent by agent i. Data are collected
from evaluation trajectories of five random runs.

communication protocols. In terms of communication band-
width, continuous messaging shows the best positive lis-
tening, closely followed by bit-string messaging. Bit-string
messaging exhibits potential to yield positive listening on
par with continuous messaging. In terms of the vocabu-
lary size instead of the bandwidth, one-hot messaging has a
higher action prediction accuracy than bit-string messaging
at low vocabulary sizes (|V| < 32).

A high action prediction accuracy is achieved because the
broadcast-and-listen architecture allows individual agents
to learn other agents’ behaviors and intentions through mes-
sages they sent.

4.3.2 Positive Signaling

Positive signaling quantifies the degree to which an
agent’s sent messages are related to its observations or ac-
tions [Lowe et al.} 2019] Jaques et al., 2019]. It can be mea-
sured with a supervised learning task by using the message
m; sent by agent i to predict agent i’s actions.

Similar to positive listening, we formulate the supervised
learn task as @; = f(m;; ¢) with the same cross entropy loss
and network architecture as used for positive listening. With
a finite amount of data, if m; is more correlated with a;,
i.e. if positive signaling is strong, the classifier f(-;¢) can
produce a higher action prediction accuracy.

Results of five random runs from Predator-Prey are shown
in Fig. [I0] Continuous messaging shows the strongest posi-
tive signaling, while one-hot messaging shows the weakest
positive signaling. Bit-string messaging shows large gaps
between continuous messaging when communication band-
width is small. The gap decreases as the bandwidth increases.
Bit-string messaging outperforms continuous messaging
when bandwidth reaches 32. One-hot messaging under per-
forms bit-string messaging by a large margin.



RS y
o i AP, H&.
K B Ly :
x.' W lwsd =2, = 0
g B i/ o . 0
oW . . ‘e o, \
LS r ey 2
. & = e om s 3
o o 4wl 4
o 3 5 - 5
A )\ 6
% Sty 7
e d 8
- 9
. 10
\ 11

-
N

Figure 11: T-SNE clustering of agent observations labeled
by their corresponding messages (4-agent Predator-Prey
with b4). The red cross represents an example of the projec-
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Message selected from
clustering and projection

Agent

Message selected from
trained network

Figure 12: Human-agent interaction.

4.4 HUMAN INTERPRETATION AND
INTERACTION

Discrete messaging has a finite vocabulary size that human
can easily interpret. We design a protocol to allow a human
to interactively send messages to Al agents.

First, we collect raw observation and message pairs from
trained agents. We cluster the raw observations using t-
SNE [[van der Maaten and Hintonl, 2008}, [Poliar et al.l [2019].
Then, we label the raw observations with their correspond-
ing discrete messages. Fig. [TT] shows such clustering and
labeling from Predator-Prey with b4 (with a vocabulary size
of 2* = 16). Different colors in the clustering plot means
different discrete messages. We use this clustering plot as
a reference. We observe that the same cluster of raw obser-
vations tend to have the same discrete message labels. This
provides an entry point for human-agent interaction. We
can project new observations into the pre-known reference
clusters as shown by the red cross in Fig.[IT} and empirically
select the most probable messages to send to agents. Fig. [I2]
shows an outline for the human-agent interaction workflow.
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Figure 13: Human-agent interaction results and comparison
for Predator-Prey with b4.

We design an experiment for letting human to select mes-
sages for one agent, with the rest of the agents selecting
messages using the trained network (actual human-agent in-
teraction experiments have text labels besides colors on the
reference clustering points to assist in message selection).
We compare the performance with agent selecting messages
and random messages for one agent. Fig. [I3|shows the re-
sults for the 4-agent Predator-Prey with 4-bit-string messag-
ing (vocabulary size 2* = 16). Environment configuration
is the same as that in Sectionf.1.2] Agent and random se-
lection are averaged over 200 episodes and human selection
is averaged over 20 episodes. We can see human message
selection has a bit worse performance than agent selection.
The performance gap arises from the empirical prediction
error when a human selects messages from their estimate
using clustering and projection. Human message selection
outperforms random selection.

In summary, the human-agent interaction protocol described
in this analysis shows the interpretability of discrete mes-
saging and demonstrates a way to integrate both human and
Al agents.

S CONCLUSIONS

In this work, we present a broadcast-and-listen model that
enables end-to-end learning of emergent discrete message
communication. We demonstrate that the bandwidth and
the vocabulary size of discrete messaging affects its per-
formance. In some domains, discrete message communi-
cation can yield return performance and positive listening
and signaling on par with or exceeding continuous message
communication. Since discrete messages are easier to in-
terpret by humans, we propose a human-agent interaction
protocol that allows human to send discrete messages to
agents. For future work, we would like to try multi-headed
attention [Vaswani et al., [2017] for the information aggrega-
tion process and new metrics other than average returns to
more directly measure communication capabilities [Lowe

etal} 2019].
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