
Let’s Collaborate: Regret-based Reactive Synthesis for
Robotic Manipulation

Karan Muvvala, Peter Amorese, and Morteza Lahijanian

Abstract— As robots gain capabilities to enter our human-
centric world, they require formalism and algorithms that
enable smart and efficient interactions. This is challenging,
especially for robotic manipulators with complex tasks that
may require collaboration with humans. Prior works approach
this problem through reactive synthesis and generate strategies
for the robot that guarantee task completion by assuming
an adversarial human. While this assumption gives a sound
solution, it leads to an “unfriendly” robot that is agnostic to the
human intentions. We relax this assumption by formulating the
problem using the notion of regret. We identify an appropriate
definition for regret and develop regret-minimizing synthesis
framework that enables the robot to seek cooperation when
possible while preserving task completion guarantees. We illus-
trate the efficacy of our framework via various case studies.

I. INTRODUCTION

From factories to households, robots are rapidly leaving
behind their robot-centric environments and entering our
society. Examples include self-driving cars, delivery robots,
and assistive robots. To be successful in our human-centric
world, robots must develop the ability to interact with
dynamic environments. This includes performing complex
tasks in the presence of humans, who have their own
objectives and may interfere with the robot’s task. Therefore,
robots must aim to have effective interactions with humans
and seek collaboration whenever possible. To achieve such
capabilities, strategies that account for human objectives as
well as task and resource constraints are needed. Generating
such strategies, however, is challenging due to two main
reasons: formulation and computation. That is, a proper
mathematical formulation of such strategies is a nontrivial
problem, and computation cost for strategies that enable
reactivity is inherently high, especially in the manipulation
domain, where tasks are complex and space of reasoning is
high dimensional. This work mainly focuses on the formu-
lation challenge and also aims to design a reactive synthesis
framework that enables robots to seek collaboration with
humans while guaranteeing completion of their task.

As an example, consider the scenario in Fig. 1, where the
robot is tasked with building an arch either on the left or right
side of the table with a green block on top. In this workspace,
a human can reach and manipulate the blocks placed on the
right side but not the ones on the left. To operate in the left
side, the robot has to spend more energy than the one closer
to the human. For such scenarios, classical planning methods

This work was supported in part by University of Colorado Boulder and
NASA COLDTech Program under grant #80NSSC21K1031.

Authors are with the department of Aerospace Engineering
Sciences at the University of Colorado Boulder, CO, USA
{firstname.lastname}@colorado.edu

(a) Adversarial Behavior (b) Probabilistic Behavior

Fig. 1: Arch Construction. (a) Strategy via [2] (human
assumed to be adversarial). (b) Policy via [8] (robot expects
human to be cooperative based on prior data).

that compute a fixed sequence of actions are not sufficient.
Instead, we need the robot to reason and react to the human’s
actions for efficient interactions.

Previous work [1]–[3] addresses this problem through the
lens of reactive synthesis [4]–[6]. They employ Linear Tem-
poral Logic over finite traces (LTLf) [7] to specify tasks that
can be accomplished in finite time. The framework models
the interaction between the human and the robot as a two-
player game. By assuming the human to be purely adversarial
in this game, a strategy is synthesized for the robot that
guarantees task completion under all possible human moves.
This assumption however is conservative, eliminates any
room for collaboration, and results in “unfriendly” behaviors
that could lead to higher energy spending than allowing a
chance for collaboration. In Fig. 1a, using that approach, the
robot builds the arch away from the human irrespective of
the human’s intention.

Recent work [8] relaxes this assumption by modelling the
human as a probabilistic agent. This leads to an abstraction
in the form of a Markov Decision Process (MDP), and
the objective reduces to synthesizing an optimal policy
that maximizes the probability of satisfying the task. The
approach optimizes the robot’s actions according to the
expected behavior of the human instead of assuming they
are always adversarial. In the scenario in Fig. 1, using
this approach, the robot builds the arch near the human
(Fig. 1b) if the expected behavior of the human is to be
cooperative; otherwise, the robot builds the arch away from
the human. While efficient interactions can be achieved using
that framework, the required prior knowledge on the human
is generally hard to obtain. The method also fails to capture
the human as a strategic agent with their own objectives.

In the machine learning and game theoretic communities,
an emerging method of reasoning about the quality of
strategies (actions) is via the notion of regret [9]–[13]. Regret
is the measure of “goodness” of an action in comparison to
the best response that could have been received in hindsight

To appear in IEEE International Conference on Robotics and Automation (ICRA), May. 2022.

ar
X

iv
:2

20
3.

06
86

1v
1

 [
cs

.R
O

]
 1

4
M

ar
 2

02
2

[9], [14]. This is different from the classical notion of cost
or reward. In regret games, instead of trying to minimize the
total cost, the objective is to minimize regret. The obtained
strategies have shown to be more reasonable than, e.g., Nash
Equilibrium strategies, for games played for finite number of
cycles [15]. Various formalisms for regret have been intro-
duced in different communities. The reinforcement learning
community specifically uses a formalism that is suitable
for exploitation of the degree of incomplete information in
games in regards to partial observability or uncertainty in
transition probabilities [11], [16]. Those approaches look at
regret locally, whereas the formal methods community views
regret globally through the lens of reactive systems [17], [18].
Nevertheless, the notion of regret has not been studied for
robotic manipulation, especially in the context of reactive
synthesis for tasks with human interventions.

In this work, we propose a regret-based reactive synthesis
framework that enables a robotic manipulator to seek collab-
oration with the human while guaranteeing task completion
and staying within its resource limits. This framework re-
laxes the assumption that the human is purely adversarial
while still capturing the human as a strategic agent without
requiring a priori knowledge. As in [1]–[3], [8], we consider
tasks given as LTLf formulas. Our approach is based on
abstracting the interaction between the robot and human as
a two-player game. We then formulate a regret game on the
abstraction by defining an appropriate formalism for regret in
the context of interactive manipulation domain. We adapt an
algorithmic approach to generate regret minimizing strate-
gies if they exist. We show that these strategies guarantee
task completion and enable efficient interactions, but they
are history dependent, which means they are computation-
ally expensive. Finally, we illustrate the benefits of regret-
minimizing strategies in several case studies and compare
the results against adversarial strategies.

The contributions of this work are threefold. First, we
identify an appropriate regret formalism for the manipu-
lation domain, and based on that, we introduce a regret-
minimizing reactive synthesis framework that encourages
collaboration while still guaranteeing the satisfaction of the
task and resource requirements. This framework paves the
way for further studies on using regret in robotics since
regret-minimizing behaviors are natural and human-like [15].
Second, we provide an end-to-end toolbox for synthesizing
regret minimizing strategies. Finally, we illustrate the regret-
minimizing strategies and their corresponding emergent be-
haviors through several case studies [19], [20].

II. PROBLEM FORMULATION

The goal of this work is to synthesize a high-level strategy
for a robotic manipulator to achieve a task defined over a
set of objects via an efficient interaction with a human. We
assume that the human has their own objective that may not
be necessarily adversarial to the robot’s task. Hence, we want
to enable the robot to explore possible collaboration with
the human in the execution of the task while guaranteeing

Fig. 2: Example illustration of abstraction G for the Arch
construction example in Fig. 1. The human can move objects
(colored blocks) in its region (unshaded) but cannot reach
the objects placed in robot (shaded) region. Robot actions
as1 and as2 denote placing the green block in the human
region and robot region, respectively. The edge weights are
the transition (action) costs.

task completion. Below, we formalize this problem by first
introducing the required mathematical definitions.

A. Manipulation Domain Abstraction

The manipulation domain describes how the robot, human,
and objects can interact with each other. This domain is
naturally continuous, and previous works [2], [3] show how a
discrete abstraction of it can be constructed. The abstraction
captures the interaction as a turn-based two-player game
between the robot and human at discrete time steps.

Definition 1 (Manipulation Domain Abstraction). The
manipulation domain abstraction is a tuple G =
(V, v0, As, Ae, δ, F,Π, L) where:
• V = Vs ∪ Ve is the set of states partitioned into robot

(system) states Vs and human (environment) states Ve,
• As and Ae are the sets of finite actions for the robot

and human, respectively,
• δ : V × (As ∪Ae)→ V is the transition function,
• F : V × (As ∪ Ae) × V → R≥0 is the cost function

that maps each transition to a cost. Here, the cost of
transitions enabled by the human actions are assumed
to be zero, i.e., F (v, ae, v

′) = 0 ∀ae ∈ Ae ,
• Π is a set of task related atomic propositions, and
• L : V → 2Π is a labeling function that indicates the

property of each state relative to the task.

Each state of G represents a configuration of the world, i.e.,
object locations and robot end-effector, and each transition
corresponds to an action taken by the robot agent or the hu-
man agent. A transition from one state to another represents
evolution of the shared workspace under that action.

Example 1. Fig. 2 shows a simple abstraction G for the
scenario in Fig. 1. The robot starts from state v0 with the
green block in its end-effector. The robot has two choices
from v0: place the block near the human (unshaded region)

or away from the human (shaded region). Once the robot
takes an action, it is the human’s turn to decide whether to
intervene or not. The solid and dashed edges indicate that
the human does not intervene and intervenes, respectively.

We note that this turn-based game abstraction is able
to capture multiple consecutive human moves as well as
concurrent actions by the agents in the continuous domain
with the assumption that human actions are faster than robot
actions as in [2]. Prior work [3] shows an automated process
for constructing this abstraction and representing it in the
Planning Domain Definition Language (PDDL) [21].

B. Strategy and Payoff Function
We assume both the human and robot are strategic agents,

i.e., they choose actions in accordance with their own objec-
tives. Informally, a strategy is a mapping that chooses a valid
action to perform given the history of executions so far. A
finite execution of the game is a finite sequence of states of
G. The set of all finite executions is denoted by V ∗.

Definition 2 (Strategy). A strategy for the robot is a function
σ : V ∗ · Vs → As that maps a finite execution ending in a
robot state in Vs to a robot action in As. Similarly, a strategy
for the human is a function τ : V ∗ · Ve → Ae that maps a
finite execution ending in a human state in Ve to a human
action in Ae. A strategy is said to be memoryless if it only
depends on the current state. Otherwise, it is called a finite
memory strategy. We denote by ΣG and TG the set of all
strategies for the robot and the human, respectively, in G.

The realization of the strategies σ and τ on abstraction G
is called a play, which is a sequence of states that correspond
to the evolution of the world under the actions executed by
the robot and human as per their strategies.

Definition 3 (Play). A play (a.k.a run or trajectory) on G
is an infinite sequence of states r(σ, τ) = v0v1v2 . . . ∈ V ω
induced by strategies σ and τ such that it is consistent with
the strategies, i.e., for all i ≥ 0, vi+1 = δ(vi, σ(v0 . . . vi)) if
vi ∈ Vs, otherwise vi+1 = δ(vi, τ(v0 . . . vi)).

For a play r(σ, τ) = v0v1 . . ., we call the obtained se-
quence of observations ρ(r(σ, τ)) = L(v0)L(v1) . . ., where
each L(vi) ∈ 2Π, the trace of r. We now define a payoff
function that helps quantitatively reason over different plays
in G induced by various strategies. Informally, the payoff
function is the total energy cost that the robot incurs in a
play.

Definition 4 (Payoff). Given robot and human strategies σ
and τ , the payoff function at state v0 is the total cost of the
robot actions in the induced play r(σ, τ) = v0v1 . . ., i.e,

Valv0(σ, τ) =

∞∑
i=1

F (vi−1, ai, vi), (1)

where ai = σ(v0 . . . vi−1) if vi−1 ∈ Vs, otherwise ai =
τ(v0 . . . vi−1).

Example 2. For abstraction G in Fig. 2, a memoryless
strategy τ for the human is to always intervene (ae1) while

a finite-memory strategy τ is to not intervene (ae2) if the
strategy σ for the robot is to build the arch near the human.
The payoff Val associated with the strategy that the robot
always picks action as2 and human picks action ae2 is 5.

C. Manipulation Task

We consider manipulation tasks that can be achieved in
finite time. To express such tasks, we use LTLf [7], which is
a language that combines Boolean connectives with temporal
operators, allowing expression of complex tasks.

Definition 5 (LTLf Syntax [7]). The syntax of LTLf formula
ϕ is defined recursively as:

ϕ := p |¬ϕ |ϕ ∧ ϕ |X ϕ |ϕUϕ (2)

where p ∈ Π is an atomic proposition, “¬” (negation) and
“∧” (and) are Boolean operators, and “X” (next) and “U”
(until) are the temporal operators.

The commonly used temporal operators “F ” (eventually) and
“G” (globally) are defined as: Fϕ := > U ϕ and Gϕ :=
¬F¬ϕ. The LTLf semantics is as follows.

Definition 6 (LTLf Semantics [7]). LTLf formulas are de-
fined over finite sequence of observations called a trace
ρ ∈ (2Π)∗. Let |ρ| denote the length of the trace ρ, ρ[i]
be the ith observation in ρ, and ρ, i � ϕ denote that the
ith step of trace ρ that satisfies the formula ϕ. Then,
• ρ, i � >,
• ρ, i � p iff p ∈ ρ[i],
• ρ, i � ¬ϕ iff ρ, i 2 ϕ,
• ρ, i � ϕ1 ∧ ϕ2 iff ρ, i � ϕ1 and ρ, i � ϕ2,
• ρ, i � Xϕ iff |ρ| > i+ 1 and ρ, i+ 1 � ϕ,
• ρ, i � ϕ1 U ϕ2 iff ∃ j s.t. i ≤ j < |ρ|, and ρ, i � ϕ2

and ∀k, i ≤ k < j, ρ, k � ϕ1.

The set of finite traces that satisfy ϕ is called the language
of ϕ, i.e., L(ϕ) = {ρ ∈ (2Π)∗ | ρ � ϕ}.

We say that a play r(σ, τ) of G satisfies LTLf formula ϕ
iff there exists a prefix of its trace ρ(r(σ, τ)) that satisfies
ϕ, i.e., r(σ, τ) |= ϕ iff

∃ pre(ρ(r(σ, τ))) s.t. pre(ρ(r(σ, τ))) |= ϕ,

where pre(ρ(r(σ, τ))) is a prefix of trace ρ(r(σ, τ)).

Example 3. For the arch-building example in Fig. 1, the task
can be written as the LTLf formula

ϕarch =F
(
pgreen, top ∧ pblock, support1 ∧ pblock, support2

)
∧

G
(
¬(pblock, support1 ∧ pblock, support2)→ ¬pgreen, top

)
.

D. Problem

We are interested in generating robot strategies that en-
courage collaboration with humans. At the same time, we
require the robot to complete the task while never exceeding
a given energy budget. We consider the following problem.

Problem 1. Given abstraction G, LTLf task specification ϕ,
and a user-defined energy budget B, compute a strategy σ for
the robot that not only guarantees completion of task ϕ but

also explores possible collaborations with the human while
keeping the total energy Valv0(σ, τ) ≤ B for all τ ∈ TG .

III. REGRET-BASED REACTIVE SYNTHESIS

In this section, we introduce our solution to Problem 1,
by building on previous work [2] and formulating a regret
game. We discuss the intuition for the regret formulation
to produce cooperation-seeking behaviors for the robot. Our
proposed approach first converts the LTLf formula ϕ to a
discrete structure that graphically represents the task, and
then composes it with with abstraction G. On the resulting
structure, we formulate a regret game with a proper definition
for regret that incorporates the desired attribute of seeking
cooperation while guaranteeing task completion.

A. DFA Game

Every LTLf formula ϕ can be converted to a Deterministic
Finite Automaton (DFA) that captures all the possible ways in
which one can satisfy ϕ [7]. Given task ϕ, we construct DFA
Aϕ = (Z, z0,Σ, δ, Zf), where Z is a finite set of states, z0 is
the initial state, Σ = 2Π is the alphabet, δ : Z×Σ→ Z is the
deterministic transition function, and Zf ⊆ Z is the set of
accepting states. A run of Aϕ on a trace ρ = ρ[1]ρ[2]...ρ[n],
where ρ[i] ∈ 2Π, is a sequence of DFA states z0z1 . . . zn,
where zi+1 = δ(zi, ρ[i]). If zn ∈ Zf , then trace ρ satisfies
ϕ, i.e., ρ |= ϕ.

Given a DFA Aϕ and the manipulation domain abstraction
G, we compose the two graphs to construct the DFA Game
P that captures all the possible ways in which task ϕ can
be accomplished on G. The states in P represent the current
configuration of the physical world as well as how much of
the task ϕ has been accomplished so far.

Definition 7 (DFA Game). A DFA Game is a tuple P =
G ×Aϕ = (S, Sf , s0, As, Ae, FP , δP) where As and Ae are
as in Def. 1, and
• S = V × Z is a finite set of states, and Ss = Vs × Z

and Se = Ve×Z are the set of robot and human states,
respectively,

• s0 = (v0, z0) is the initial state,
• Sf = {(v, z) | z ∈ Zf} is the set of final or accepting

states,
• δP : S × (As ∪Ae)→ S is the deterministic transition

function such that a transition from s = (v, z) to
s′ = (v′, z′) under a ∈ (As∪Ae) exists if v′ = δ(v, a)
and z′ = δ(z, L(v)) and z 6∈ Zf . If z′ ∈ Zf , then
δP((v, z), a) = (v, z) for all a ∈ (As ∪Ae),

• FP : S × (As ∪ Ae) × S → R≥0 is the cost function
such that FP((v, z), a, (v′, z′)) = F (v, a, v′).

A run on P is a valid sequence of states obtained with δP .
Thus, its projection onto DFA Aϕ is a valid run of Aϕ. Thus
a run that ends up in an accepting state in Sf corresponds
to also an accepting run in Aϕ and satisfies ϕ. Therefore,
the problem reduces to finding a robot strategy σ ∈ ΣP on
P that guarantees that the robot can enforce a visit to the
accepting set Sf under all possible human moves [3].

Fig. 3: DFA Game P for the abstraction G in Fig. 2 and the
arch-building task. The double edged states denote accepting
states. When operating close to the human, the robot spends
either 1 (cooperative human) or 7 (adversarial human) units
of total energy. Otherwise, it spends 5 units of total energy.

Example 4. Fig. 3 illustrates a DFA game for the abstraction
G in Fig. 2 with the arch-building task. Say, the energy
budget for the robot B = 7. A strategy for the robot that
guarantees task completion within the budget is to take action
as2 from s0, which requires 5 units of energy, irrespective
of the human’s action. This strategy is obtained if human is
assumed to be adversarial.

Below, we show how to formulate P as a regret game to
relax the adversarial assumption.

B. Reactive Synthesis with no Regret

An adversarial assumption is often a conservative abstrac-
tion of the reality because humans tend to be cooperative.
Thus, we relax this assumption and also account for the fact
that the human can have their own objective. Rather than
picking an action which is optimal for all possible human
actions, we pick an action that is “good enough” for all
human actions. We propose regret to be a viable solution
concept that quantifies how good an action is compared to
the best possible action associated with the best outcome,
i.e., the run with the least payoff in P .

To build the intuition, consider the DFA game in Fig. 3.
The robot has two choices from the initial state s0: to build
the arch within human’s reach (action as1) or away from
the human (action as2). The best action for the robot if
the human decides to intervene is action as2 and spend 5
units of total energy. If robot takes action as1, it spends
1 unit of energy for a cooperative human and 7 units of
energy for an intervening human. Then, we say the “regret”
associated with robot action as1 is 2 if the human intervenes
because the robot could have achieved energy 5 with as2.
If the human does not intervene, then regret of as1 is 0.
Similarly, if the robot decides to take action as2 and the
human decides to intervene, regret is 0, otherwise it is 4.
Table I summarizes the regret values associated with all
strategies. A regret-minimizing strategy for the robot is then
to build the arch near the human (action as1) as it can
guarantee a minimum regret of 2 under all human actions.
Intuitively, a regret-minimizing action for this task is to give

TABLE I: The regret associated with each robot and human
action from (3) for DFA-Game P in Fig. 3

Human (τ)
Robot (σ) near (as1) away (as2)

Intervene (ae1) 7 - 5 = 2 5 - 5 = 0
No Intervene (ae2) 1 - 1 = 0 5 - 1 = 4

the human a chance to be cooperative as it can still achieve
the task with either actions while stay within the energy
budget. We now formally define regret.

1) Regret: We define regret as the difference in the
outcome (total payoff) associated with the current action and
the best possible outcome, i.e., if the human is purely cooper-
ative. We refer to the best possible outcome as best-response.
Thus, we use best-responses as yardsticks to compare the
quality of each robot action.

Definition 8 (Task-Aware Regret). Given strategies σ and τ
on DFA game P for the robot and human, respectively, task-
aware regret at state s is defined as the difference in the pay-
off Vals(σ, τ) and the best possible payoff minσ′ Vals(σ′, τ)
under the same human strategy τ , i.e.,

regs(σ, τ) = Vals(σ, τ)−min
σ′

Vals(σ′, τ). (3)

Here σ′ is any alternate strategy for the robot other than σ ,
i.e., σ′ ∈ ΣP \ {σ}. We say that regs(σ) = +∞ if σ′ ∈ ∅.

We use best-responses (minσ′ Vals(σ′, τ)) to compare the
quality of each robot action for a fixed τ of the human. As
the regret behaviors change according to the task at hand,
we call them task-aware regret. Hence, our goal is find a
strategy σ∗ that behaves “not far” from an optimal response
to the strategy of the human τ when τ is fixed. Thus,

σ∗ = arg min
σ

(max
τ

regσ,τ (s0)). (4)

In Table I, the combination of strategies (as1, ae2) and
(as2, ae1) represent the extreme scenarios. A regret mini-
mizing strategy σ∗ is to pick a path with lower regret value
- the worst-case payoff for current strategy σ is similar to the
payoff of the best alternative σ′. Thus, we pick action as1 as
it has lower regret value. Note that the play induced by action
as1 also has a path, in which the human can cooperative
and help the robot spend less amount of energy. Thus, the
robot seeks for strategies that have similar best alternative
payoffs from the current state. If the human is cooperative
then the robot has more energy to spare and hence gives the
human more opportunities to collaborate before finishing the
task. The minimum budget B required to synthesize a regret-
minimizing strategy is the total payoff associated with the
winning strategy for the robot to complete the task assuming
human to be purely adversarial.

We note that a key difference in our regret formulation
from the ones used in the machine learning community
is that we look at the set of all strategies, including the
finite-memory ones for both the human and the robot. In
the learning community, they use regret to compare the
performance of their algorithms against a subset of strategies
or a fixed adversary. For us, finite memory strategies are

Algorithm 1: Compute regret minimizing strategies
Input : DFA Game P and energy budget B
Output: Regret minimizing strategy σ∗

1 Gu ← GraphOfUtility (P , B)
2 BA[e]← ∞ for all edges in Gu
3 for all edges ∈ Gu do
4 BA[e]← ComputeBA (edges)
5 end
6 Gbr ← GraphOfBestResponse (Gu, BA)
7 σ∗ ← ValueIteration (Gbr)
8 return σ∗

useful in keeping track of past human actions and thus
allowing the robot to reason over the human’s intention.
C. Computing Regret-Minimizing Strategies

To compute for σ∗ in (4), we use the results in [13]. The
method is summarized in Algorithm 1, which consists of two
main steps. First, we compute all the plays induced by all
robot strategies σ ∈ ΣP for a fixed human strategy τ ∈ TP

by unfolding P until the payoff of B is reached. This process
gives us a tree-like structure. We then augment each node
with the value of the total-energy spent by the robot (Val)
to reach that node. We call this graph the Graph of Utility
- Gu (Line 1). It captures all the possible plays for a fixed
human strategy τ . Note that paths of Gu are realizations of
finite memory strategies. Furthermore, if an accepting state
in P is reached during unfolding, it is a leaf node in Gu.

For each edge in every path in Gu, we compute the
best-alternate response (BA) by finding the lowest payoff
that corresponds to minτ minσ′ Vals(σ′, τ) (Line 4). We
augment each node in Gu with the best-alternate response
value and construct Gbr (Line 6). For node s ∈ Gbr, the
difference between its payoff and its best-alternate response
is the regret value regs at s. We repeat this process for all
nodes in Gbr. Then, we run a value iteration based method
to back propagate the regs values from the leaf nodes in Gbr
until we reach a fixed point.

The number of states of Gbr (denoted by |Gbr|) is polyno-
mial in the size of P . The algorithm is polynomial in the size
of P times B. The memory of strategies is directly related
to the depth of the tree and the number of alternate edges
along that path.

IV. EXPERIMENTS

We illustrate the efficacy of our framework on two differ-
ent case studies analogous to the ones in [2], [3]. In each
scenario the robot has two regions to complete the task. One
is near the human, who may intervene or collaborate with the
robot. The other region is far from the human, where they
cannot reach. The robot spends 3 unit of energy per action
to operate in this region whereas 1 unit of energy near the
human and was given a fixed budget B to complete the task.

We constructed an abstraction for each scenario as in [2],
[3] (see [22] for details). Then, we used our regret-based
synthesis framework to generate a strategy and compared the

(a) (b) (c) (d) (e) (f) (g)

Fig. 4: Arch construction with one human intervention. Human and robot regions are indicated in green and blue respectively
in (a). Yellow and blue arrow represent robot and human actions. Video: youtu.be/ABZb1g36Kv4

(a) (b) (c)

(d) (e) (f)
Fig. 5: Straight line alignment with two human interventions.
Robot (blue) and human (green) regions are shown in (a).

emergent behaviors against the behaviors seen when using
the framework in [2], which assumes the human is purely
adversarial. Fig. 4 and 5 show example behaviors, and Table
II outlines the computational costs. Videos of all the case-
studies are available to view in [19].

The implementation of our framework is an end-to-end
software tool that takes in the manipulation domain ab-
straction and task LTLf formula and generates a regret-
minimizing strategy. The tool is in Python and is available
on GitHub [20]. For the experiments, the strategy was im-
plemented on the Franka Emika Panda robotic manipulator.

Arch Construction: In the first scenario, the task is
to build an arch with the green box on top (LTLf formula
shown in Example 3). The total budget was B = 10, and
the total energy needed to finish the task away from the
human is 4 units. Fig. 5 shows an execution of this task
with one human intervention. The robot initially starts to
build the arch near the human as shown in Fig. 4a-4c. But,
the human intervenes adversarially by moving the support
(pink object) away. Then, the robot becomes conservative
and builds the arch in the other region, spending 6 units
of energy. A purely adversarial behavior for the robot is to
build the arch away from the human, thus spending 4 units
of total energy. Note that the robot ends up spending more
energy under the regret-minimizing strategy, but it still stays
within its energy budget while seeking collaboration. The
general trend for such strategies is to be optimistic and seek
collaboration with the human until the human disrupts the
cooperation, motivating the robot to become pessimistic to
ensure completing the task within the given energy budget.

Straight Line Alignment: The second task for the robot
is put three objects in a line such that pink block is in the
top location, the blue block is in the middle, and the green
block is at the bottom. Fig. 5 shows an execution of this
task. Note that the robot needs to execute fewer actions to
accomplish the task near the human. An adversarial strategy
for the robot is to rearrange the blocks placed away from
the human irrespective of the human’s action. However, a
regret minimizing strategy is to consider the possibility that
the human could be cooperative. For this scenario B = 20
and the total-energy to finish the task away from the human
is 12, and 2 if the human is cooperative. Initially, the human
intervenes, adversarially, thus the robot operates away from
the human (Fig. 5a-5c). The human then intervenes again
and opens up another opportunity for cooperation (Fig. 5d-
5f). The robot takes this opportunity and completes the task.

Computational Cost: As the total energy required to ac-
complish the task without any human cooperation increases,
we see that the robot provides more opportunities for the
human to be cooperative as long as it can still guarantee to
complete the task while staying below the energy budget B.
However, it comes at a cost. As shown in Table II, as B
increases, more memory is required to generate the strategy.
Therefore, it becomes computationally more expensive.

TABLE II: Total number of states in various abstractions,
energy budget B, and average runtime and memory usage.

Case
study

|SP | B |Gu| |Gbr| Time (s) Memory
(GB)

Arch 48,843

10 537,274 2,152,851 405 6.12
12 634,960 3,625,717 515 8.26
14 732,721 5,477,123 622 12.10
16 830,417 7,755,377 756 16.80
18 928,113 10,469,395 898 21.88

Line 19,254

15 308,065 2,306,785 174 5.03
17 346,573 3,263,221 221 7.01
19 385,081 4,368,121 273 8.89
21 423,589 5,621,485 328 11.72
23 462,097 7,023,313 371 13.91

V. CONCLUSION

We presented a different formulation for synthesizing
strategies for a robot operating in presence of a human. We
use regret to relax the adversarial assumption on human and
allow the robot to seek collaboration. We find the emergent
behavior for the robot to be more intuitive and human-like.
For future work, we plan to extend this framework to more
complex scenarios with multiple agents as well as improving
the computational cost of algorithm for efficient synthesis.

REFERENCES

[1] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in IEEE
international conference on robotics and automation. IEEE, 2015,
pp. 346–352.

[2] ——, “Reactive synthesis for finite tasks under resource constraints,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2017, pp. 5326–5332.

[3] ——, “Automated abstraction of manipulation domains for cost-based
reactive synthesis,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 285–292, 2019.

[4] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[5] C. I. Vasile and C. Belta, “Reactive sampling-based temporal logic
path planning,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), 2014, pp. 4310–4315.

[6] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient reactive controller
synthesis for a fragment of linear temporal logic,” in 2013 IEEE
International Conference on Robotics and Automation, 2013, pp.
5033–5040.

[7] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, ser. IJCAI
’13. AAAI Press, 2013, p. 854–860.

[8] A. M. Wells, Z. Kingston, M. Lahijanian, L. E. Kavraki, and M. Y.
Vardi, “Finite-horizon synthesis for probabilistic manipulation do-
mains,” in IEEE International Conference on Robotics and Automa-
tion. IEEE, 2021, (to appear).

[9] L. Chen, H. Luo, and C.-Y. Wei, “Minimax regret for stochastic short-
est path with adversarial costs and known transition,” in Conference
on Learning Theory. PMLR, 2021, pp. 1180–1215.

[10] P. Jin, K. Keutzer, and S. Levine, “Regret minimization for partially
observable deep reinforcement learning,” in International conference
on machine learning. PMLR, 2018, pp. 2342–2351.

[11] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
minimization in games with incomplete information,” Advances in
neural information processing systems, vol. 20, pp. 1729–1736, 2007.

[12] M. G. Azar, I. Osband, and R. Munos, “Minimax regret bounds
for reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2017, pp. 263–272.

[13] E. Filiot, T. Le Gall, and J.-F. Raskin, “Iterated regret minimization
in game graphs,” in International Symposium on Mathematical Foun-
dations of Computer Science. Springer, 2010, pp. 342–354.

[14] L. Chen and H. Luo, “Finding the stochastic shortest path with
low regret: The adversarial cost and unknown transition case,” arXiv
preprint arXiv:2102.05284, 2021.

[15] J. Y. Halpern and R. Pass, “Iterated regret minimization: A new
solution concept,” Games and Economic Behavior, vol. 74, no. 1, pp.
184–207, 2012.

[16] P. Jin, K. Keutzer, and S. Levine, “Regret minimization for partially
observable deep reinforcement learning,” in International conference
on machine learning. PMLR, 2018, pp. 2342–2351.

[17] P. Hunter, G. A. Pérez, and J.-F. Raskin, “Reactive synthesis without
regret,” Acta informatica, vol. 54, no. 1, pp. 3–39, 2017.

[18] ——, “Minimizing regret in discounted-sum games,” arXiv preprint
arXiv:1511.00523, 2015.

[19] K. Muvvala, 2021, online. [Online]. Available:
https://youtu.be/ABZb1g36Kv4

[20] ——, “Regret based reactive synthesis,” https://github.com/aria-
systems-group/PDDLtoSim.

[21] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, An Intro-
duction to the Planning Domain Definition Language. Morgan &
Claypool, 2019.

[22] K. Muvvala, “Human-aware strategy synthesis for robotic manipu-
lators using regret games,” M.S. thesis, University of Colorado at
Boulder, 2021.

