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Abstract— We apply a novel framework for decomposing and
reasoning about free space in an environment to a multi-agent
persistent monitoring problem. Our decomposition method
represents free space as a collection of ellipsoids associated
with a weighted connectivity graph. The same ellipsoids used
for reasoning about connectivity and distance during high level
planning can be used as state constraints in a Model Predic-
tive Control algorithm to enforce collision-free motion. This
structure allows for streamlined implementation in distributed
multi-agent tasks in 2D and 3D environments. We illustrate
its effectiveness for a team of tracking agents tasked with
monitoring a group of target agents. Our algorithm uses the
ellipsoid decomposition as a primitive for the coordination,
path planning, and control of the tracking agents. Simulations
with four tracking agents monitoring fifteen dynamic targets
in obstacle-rich environments demonstrate the performance of
our algorithm.

I. INTRODUCTION

As large-scale nonlinear programming solvers have be-
come more performant, many applications have arisen where
autonomous agents use an optimization-based control frame-
work to simultaneously optimize the desired trajectory and
necessary control inputs. Recent examples include Model
Predictive Control (MPC) for vehicles entering and exiting
a platoon [1], UAVs flying in formation subject to radio
path loss constraints [2], and videography drones flying
subject to visibility and aesthetic constraints [3]. However,
collision avoidance constraints that prevent crashes with
the surrounding environment can present problems when
scaling to more general environments. The algorithms often
rely on strict assumptions about obstacle structure, do not
scale well with environment complexity, or are difficult to
implement efficiently for real-time execution. Moreover, it
can be difficult to connect the local collision avoidance
constraints with global progress of the agent. It is desirable
to reason about high level task coordination with the same
framework used to eventually enforce collision-free motion.

We present an algorithm that utilizes an ellipsoidal decom-
position of the environment to unify reasoning about high
level planning and lower level optimization-based control.
Our algorithm begins by decomposing the operational area
into a set of ellipsoidal, obstacle-free regions. We use a novel
method to connect these regions in a graph structure that
reflects both connectivity and distance. Agent coordination
can be reasoned about in the graph representation, and the
same geometric primitives used to decompose the space are
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Fig. 1. Example ellipsoid decomposition of the “Jagged” environment and
region assignment for team of tracking agents, with obstacles shown in
purple and region assignments shown in red, green, blue, and cyan.

used as state constraints in an MPC algorithm. The algorithm
scales very well with the complexity of the environment and
is directly applicable to both 2D and 3D domains.

We demonstrate the decomposition framework in a multi-
agent persistent patrolling task evocative of automated wild
life census, behavior logging, event tracking, or specialized
close-up videography. These applications require capabilities
for tracking of specific features of the dynamic objects within
given constraints. A key requirement of such capabilities
is high-level coordination between agents to ensure each
agent’s actions are useful to the whole. We demonstrate
that our decomposition framework is useful in both the
task coordination and low level control for a team of N
tracking agents patrolling a group of M target agents. Our
decomposition-based assignment algorithm performs favor-
ably compared to obstacle-oblivious Voronoi-based assign-
ment methods in two simulation environments.

The main contributions of the paper are:
• A novel method of decomposing and reasoning about

free space in obstacle-rich environments that serves as a
primitive for task assignment, path planning, and control

• An MPC implementation that leverages the free space
decomposition generated by higher-level planning

• A demonstration of the proposed framework with a
complex multi-agent persistent monitoring problem

The rest of the paper is organized as follows: We present
related work in Section II. Section III presents our central
decomposition and graph representation algorithm. We com-
bine the elllipsoidal free-space representation with MPC in
Section IV. Finally we demonstrate these techniques in a
multi-agent monitoring problem in Section V.

II. RELATED WORK

The fields of computer graphics, computational geometry,
and robotics have extensive literature on polygonal decom-
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positions. Seidel’s trapezoidal algorithm [4] is a popular
option for 2D decompositions. The Delaunay triangulation
[5] is also often used in 2D and 3D. While both of these
algorithms are efficient and provide complete decompositions
of a region, the small individual pieces that they generate are
a poor match for constraints in optimization-based control.
We would instead prefer a smaller number of large regions in
the decomposition. Finding the minimum number of convex
polyhedra to cover a space is NP-Hard [6], [7], although
there has been work in the direction of approximate minimal
covers. Unfortunately existing solutions in this direction have
various shortcomings (e.g. polynomial but large runtime [8]
or restrictions to 2D [9]) that make them poor options for
the 2D and 3D planning and control tasks that we have in
mind. However, minimizing the total number of elements in
the decomposition is less important than the quality of each.
Even if the number of convex elements is not minimal, if
each is large then a path between two points may only require
traversing a small number of regions. To this end, we build
upon the IRIS algorithm [10] that finds a single large convex
region around a seed point.

The ideas in [11] are the closest to our own. In [11],
the authors also decompose the free space into a collection
of large convex regions to aide path planning. In contrast,
our fixed-size representation of each convex region is more
appropriate for optimization-based control, and our novel
distance metric for building the connectivity graph is more
general-purpose than their task-specific graph building.

Our example patrolling task draws inspiration from prior
work in multi-agent target-tracking, coverage, persistent
monitoring, and pursuer-evader games. One approach to
tracking multiple targets with multiple agents is to divide the
environment into regions among the trackers, such that each
tracker is responsible for their subset of the environment.
These coverage control approaches have been demonstrated
in non-convex domains [12], [13], [14], [15] or when the
total number of targets may be unknown [16], [17]. These
coverage problems can also include constraints on viewpoints
[18], or incorporate additional camera controls [19], [20] of
the tracking vehicles. In persistent monitoring problems, the
tracking agents must design strategies to continuously revisit
targets within an environment, such as minimizing the time
between observations of a given target [21]. Other work
focuses on static targets [22] or non-convex environments
[23].

Many of these existing works either simplify dynamic
and kinematic constraints in order to provide capture guar-
antees, or consider the full reachability analysis at great
computational cost. We demonstrate that our ellipsoid-based
graph representation of the environment can address the
target assignment and agent control problems in a unified
framework and supports realistic, general dynamics models
and realtime control. In the same vein as the author’s prior
work on cooperative target tracking with MPC [24], we
show the benefits of jointly reasoning about high-level task
coordination and low level control. Here, we focus on how
our novel decomposition enables the high level task planning
to be carried out with the same geometric primitives used to

ensure safe motion by the MPC.

III. ELLIPSOID DECOMPOSITION AND REPRESENTATION

A. Decomposition

We compute an approximate decomposition of the envi-
ronment’s obstacle-free space as a union of convex regions
using the IRIS library [10]. Given a seed point, IRIS finds
hyperplanes that separate the seed point from all obstacles.
The seed point is expanded to the maximum volume ellipsoid
enclosed by the hyperplanes, and the process repeats by
finding new hyperplanes that separate the ellipsoid from the
obstacles. We generate a lattice L of points with spacing d
and begin with no regions in the free-space decomposition
E . Then, for each point in l ∈ L, if it is not contained by any
region in E , we use IRIS to add a new obstacle-free region
with l as the seed point, detailed in Algorithm 1.

The regions returned by IRIS can be represented in two
ways: the bounding hyperplanes of the polyhedral regions,
or the maximum volume ellipsoid constructed within them.
Using the region defined by the hyperplanes is a more
complete decomposition, but we prefer the ellipsoids for two
reasons. First, the description of each region (a centroid and
shape matrix) is of a constant size, while the polyhedral
regions have varying numbers of sides. Constant-size region
description yields a more desirable MPC implementation,
as the resulting nonlinear program also has a constant size.
Second, ellipsoid-based region descriptions lead to an elegant
method of spatially relating free-space regions to each other.
We denote ellipsoids asM(M,m) = {x | ‖x−m‖M ≤ 1},
where ‖w‖2A = wTAw.

Algorithm 1 Ellipsoid Decomposition

1: procedure ELLIPSOIDDECOMPOSITION(O)
2: E = ∅ . Ellipsoid set initialized empty
3: L ← LatticePoints(d) . Generate lattice points
4: L ← L \ L ∩ O . Cull points in obstacles
5: while |L| > 0 do
6: l← l ∈ L . Choose new lattice point
7: L ← L \ l . Remove point from set
8: E ← InflateEllipsoid(l,O) ∪ E . Inflate

ellipsoid from lattice seed point
9: for p ∈ L do

10: if p ∈ E then
11: L ← L \ p . Cull points covered by

ellipsoid set
12: return E

B. Graph Construction

To facilitate using this collection of ellipsoids for spatial
planning, we construct a graph G = (V,E ) that represents
the connectivity of the ellipsoids. Each ellipsoid Ej ∈ E is
represented by a vertex vj ∈ V , and two vertices share an
edge if their associated ellipsoids intersect. We next present
an efficient method for checking ellipsoid intersection, which
has the benefit of finding a point in the intersection of the
ellipsoids if one exists.



Fig. 2. Example ellipsoid decomposition generated by Algorithm 1. Ob-
stacles are represented in purple and the free-space ellipsoids in blue.

For two ellipsoids A(A,a) and B(B,b), let

Eλ = λA+ (1− λ)B, mλ = E−1λ (λAa+ (1− λ)Bb),

for some λ ∈ [0, 1]. As proven in [25], mλ is in both ellipses
simultaneously for some value of λ on [0, 1] if and only if the
two ellipsoids intersect. For λ = 0 and λ = 1, mλ is equal to
the origin of ellipse B and A respectively. A bisection search
on λ will either return a point in the intersection of A and
B, or a point mλ̃ that is not in either ellipsoid–a certificate
that the ellipsoids do not intersect.

The correctness of our bisection search relies on mλ

moving monotonically from B to A. Proposition 1 proves the
monotonic behavior for axis-aligned ellipsoids with a diago-
nal shape matrix. In practice, we observe that monotonicity
of mλ holds for general ellipsoids.

Proposition 1. Consider two axis-aligned ellipsoids A(A,a)
and B(B,b) with diagonal shape matrices A and B.
‖mλ − b‖B is monotonically increasing for λ ∈ [0, 1].

Proof. First note that ‖mλ − b‖ is translation invariant.
Without loss of generality, let b = 0. Making use of the
fact that diagonal matrices commute with each other,

‖mλ‖2B =

aTAT (λA+ (1− λ)B)−TB(λA+ (1− λ)B)−1Aa

=
∑
i

a2iBii

(
λAii

λAii + (1− λ)Bii

)2

=
∑
i

a2iBii

(
λ

λ+ (1− λ)Bii

Aii

)2

.

As A and B are positive definite, Bii

Aii
∈ (0,∞). Additionally,

λ

λ+ (1− λ)Bii

Aii

,

is monotonically increasing in λ ≥ 0, for any Bii

Aii
∈ (0,∞).

As a2iBii is also positive, ‖mλ‖2B is monotonically increas-
ing for λ ∈ [0, 1]. Squaring a positive function preserves
monotonicity, so ‖mλ − b‖B is monotonically increasing for
λ ∈ [0, 1], thus completing our proof.

The length of the path mλ is an upper bound on the
collision-free distance between the centroids of two ellip-
soids. We define a distance heuristic d̂ as

d̂(E1, E2) =
∫ 1

0

∥∥∥∥dmλ

dλ

∥∥∥∥ dλ,
which we compute numerically. The weighted edge set E of
the ellipsoid connectivity graph is then defined by

E =
{
(i, j, d̂(Ei, Ej)) | Ei ∩ Ej 6= ∅

}
,

for Ei, Ej ∈ E , where e = (i, j, w) denotes an edge from
vertex i to vertex j with weight w. The resulting edge
weights may violate the triangle inequality. To make the
graph metric and provide a tighter bound on the shortest
distance between ellipsoid centers, the weight of each edge
can be updated to the weight of the lowest-weight path
between its two endpoints in the original graph.

The graphical interpretation of environment free space, G,
and the associated obstacle-free ellipsoids can now be used
for task assignment and path planning, while the associated
ellipsoids are useful for collision-free motion planning.

C. Path Planning
To move around the environment while avoiding obstacles,

a mobile agent must plan a path in the ellipsoidal decompo-
sition graph G from its current location xstart to some xgoal.
To find such a path, we augment G with an additional vertex
for the start and goal positions. Each of the two additional
vertices shares an edge with vertices corresponding to the
ellipsoids containing that point. The augmented vertex set is
V ′ = V ∪ {vstart, vgoal}, and the augmented edge set is

E ′ = E ∪ {(vstart, j, ‖xstart − ej‖) | ‖xstart − ej‖Ej
≤ 1}

∪ {(vgoal, j, ‖xgoal − ej‖) | ‖xgoal − ej‖Ej
≤ 1},

for Ej(Ej , ej) ∈ E .
The shortest path from vstart to vgoal in the augmented

graph G′ = (V ′,E ′), which we denote E∗, corresponds to
an upper bound on the minimum collision-free distance from
xstart to xgoal. If the start and goal points are within the
same ellipsoid, this pathfinding method may return a longer
ellipsoid sequence than the single shared ellipsoid, depending
on their position relative to the current ellipsoid’s center. We
explicitly check for this case, and if the start and end points
share an ellipsoid we set E∗ to be the current ellipsoid. In
the patrolling case study, we pre-compute the shortest path
between all pairs of nodes with the Floyd-Warshall algorithm
[26, Chapter 5].

We use E∗ to construct a sequence of waypoints between
xstart and xgoal. A point in the intersection of each succes-
sive pairs of ellipsoids is added to the sequence, computed
as described in Section III-B.

IV. ELLIPSOID DECOMPOSITION WITH MPC
Given a sequence of waypoints from the graph-based

path planning algorithm, we use a flexible Model Predictive
Control (MPC) formulation to solve for the agent control
inputs. Progress toward the next waypoint is achieved with
a distance-based stage cost over the planning horizon, and a



Fig. 3. Example of switching indices ht and he. The first half of the
trajectory (in blue) optimizes cost l1(x) based on distance to intermediate
waypoint. The second half of the trajectory (in magenta) optimizes cost
l2(x) toward the following waypoint. The switching indices are updated
between MPC iterations depending on the predicted trajectory. In general,
he and ht need not be the same.

dynamically updated “cost switching” index ensures further
progress toward the following waypoint. A similar updating
index constrains each point on the planning horizon to be
inside one of two free-space ellipsoids.

A. Cost Switching

To make progress toward the final goal position, we expect
the agent to move toward the next waypoint in the sequence
generated by the path planning algorithm. In practice, this
intermediate waypoint may be within the planning horizon.
It would be undesirable for the waypoint to be fixed for
the entire planning horizon, which would lead to a trajectory
that slows down or stops at the waypoint. Instead, part of the
trajectory has a cost function related to the closest waypoint,
while the rest is incentivized to reach the following waypoint.

We denote the cost functions related to the first and second
waypoints as l1(x) and l2(x). In the simple case where the
agent’s only objective is moving between a fixed start and
end point, then l1 and l2 is the distance between the target
and corresponding waypoint. Our case study in Section V
shows an example of a more complicated cost function. We
define a cost switching index ht, which determines when
the MPC switches from the primary cost function l1 to the
secondary cost function l2. Initially, ht is set to N + 1,
one larger than the MPC horizon. Each time a solution is
returned from the MPC, the predicted trajectory for the agent
is compared to the intermediate waypoint location. ht is set
to the first index where the tracking trajectory enters within
some radius of the waypoint. After this point, it spends the
rest of the horizon optimizing for the secondary goal. As the
agent approaches the first waypoint, ht decreases and more
of the trajectory is pulled toward the second waypoint. This
effect is illustrated in Figure 3.

B. Constraint Switching

Staying within the union of obstacle-free ellipsoids E
allows an agent to avoid collisions with the environment.
However, the union of ellipsoids is nonconvex, and imposing
the constraint directly onto the MPC increases solution times
and leads to poor local optima. Previous works [27], [28]
address this issue by formulating the constraints as a mixed-
integer convex nonlinear program, where exactly one convex

region is the active constraint at each timestep. Unfortunately,
requiring the solver to support integer constraints removes
the possibility of using faster continuous nonlinear solvers.
Instead, we employ a constraint switching index he analo-
gous to the cost switching index that controls which free-
space ellipsoid constrains each stage of the MPC.

The ellipsoids that we choose come from the path plan-
ning solution E∗. The first ellipsoid contains the agent and
first waypoint. The second ellipsoid contains the first and
second waypoints. We denote the first and second collision
avoidance ellipsoids as M1(M1,m1) and M2(M2,m2).
The first ellipsoid constraint is active until step he of the
MPC horizon. The second ellipsoid constraint is active from
step he onward. This results in a pair of quadratic constraints
for each agent, ‖xk −mi‖2Mi

≤ dik, i ∈ {0, 1}, defined for
each step k of the MPC horizon.

Setting dik to 1 constrains x to be within ellipsoid Mi at
time k. Setting dik to ∞ turns off the constraint at time k.
We set d0k to ∞ if k ≥ he, and 1 otherwise. Similarly, d1k is
equal to ∞ if k < he, and 1 otherwise. Thus, in the interval
[0, he), only the M1 ellipsoid constraint must be satisfied,
and vice-versa for [he, N−1]. Within each of these intervals,
the feasible positions for x are convex, which yields more
reliable MPC performance in practice. We update he in a
similar manner to ht, based on what portion of the previous
MPC solution was contained in the second ellipsoid.

C. Full Formulation

The full MPC formulation can be written as a constrained
nonlinear optimization problem:

argmin
w1:N ,u1:N

N∑
k=1

l1k(xk)1(k < ht) + l2k(xk)1(k ≥ ht) + q(uk)

(1a)
s.t. w1 = w(0), (1b)

ẇ(tc,n) = f(w(tc,n),u(tc,n)), (1c)

‖xk −mi‖2Mi
≤ dik, i ∈ {0, 1} (1d)

w ∈ W,u ∈ U , ∀k ∈ {1, . . . , N}. (1e)

In our implementation, the system dynamics ẇ = f(w,u)
are enforced with a third order collocation method (1c),
as discussed in [29]. tc,n denotes the time corresponding
to the nth collocation point, and the resulting constraint
can be represented directly in terms of w1:N and u1:N .
A control effort regularization function q is added to the
cost function to encourage smoother control inputs. We let
q(u) be proportional to ‖u‖2. The first control input u1 is
applied to the system, and then the optimization re-solved in
a receding horizon manner.

Note that the number of constraints necessary to enforce
collision-free motion is constant and independent of the
environment’s complexity. While a polytope representation
of free space results in a varying number of halfplane
constraints, here we always have two constraints based two
ellipsoids. This greatly aids MPC implementations where the
solver is pre-compiled or reused between iterations.



V. PERSISTENT MONITORING CASE STUDY

We consider a multi-agent patrolling problem to demon-
strate how our ellipsoidal decomposition algorithm provides
a useful tool for jointly reasoning about planning and con-
trol. A team of tracking agents must periodically visit a
group of moving target agents from a relative viewpoint.
We demonstrate a task assignment algorithm that uses the
decomposition graph G to reason about task assignments for
the agents, and then uses the ellipsoids associated with paths
in G to impose collision avoidance constraints in a viewpoint-
aware MPC. We evaluate the proposed algorithm in a 2D
simulation in two different environments that feature non-
convex obstacles of varying shape and size, shown in Figure
1 (Jagged Environment) and Figure 2 (Spiral Environment).

A. Problem Formulation
Here, a team of N trackers seeks to observe M targets,

with target-centric viewpoints specified as objectives. The
team of tracking agents must be controlled to minimize the
time between observations of each target. For each target
m ∈ {1, ...,M} we denote the desired viewing direction η,
viewpoint tolerance θ, and maximum distance rmax. For a
tracking agent to successfully observe target m, it must enter
a circular arc relative to m with medial axis η, angle θ, and
radius rmax.

Tracking agents move subject to second order unicycle dy-
namics, with the state consisting of position, heading angle,
linear velocity, and angular velocity: w =

[
x; y; θ; v; ω

]
,

and the control input consisting of longitudinal and angular
acceleration: u = [a; α] The dynamics evolve according to
ẇ = [v cos(θ); v sin(θ); ω; a; α].

The tracking agents are constrained to have a velocity in
the range [0, 3]m/s, with acceleration constrained to be in
[−1, 1]m/s2. Angular velocity is constrained to [−3, 3] rad/s,
with angular acceleration constrained to [−2, 2] rad/s2. The
acceleration constraints and second order dynamics make
this a nontrivial control problem, even before considering
the viewpoint cost function.

The target agents are given random obstacle-free desti-
nation points in the environment and move according to
a first order unicycle model with a constant velocity of
0.3m/s (angular velocity is controlled directly). They plan
intermediate waypoints with the method outlined in Section
III-C, and heading is driven with a Proportional Derivative
(PD) feedback controller. By virtue of the waypoint choice,
the target agents are usually in obstacle-free space, although
they may occasionally drive through obstacles.

B. Task Assignment
Before task execution, the approximate ellipsoidal de-

composition of free space G is constructed. At runtime,
each tracking agent is assigned a subset of the targets it
is responsible for observing. This subset updates according
to changes in distribution of targets. Each tracking agent
plans an order for visiting each of its assigned targets.
The assignment order is used to generate a collision-free
reference path for the tracker, which is followed by an MPC.

We examine two complementary methods for the assign-
ment step. The first method dynamically updates each agent’s

region of responsibility online. Let D̂(xi,xj) return the
shortest distance based on the approximation from G′. Each
target is assigned to the closest tracker, as estimated by D̂.
The second method finds a static partition of the environment
and assigns each tracker agent to a fixed region. We partition
the set of free-space ellipsoids among the tracking agents
with a greedy k-center approximation problem. For a metric
graph G = (V,E ), the k-center problem is to find a subset of
vertices V ∈ V such that the maximum distance between any
vertex in G and a vertex in V is minimized. The problem is
NP-Complete, but there is a simple heuristic that guarantees
at most twice the optimal distance: with V initialized with
a single random node, add the node in V that is furthest
from any node in V and repeat k − 1 times [30]. Such
a decomposition is illustrated in Figure 1. Each tracking
agent is assigned responsibility for the targets currently in its
designated partition. While the regions have some overlap,
they generally ensure that the tracking agents are distributed
around the environment. The two methods of dividing targets
can be used interchangeably, depending on whether it is
desirable to have each agent confined to a known region.

Once the targets have been divided among the tracking
agents, a greedy heuristic h is used to guide the tracker’s
visitation order of its assigned targets. The visitation order
heuristic is a weighted combination of each target’s distance
and the amount of time since it has been surveyed. Formally,

hi = D̂(xtracker,x
i
target)− wstaleness(tnow − tiseen).

The heuristic balances opportunism in viewing targets that
are convenient with an incentive to seek out targets that have
not been seen in a while. The targets are pursued in ascending
order of hi, although as the ordering is updated at every
timestep only the first two targets affect the control policy.

C. MPC Viewpoint Cost
We define a viewpoint cost function that encodes the

desire to view the target from a specific angle and distance.
Consider a target at position xtarget with a desired viewing
direction η. In order to get the desired observation of the
target, the tracking agent must enter into an arc with opening
angle θ around η, and within distance r. Let x̃ denote the
vector from xtarget to xtracker. The viewpoint cost function
l is composed of a term that penalizes the deviation of x̃
from the direction of η and the length of x̃ from the desired
viewing distance. The viewpoint cost function is defined as

l(x) =
x̃T

‖x̃‖
η + (‖x̃‖2 − r2)2. (2)

The position and direction of interest of the target are
predicted over the horizon of the MPC planning. As a
result, l(x) is implicitly a function of time from the time-
dependence of x̃ and η. We make this explicit by notating
li(x) as the cost function relative to the target at time i. Our
implementation predicts the target’s future motion assuming
no control inputs are applied to the target over the planning
horizon. When a tracker agent’s current position relative to
its current target enters the desired viewing cone, we consider
the target to have been visited. When the tracking and target



agent share an ellipsoid or are in adjacent ellipsoids, the cost
function l is used as cost l1 or l2 in (1). In this case, the
cost switching index ht can be updated based on when the
predicted trajectory enters the target’s viewing cone.

D. Simulation
The viewpoint-optimizing cost function (2) for each agent

is optimized subject to the agent dynamics by implementing
(1) in Casadi [31] and solving with IPOPT [32]. The MPC
considers a five second horizon, comprised of 40 equally-
spaced steps. It takes an average of 50ms per MPC solution
on an Intel Core i7-9750H CPU @ 2.60GHz. The MPC is
given its previous solution as an initial guess. The computa-
tion for decomposition and graph construction is dominated
by the ellipse inflation at each seed point. The ellipse
inflation takes under 6 seconds in both test environments.

Still frames from our video illustrating the tracking task
within Environment 2 are shown in Figure 6. We simulate
both the static and dynamic ellipsoid region assignment
algorithms. We compare these algorithms to a static and
dynamic obstacle-oblivious assignment methods. The first
comparison is to a static, obstacle-oblivious Voronoi partition
of the space, with the same seed points used as the k-centers
defining the ellipsoid partition. The second comparison is a
dynamic Voronoi assignment algorithm, where targets are
assigned to the closest tracker at every iteration without
consideration of obstacles. All four algorithms use the same
path planning and MPC implementations. Figure 4 presents
the mean time between visits for targets, and Figure 5
presents the maximum time between visits for the targets
over 51 runs. Each run randomizes the initial positions of
the target agents and simulates 625 seconds of the tracking
task. The static region assignments are slightly different
between runs due to the stochastic nature of the k-centers
approximation algorithm.

In both domains, the algorithms with dynamically allo-
cated regions of responsibility outperform the static region
assignments. This is unsurprising, as dynamic partitioning
enables tracking agents to directly respond to shifting dis-
tributions of the target agents. In both environments, the
dynamic ellipsoid decomposition method outperforms the
dynamic Voronoi method, for both metrics of mean visit
delay and maximum visit delay. The static ellipsoid decom-
position slightly underperforms the static Voronoi method
in the Spiral environment and outperforms it in the Jagged
environment. The static ellipsoid decomposition compares
most favorably when there are larger free-space regions
thinly separated by obstacles, which is better reflected in the
Jagged environment. Overall, these simulations demonstrate
the efficacy of our ellipsoid decomposition and path planning
to perform complex multi-agent tasks.

VI. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated a novel method for decom-
posing and reasoning about spatial structure in obstacle-
rich 2D and 3D environments. The obstacle aware ellipsoid-
based graph decomposition enables high-level coordination
between agents, path planning, and collision-free motion
planning in a unified representation. We have demonstrated

Fig. 4. Mean time between target visitation for the four algorithms.

Fig. 5. Max time between target visitation for the four algorithms.

(a) t = 0.25s (b) t = 6.25s

(c) t = 18.75s (d) t = 31.25s

Fig. 6. Evolution of a tracking simulation over time. Four tracking agents
are pictured as black dots. Purple blocks represent obstacles. Red dots
represent targets of interest, and red triangles are relative viewpoint from
which they must be viewed by a tracker. Green lines are the tracking agents’
MPC plan at the current iteration. The dark blue line connects each tracker
with its currently-assigned target.

the utility of this framework with a multi-agent persistent
monitoring task where an MPC algorithm leverages the
decomposition to monitor a team of target agents from
desired viewpoints. We hope to extend the applications of
this ellipsoid framework to other multi-agent tasks as a
coordination and planning primitive.
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