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RAPID-RL: A Reconfigurable Architecture with Preemptive-Exits for
Efficient Deep-Reinforcement Learning
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Abstract— Present-day Deep Reinforcement Learning (RL)
systems show great promise towards building intelligent agents
surpassing human-level performance. However, the computa-
tional complexity associated with the underlying deep neural
networks (DNNs) leads to power-hungry implementations. This
makes deep RL systems unsuitable for deployment on resource-
constrained edge devices. To address this challenge, we propose
a reconfigurable architecture with preemptive exits for effi-
cient deep RL (RAPID-RL). RAPID-RL enables conditional
activation of DNN layers based on the difficulty level of
inputs. This allows to dynamically adjust the compute effort
during inference while maintaining competitive performance.
We achieve this by augmenting a deep Q-network (DQN) with
side-branches capable of generating intermediate predictions
along with an associated confidence score. We also propose a
novel training methodology for learning the actions and branch
confidence scores in a dynamic RL setting. Our experiments
evaluate the proposed framework for Atari 2600 gaming tasks
and a realistic Drone navigation task on an open-source
drone simulator (PEDRA). We show that RAPID-RL incurs
0.34x (0.25x) number of operations (OPS) while maintaining
performance above 0.88x (0.91x) on Atari (Drone navigation)
tasks, compared to a baseline-DQN without any side-branches.
The reduction in OPS leads to fast and efficient inference,
proving to be highly beneficial for the resource-constrained
edge where making quick decisions with minimal compute is
essential.

I. INTRODUCTION

Recent advances in Deep Reinforcement Learning (RL)
have proven to be effective in several sequential decision-
making and control tasks [1], [2]. Notable examples include
Deep Q-Networks (DQN) [3] and AlphaGo [4] surpassing
human-level performance on Atari 2600 games and the
game of Go, respectively. These can be greatly accredited
to the learning capability offered by Deep Neural Networks
(DNNSs) consisting of millions of parameters. However, these
achievements come at the cost of high computing complexity
and memory bandwidth requirement [5]-[7] associated with
DNNs. This hinders the deployment of such large-scale RL
systems on edge devices with limited computing capabilities.

Deep RL systems at the edge majorly perform repeated in-
ferences in a sustained fashion. In a real-world environment,
the difficulty level of the agent inputs can vary widely. This
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Fig. 1: A RAPID-RL framework with two side-branches added to
the baseline network consisting of three C'onv layers. The ‘easy’
inputs are classified at early branches while the latter layers are
activated only for ‘hard’ inputs.

opens up the opportunity to dynamically adjust the compute
effort required to make a correct prediction based on the
input difficulty itself. In such a scenario, employing DNNs
with varying levels of complexity seems to be a promising
approach. Smaller networks handle easy inputs, promising
fast and low-energy inference, while larger networks operate
on complex inputs to obtain the best performance. In an RL
environment with sparse and delayed rewards, there is an
abundance of ‘easy’ states which can be exploited to obtain
inference speedup with low compute effort.

For eg., consider a task where an RL agent is supposed
to learn vision-based navigation in an environment full of
obstacles. For an input state where the agent is surrounded
by multiple obstacles, the image frame will contain more
complex features. The predicted action will be of critical
importance to avoid an impending collision (‘hard’ state). In
contrast, for input states with obstacles far away from the
agent, comparatively simpler features need to be identified
to predict the optimal action (‘easy’ state).

To that effect, we propose a reconfigurable architecture
with preemptive-exits for efficient deep-reinforcement learn-
ing (RAPID-RL). We present our approach using Deep Q-
learning (DQN), a model-free RL algorithm, but it can be
generalized to any other RL algorithm employing DNNs.
Our work aims to lessen the inference energy and latency of
deep RL agents by dynamically adjusting the compute effort
based on the difficulty of input samples. We achieve this by
appending the main neural network with additional branches
to allow a fraction of the input samples to be inferred
preemptively. Fig. [I] illustrates the RAPID-RL topology for
a DNN comprising of three convolutional and two fully-
connected layers with two side-branches. We exploit the fact
that a DNN learns a hierarchy of features that transition from
being generic to specific [8] as we go deeper. Thus, a sub-



stantial fraction of the input states can be inferred correctly
by only using the generic features without activating the latter
layers. Such an approach was first proposed in [9] to design
a Conditional Deep Learning Network (CDLN) by adding
early-exit branches to a DNN for image classification.

An active RL problem introduces additional challenges
over standard DNN classification. Firstly, RL involves a
dynamic replay memory comprised of experience collected
during training, compared to a static dataset in standard DNN
classification. Secondly, instead of having target action labels
for every input state, an RL environment provides feedback
in the form of sparse and delayed rewards. This demands
a rework of methodology for deciding preemptive-exit at a
branch. RAPID-RL extends the conditional-exit method to
an active RL domain while addressing the above challenges.
In summary, we make the following contributions:

1) Reconfigurable architecture with preemptive-exits:
We propose RAPID-RL, a framework that augments
a standard DQN with multiple exit branches to allow
a majority of input states to be inferred preemptively.
This results in faster inference and reduction in the
number of compute operations (OPS

2) Sequential Q-learning: We propose a sequential
method for incrementally training the intermedi-
ate branches while ensuring optimal performance at
each branch. This decouples the performance inter-
dependency between branches and allows to construct
a joint-DQN catering to a permissible power budget.

3) Confidence score training: We propose a strategy for
learning the branch confidence scores in the obtained
joint-DQN. This is used to decide preemptive exit at a
branch during inference.

The experimental results involve evaluation on four dif-
ferent Atari 2600 games (Pong, Space-Invaders, PacMan,
and Breakout) and a drone navigation task in a simulated
environment (PEDRA) [10]. We provide comparisons with
a baseline-DQN (without preemptive-exit branches) and ob-
serve that our method provides a significant reduction in OPS
while maintaining application performance.

II. BACKGROUND & RELATED WORK
A. Deep Q-learning

Q-Learning [11] is a traditional RL algorithm for finding
the optimal policy (7) to earn maximal rewards in a given
environment. In Deep Q-learning, a neural network is used as
a function approximator to represent the agent policy (7). At
every time instant ¢, the agent-environment interaction can
be represented as a Markov Decision Process (MDP) with
the tuple < s,a,r, s’ >, where s and s’ represent the current
and next state of the environment, a is the action taken by
the agent, and 7 is the obtained reward.

All future rewards are discounted by a factor of vy € (0, 1)
per time-step. The discounted future sum of rewards at time

I OPS is defined as the total number of multiply and accumulate
operations during a forward pass in a neural network

o0
> 4*riixr1. The optimal Q-

function Q*(s,a) is defined I;,lsothe maximal expected return
(R;) starting from state s, taking action a and then following
the policy 7 given by: Q*(s,a) = max, E;[R¢|st = s,a: =
a]. The goal of deep Q-learning is to approximate the optimal
Q-function by iteratively applying the Bellman Equation
[12]. If the optimal Q function Q*(s’,a’) for state s’ in the
next time-step is known for all possible actions a’, then:

Q*(s,a) = Ex[r + ymax Q" (s',a’)] (D

t can be given by: R, =

A deep Q-network is trained with a loss function as:
L = (r—’_’ynza;Xtht(slaal) - Q(Saa’))Q (2)

where, ((s,a) is obtained from the online network being
trained and Q4 (s’,a’) from a target network, maintained
as a copy of the online network updated periodically.

DQN and its extensions have proven to be effective in
gaming and control tasks and are the current go-to algorithms
for RL problems. We employ the state-of-the-art DQN im-
plementation named Rainbow DQN [13] in this work, which
combines Double DQN [14], Dueling networks [15], Prior-
itized Replay [16], Multi-step learning [17], Distributional
RL [18] and Noisy nets [19] techniques.

B. Related Work

Over the past few years, several optimization approaches,
such as compression or pruning techniques [5], [6], and
binarized or low-precision network implementations [20],
[21] have been proposed to reduce the complexity of DNNs.
An emerging data-driven category of optimization techniques
[9], [22]-[24] performs early termination during inference
to dynamically adjust the compute effort based on input
by adding additional output branches. While the notion of
RAPID-RL is derived from the latter approaches, it can be
combined with compression or binarization techniques to
improve the efficiency even further.

It is noteworthy to mention that all prior works target static
supervised image classification tasks with fixed output labels.
Extending this approach to an RL setting requires several
modifications without affecting the training convergence.
RAPID-RL proposes a generic methodology for sequential
training and inference in a multi-exit deep RL setting. The
sequential training method allows for independent training
of newly added branches. It also allows selecting a custom
architecture during inference to keep the computational costs
within the power budget of the target device.

III. RAPID-RL FRAMEWORK

RAPID-RL architecture is an extension of a conventional
DQN, with exit branches at intermediate layers. It utilizes
Rainbow DQN [13], an RL algorithm that integrates several
advanced DQN methods for improved data utilization and
algorithmic stability. The performance of RAPID-RL is
compared to a baseline-DQN with no branches and trained
using the same Rainbow DQN [13] algorithm.
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Fig. 2: L2R sequential Q-learning in RAPID-RL. (a) Start with training the first branch (b) Subsequently add a new branch, fix the
parameters on the already trained branch(es), and train the new branch. (c) Continue adding and training new branches until all branches
are trained. (d) Finally, fix the parameters of all branches and construct the joint-DQN by selecting branches based on the target task.

The architectural design of RAPID-RL imposes sev-
eral considerations, which can be treated as design hyper-
parameters. These are (1) location of preemptive-exit points
(side branches), (2) structure of the side branch (number
of convolutional and fully-connected layers), (3) training
routine for branches, and (4) preemptive-exit criteria for a
branch. It is worth mentioning that each branch can have its
own recursive branch structure (i.e. branch within a branch),
resulting in a tree-like framework. For simplicity, we focus
on an architecture with single-level branches added to the
baseline-DQN without any nested and recursive pathways.

A. RAPID-RL Training: L2R Sequential Q-learning

The baseline-DQN is trained by incorporating techniques
from the Rainbow algorithm as discussed in Section{ITA.
DQN training involves exploration of the environment by
using the action predictions from the online Q-network and
storing the transitions in the experience replay. At regular
training intervals, a batch of transitions is sampled from the
current experience replay and evaluated using the online Q-
network. This is followed by parameter updates based on the
computed loss.

In RAPID-RL, a similar training procedure is followed,
but in a sequential manner. Training starts from a shallow Q-
network and progresses by incrementally adding and training
new branches once all previous branches are trained. When-
ever a new branch is added to the network, parameters of
all previous branches are fixed and are not updated during
training of the new branch. We term this training method
as left-to-right (L2R) sequential training, since the network
grows one branch at a time from left-to-right. Fig. 2fa,b,c)
show the L2R sequential training method for a generic
RAPID-RL framework with IV branches. The common layers
are already trained to generate optimal feature maps. Thus,
the performance of past branches remains unaffected when
a new branch is trained. This leads to architecture with each
branch having optimal performance.

Once all (N) branches are trained, a joint-DQN is con-
structed as shown in Fig. P{d). The decoupling of training
routines for each branch allows for a curated selection of
branches to suit the needs of target edge applications. For
eg., an L2R trained network consisting of four convolutional
layers with branches at each convolutional layer can be re-
built for an energy-constrained application with only the
initial three convolutional layers and a branch at only the

first convolutional layer. This does not require any further
training of the selected branches.

B. Branch Confidence training

The obtained joint-DQN consists of optimized branches
capable of delivering optimal performance individually. The
latter branches perform better than the earlier branches as
they operate on more specific feature maps. In order to obtain
best tradeoff between energy and latency improvements
while maintaining performance, an intelligent branch-exit
selection strategy need to be devised. The strategy needs to
keep into account the dynamic nature of the dataset, feedback
only in the form of delayed rewards and the varying difficulty
levels of the input states.

To address these, we propose to augment each branch in
the joint-DQN with a confidence pathway that has the same
architecture as the branch classifier (fully-connected layers)
but generates a single sigmoid output denoting the confidence
score for that branch. Training the confidence pathways in
an RL setting involves two parallel processes as below:

1) Confidence replay generation: A confidence replay is
generated to store the target confidence labels for training
the confidence pathways. Environment exploration is car-
ried out, as usual, however, instead of state-action-reward
pairs, the experience now contains the state, action, and
the target confidence labels corresponding to each branch
< s,a,c9 Pt A9 .90 >, The action (a) to be taken
for a given input state during exploration is randomly chosen
from the actions predicted by the branches (a;) to prohibit the
experience replay from becoming biased towards a particular
branch. Let Q;(s) represent the Q-values of branch ¢ for
a given state s and for all possible actions. Then, the
confidence generator works as follows:

a; = argmax Q;(s,a) Vie{l,2,...N} 3)

a = random(ay,as,as, ...an) 4)

The target confidence labels (cfgt(s)) for each branch are

generated by comparing the Q-values of the predicted ac-
tions (maximum Q-value across all actions) for each branch
(Q**(s)) with the maximum Q-value (Q™*(s)) across all
N branches as below:

QU (s) =maxQ;(s,a) Vie{l,2,...N} ®)
QU (s) = max(Q(s)) ©
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Fig. 3: Confidence replay generation using Q-values obtained from all branches of a trained joint-DQN. The generated confidence replay
is then used for training the confidence pathways at all the branches.
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where C' € (0, 1], is the confidence acceptance threshold. A
high C' puts emphasis on high performance while a low C'
leads to frequent preemptive-exits at the cost of performance.
2) Confidence score training: At regular training inter-
vals, a batch of transitions is sampled from the current con-
fidence replay and used to train all the confidence pathways
together. A binary cross-entropy (BCE) loss is computed
between the predicted confidence output (¢?"**(s)) and target
confidence labels (ctgt( )) from the confidence replay, L., =
BCE(F™? ¢!9"). The total mean loss is computed as:

1 N
:N;LC"

C. RAPID-RL Inference - Preemptive-exit

After training all the branches and the confidence path-
ways, the intermediate branches can be used as exit points
to infer a decision preemptively without activating the full
network hierarchy. Fig. [] shows the preemptive-exit-based
inference procedure in the RAPID-RL framework. If the
confidence score (¢! "ed) for a given state at an intermediate
branch (i) is greater than a pre-specified preemptive-exit
threshold (X € (0,1)), then the Q-value for that branch
is considered ‘good’ enough to decide the action to be
performed by the agent(‘easy’ state). The inference is thus
terminated at that branch. However, if the confidence score
(c?md) is lower than X, the side-branch is deemed not
confident, and the given state is assessed to be a ‘hard’
state. The process continues to the next branch exit until a

otherwise
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Fig. 4: Preemptive-exit-based inference in the RAPID-RL.

is reached . In the extreme case when X = 0, all states
are preemptively handled at the first branch, leading to the
highest benefits in energy and latency. This however would
lead to poor rewards. On the other hand, for X = 1, majority
of the states are handled at the last (N*") branch leading
to high rewards, but low benefits in energy and latency.
Note, that preemptive-exit at the k" branch would involve
evaluating the confidence pathways of all past k-1 branches.
This leads to a minor overhead in terms of computational cost
when compared to evaluating the k" branch directly. Our
results show that the benefits of being able to intelligently
choose a preemptive-exit while maintaining a high long term
reward largely overshadows this minor computational cost.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Tabled]] lists the common hyperparameters for both tasks
corresponding to the Rainbow DQN algorithm.

TABLE I: Common hyperparameters.

Hyperparameter Value
Training Steps (T) 20 x 10°
Batch Size (B) 32
Replay Memory size 10°
Gamma (7y) 0.99
Learning start 80 x 10°
Target Update frequency 8 x 103
Learning Rate 6.25 x 10°
Adam Epsilon (€) 1.5 x1074
Train interval 4
Validation Episodes 20
Validation interval 1 x 10%
Priority weight 0.4
Priority exponent 0.5
Multi-step learning parameter 3
Number of atoms 51
NOiSy Net {szna Vimaz, 0'0} _10’ 10a 0.5
Confidence threshold (C) 0.8
Preemptive threshold (P) 0.7

1) Network Architecture: For all the experiments, we
employ a DNN architecture with four convolutional and two
fully-connected layers (4C2F) for the baseline-DQN. This
architecture is a modification over the standard architecture
used in [13]. The joint-DQN contains the 4C2F path as its
main branch with intermediate branch exits at all previous
convolutional layers. Each branch exit consists of a classifier
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Fig. 5: Average score and Q-value for different branches as well as the joint-DQN for Atari 2600 games.

TABLE II: Architecture for the joint-DQN

Convolutional Layers

Layer  Kernel Size  Stride  In Channels  Out Channels
Convl 8x8 4 4 16
Conv2 4x4 2 16 32
Conv3 3x3 1 32 64
Conv4 3x3 1 64 128
Branch-1 at Convl Branch-2 at Conv2
Layer Input Output Layer Input Output
AvgPooll 16 16 AvgPool2 32 32
FC11 400 256 FC21 800 256
FC12 256  nNgctions FC22 256 Mgctions
Branch-3 at Conv3 Branch-4 (Main) at Conv4
Layer Input Output Layer Input Output
AvgPool3 64 64 AvgPool4 128 128
FC31 1600 256 FC41 3200 256
FC32 256  MNactions FC42 256 Ngctions

* Nactions refers to task specific total number of possible actions

with two fully-connected layers leading to 1C2F, 2C2F, and
3C2F branches. TabledII] depicts the joint-DQN architecture.
The feature maps acting as inputs to the branch classifiers are
kept identical in size by using an adaptive average pooling
layer with an output size of 5 x 5. This is done to maintain
similar classification ability and prevent the explosion of
parameters in the fully-connected branch classifiers.

2) Evaluation Metrics: The efficacy of the joint-DQN is
analyzed in terms of its performance and efficiency. The
performance is represented by the average score (reward)
for inference over several episodes. The energy and latency
benefits are realized due to the reduction in the number of op-
erations (OPS) performed by the joint-DQN on average con-
sidering preemptive-exits. The performance of the baseline-
DQN is generally better than the joint-DQN as it employs
the deepest network for every input state. The performance
ratio (P) is obtained as the ratio between the average score
obtained by the joint-DQN and the baseline-DQN. The ratio
between the OPS incurred (E) during a forward pass by
the joint-DQN and the baseline-DQN represents the energy
and latency improvements. Note, that the OPS ratio (E)
corresponding to the k™ branch is computed taking into
account the OPS incurred during a forward pass through the
confidence pathways at all previous (k — 1) branches.

B. Atari 2600

We evaluate RAPID-RL on Atari 2600 games - Pong,
Space-Invaders, PacMan, and Breakout in the Arcade Learn-
ing Environment (ALE) [25]. The input frames are pre-
processed to 84 x 84 size and 4 such consecutive frames
are passed as input to the network. The average score and
average Q-values obtained by the different branch networks
independently, as well as by the joint-DQN are shown in
Fig.[5] Fig.[6{(a) shows the benefits of the joint-DQN based on
the percentage of states preemptively exiting at each branch
over several inference episodes.

It was observed that for a simple game such as Pong, even
the 1C2F branch was able to obtain near identical average
score as the main branch (4C2F) leading to a (~ 95%)
preemptive-exit. On the other hand, for Space Invaders,
which is a more difficult task, the 1C2F branch independently
performs poorly producing less than half the score (1134)
compared to the 4C2F branch (2561). This highlights the
presence of ‘hard’ states and leads to only 40% preemptive-
exit at the 1C2F branch and a corresponding OPS ratio of
0.39x. In such a scenario, the joint-DQN can be reconfigured
to remove the 1C2F branch and have intermediate branches
at only C'onv2 and C'onv3. This new configuration leads to
a performance ratio of 0.86x with a 7% increase in OPS and
~ 82% exit at the 2C2F branch. PacMan and Breakout show
much better results with ~ 85% and ~ 63% preemptive-
exit at the 1C2F branch respectively while maintaining a
performance ratio greater than 0.9x. The OPS ratio on
average over all four Atari games is 0.34x.

C. Drone Autonomous Navigation - PEDRA

We also perform experiments on a more real-world-like
task of drone autonomous navigation on PEDRA [10], [26].
PEDRA is an open-source drone autonomous simulator
based on the Unreal gaming engine [27] and AirSim [28].
The objective of this task is for the drone to fly as long as
possible without colliding with obstacles in the environment.
The Indoor-long environment (shown in Fig. [7]from PEDRA
is used for our experiments. The input to the DQN is an
RGB frame of size 227 x 227 captured from the front-facing
camera of the drone and the output is a 5 x 5 array of Q-
values, each corresponding to one action in a grid action
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games (Pong, Space-Invaders, PacMan and Breakout, (b) For 6 different starting positions in the PEDRA Indoor-long environment.

space. An action in the 5 x5 grid corresponds to the direction
(pitch and yaw) in which the drone will move by a fixed
0.5m. The performance metric used is the Mean Safe Flight
distance (MSF) defined as the distance traveled by the drone
(in m) starting from a given initial position before colliding
with an obstacle, averaged over several episodes.

Fig. 7: Floor-plan of the Indoor-long environment.

TABLE III: Mean Safe Flight (MSF) distance for different
branches averaged over all initial positions.

1C2F
504.2

Metric
Mean Safe Flight (m)

2C2F
642.8

3C2F
786.2

4C2F
894.5

Joint

811.6

The training was carried out while cycling between the 6
different initial positions, switching after every 50K steps.
Inference involved evaluating the MSF over each of the 6
initial positions, with 20 episodes for each position. Table-
[ provides the MSF obtained by the different branches as
well as the joint-DQN averaged over all 6 initial positions.
Fig. [6[b) presents the preemptive-exit breakup for inference
starting at the 6 initial positions, highlighting the correspond-
ing OPS (E) and performance (P) ratios. We observe that the
network preemptively exits at the 1C2F branch for ~ 65%
of the states while having a performance ratio of 0.91x and
an OPS ratio of 0.25x averaged over all initial positions.
Compared to Atari games, the later convolutional layers in
this task incur significantly more operations due to larger
feature maps. This leads to a lower OPS ratio for identical
percentage preemptive-exit at an earlier layer in this task to
have a lower OPS ratio compared to the Atari games.

V. ABLATION STUDY

We perform an ablation study to analyze the effect of
variation in training methodology on the overall performance
of the constructed joint-DQN. In addition to our proposed

TABLE IV: Training ablation on Pong and Space Invaders

Pong Space Invaders
Method IC2F 2C2F 3C2F 4C2F IC2F  2C2F 3C2F 4C2F
L2R 20.6 2075 2085 210 1134 1626 2449 2561
R2L 1.03 8.65 19.3 21.0 628 1293 2242 2617
Coupled -0.4 1.8 10.6 20.3 387 948 864 915

methodology of L2R (left-to-right) sequential training, we
investigate two other training methodologies as follows:

R2L training: In the R2L (right-to-left) method, sequen-
tial training is performed starting with the main branch
and subsequently adding and training additional branches at
previous convolutional layers. This method although could
achieve a similar score as the L2R network when evaluating
through its main branch, it suffered heavily in terms of indi-
vidual branch performances. It also sacrificed configurability,
as adding a new branch at the end of the network required
retraining all the previous branches again.

Coupled training: This method fixates the branch struc-
ture of the joint-DQN. All branches are trained in a coupled
fashion using a single combined loss. This method led to
faster training, but offered no configurability and led to poor
performance at the intermediate branches. The training was
performed for 40M frames due to more parameters.

Table{IV] provides training ablations for Pong and Space
Invaders and highlights the benefits of the L2R approach.

VI. CONCLUSION

We proposed RAPID-RL, an RL framework to perform
training and inference with networks containing preemptive
exits. RAPID-RL identifies and addresses the challenges
posed by active RL environments compared to standard
DNN classification. We presented sequential Q-learning to
construct a joint-DQN as well as a method to train the
confidence pathways in RAPID-RL. We obtain average en-
ergy ratios of 0.34x (0.25X) and corresponding performance
ratios of 0.88x (0.91x) on Atari (Drone navigation) tasks
respectively, compared to corresponding baseline-DQN ar-
chitectures. The preemptive-exit capability and reconfigura-
bility offered by RAPID-RL allows for fast and efficient
implementations on resource-constrained edge devices while
maintaining overall performance of the RL agent.
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