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Flow-Based Control of Marine Robots in Gyre-Like Environments

Gedaliah Knizhnik1, Peihan Li1, Xi Yu2, and M. Ani Hsieh1

Abstract— We present a flow-based control strategy that
enables resource-constrained marine robots to patrol gyre-like
flow environments on an orbital trajectory with a periodicity
in a given range. The controller does not require a detailed
model of the flow field and relies only on the robot’s location
relative to the center of the gyre. Instead of precisely tracking
a pre-defined trajectory, the robots are tasked to stay in
between two bounding trajectories with known periodicity.
Furthermore, the proposed strategy leverages the surrounding
flow field to minimize control effort. We prove that the proposed
strategy enables robots to cycle in the flow satisfying the
desired periodicity requirements. Our method is tested and
validated both in simulation and in experiments using a low-
cost, underactuated, surface swimming robot, i.e. the Modboat.

I. INTRODUCTION

Autonomous marine vehicles (AMVs) have been em-
ployed to study and understand various biological [1], [2],
chemical [3], and physical processes in the ocean [4]. Pro-
cesses at the air-sea interface are also important to monitor,
as exchanges between the ocean and atmosphere directly
impact regional rainfall patterns, storm tracks, and sea levels.
Similar to at-depth persistent monitoring, monitoring at the
air-sea interface requires AMVs to operate for long periods
of time, have the ability to move in and out of different
monitoring regions of interest, and operate in high inertia
environments whose dynamics are nonlinear and stochastic.

In this work, we focus on the development of flow-based
control strategies for minimally actuated autonomous surface
mobile sensors, i.e. active drifters [5], for persistent moni-
toring in dynamic environments like the ocean. Specifically,
we address the design of control strategies for resource-
constrained, pointable thruster robots like the Modboat –
a small, low-cost, underactuated surface swimming robot
[6], [7], that would enable it to stay in and/or move be-
tween regions of interest. Swarms of active drifters like the
Modboat can simultaneously collect data at many distinct
geographic locations, which is important for wave-height
reconstruction and estimating spatiotemporal variations in
sea-surface temperatures. Modboats can also adapt, albeit
in a limited fashion, their sampling strategies to maximize
information gain. Nevertheless, compared to larger, more
capable autonomous surface vehicles, Modboats have limited
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power budgets and must rely on energy aware motion control
and coordination strategies.

Existing small scale AMVs, such as AMOUR [8],
µAUV [9], and ANGELS [10] are designed to maintain pow-
erful actuation so as to be able to overpower currents when
accomplishing tasks. Energy efficient monitoring AMVs tend
to be gliders [11]–[13], whose actuation mechanism requires
them to move in a sawtooth pattern for energy efficiency
but makes exploiting surrounding currents challenging. In
contrast, there is increasing work focused on planning of
time and energy optimal paths for AMVs that leverage
environmental flows [14]–[23]. These approaches for plan-
ning with flows include graph-search [14], [17]–[21], [24],
iterative minimization [15], [16], and level set expansion
[22]. However, these approaches require full knowledge of
the flow field, and obtaining good ocean current forecasts
and nowcasts can be difficult. While there are existing
strategies that enable planning in the presence of ocean
current forecast uncertainties [25]–[29], these approaches
still require complete knowledge of the flow.

More recently, approaches have been proposed for re-
source constrained mobile sensors that rely on predictions
of the average time required to switch between adjacent
flow gyres in an ocean environment [30]–[32]. In [30],
[31], it was shown that the addition of limited controls
can enhance or abate the switching times between gyres.
In contrast, [32] presented a strategy that uses limited con-
trol to achieve a desired average transition time. Similar
to [30]–[32], we propose a control strategy for minimally
actuated resource-constrained mobile sensors that leverages
the surrounding flow dynamics. Different from these existing
works, we focus on strategies that keep robots in their
designated monitoring regions. Specifically, we present a
control strategy that enables resource constrained mobile
robots to continuously monitor an environment with gyre-like
flow by approximately orbiting around the region’s center.
As such, the novelty of the contribution lies in the synthesis
of a control strategy for mobile sensors that leverages the
surrounding flow dynamics without full knowledge of the
flow field.

The rest of the paper is organized as follows: gyre-like
environments are defined in Sec. II, and flow-based control
is presented in Sec. III. Sec. IV details the Modboat as well
as flow generation and modeling in the experimental facility.
Results of both simulation and experimental validation are
presented in Sec. V and discussed in Sec. VI. Conclusions
and directions for future work are discussed in Sec. VII.
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II. PROBLEM FORMULATION

A. Gyre-Like Flow Fields

We consider the following 2-D flow field W ⊂ R2

ẋ = Vf (x) + Vd(x), (1)

where x ∈W. We assume the flow has dissipative dynamics
captured by Vd : W 7→ R2 with the non-dissipative part
described by Vf : W 7→ R2. The solutions or trajectories
of (1) form roughly concentric orbits.

While many flows can be described by (1), the wind-
driven double-gyre flow model is a common example and
is often used to describe large scale ocean circulation [33],
[34]. Eq. (2) is an example of a simplified version of the
model where µ is the dissipation parameter.

Ex.1 :

(
ẋ1

ẋ2

)
=

(
−πA sin(πx1

s ) cos(πx2

s )− µx1

πA cos(πx1

s ) sin(πx2

s )− µx2

)
(2)

Another example model is a vortex flow that is generated
by a spinning blade at a fixed underwater location. The 2-D
model of the surface flow can be written as (3), where r
is the distance between (x1, x2)T and the origin, Ω(r) the
angular velocity satisfying Ω(r1) < Ω(r2) if and only if (iff.)
r1 > r2, and µ a parameter specifying the dynamics along
the radial direction.

Ex.2 :

(
ẋ1

ẋ2

)
=

(
−Ω(r)x2 − µx1

Ω(r)x1 − µx2

)
, (3)

B. Non-dissipative dynamics of gyre-like flow fields

We briefly summarize some important properties of Vf (x)
and Vd(x). Consider a flow field with Vd(x) = 0 given by

Wf : ẋ = Vf (x). (4)

The trajectory starting at any x(0) = xi ∈ Wf in this flow
will form a closed loop. We denote this closed-loop trajectory
as Bi and note that Bi is the boundary of a star-shaped
domain Si. The trajectories in Wf are all non-intersecting,
concentric, closed loops that bound star-shaped domains. In
fact, the trajectories of the non-dissipated flow field (4) are:
• Periodic: If x(t) = xi ∈ Wf , ∃ Ti > 0 such that

x(t+ Ti) = x(t) = xi,∀t > 0,∀xi ∈Wf .
• Centered: ∃xo ∈Wf , such that if x(t) = xo for some
t > 0, then x(t+ δ) = xo, ẋ(t+ δ) = 0, ∀δ > 0.

• Star-shaped: ∀xi ∈ Wf , let xoxi be the line segment
linking xo and xi, and Si be the star-shaped domain
bounded by the trajectory Bi passing through xi, we
have xoxi ⊂ Si.

• Non-intersecting: ∀xi ∈ Wf , let
−−−−−→
xoxi(0) be the line

that starts at xo and passes xi(0), then xi(t) 6∈
−−−−−→
xoxi(0),

except for t = 0, Ti, 2Ti, ....
Furthermore, consider two trajectories Bi and Bj in the

flow field Wf with the related domains Sj ⊂ Si. We have
the following property:
• Monotonically changing angular velocities For any

line −−→xoxl that starts at xo, let xi,xj be the intersection
of −−→xoxl and Bi,Bj respectively. There is always a

segment xpxq ⊂ −−→xoxl, such that if xi,xj ∈ xpxq and
‖xoxi‖ < ‖xoxj‖, then the angular velocities at xi and
xj always satisfy ω(xi) < ω(xj) or ω(xi) > ω(xj).

The above properties are satisfied by the non-dissipated
dynamics of the general flow models considered in this work.
We will develop control schemes based on these properties.

C. Dissipative dynamics
In a dissipative flow field, the motion energy of an object

in the flow decreases irreversibly, leading the object to arrive
at a point where its velocity drops to zero, as in the example
in (2). In the example given in (3), the center point is driven
by an external force and the flow spins outward instead of
inward, reflecting an inverse model of a dissipated gyre-like
flow field. The center point xz of the dissipated flow field
may overlap with (as in (3)) or be close to (as in (2)) the
center of the trajectories of non-dissipated system xo.

In both examples, for any x(0) ∈ W, there is always a
future time t such that x(t) finishes a cycle around xz and
is closer (as in (2)) or farther (as in (3)) to xz than x(0).
Therefore, we can roughly say that the dissipation in the
flow field continuously brings an object in the flow towards
a trajectory that is closer (farther) to the center. Notice that
in (2), this pattern is roughly met only when the dissipation
is minimal. A large dissipation rate will cause the flow center
to deviate significantly from the center of the non-dissipated
flow, and the continuous shift of trajectories would not hold.

D. Problem statement
Obtaining a perfect model of a real-world flow field is

generally hard, but rough estimates can be calculated from
sparse local measurements or satellite imagery. Since many
commonly used gyre-like flow fields have the properties
described in Sec. II-B, we assume these properties apply
to a wide range of real-world flow fields. Although real-
world flows are highly dynamic, seasonal patterns are often
persistent enough to leverage for informed control.

We are interested in developing control schemes that
leverage these flow fields, are simple enough to be applicable
to low-cost or underactuated robots, and do not require a
perfect model or knowledge of the flow. The objective is not
to perfectly track a previously designed trajectory, but rather
to achieve control over certain performance parameters, e.g.,
arriving at a region within a time window, circulating in the
gyre-like flow over a range of frequencies, etc.

P1: Assume a flow-field W satisfying all the properties in
Sec. II-B, and that we have:
• A robot that can act as a pointable thruster on a time-

scale much less than the period of the flow1.
• Imperfect knowledge about the shape of the gyre orbits.
• Imperfect knowledge of the gyre center.
• Imperfect knowledge about the robot’s distance and

orientation relative to the gyre center.
The problem is to design controllers that let the robot

traverse a cycle of the gyre-like flow with a period in a given
range (T , T ).

1On realistic ocean timescales, effectively all robots satisfy this property.



III. METHODOLOGY

We leverage the properties of gyre-like flow fields in-
troduced in Sec. II to design our controller to achieve the
goal described in P1. Since non-dissipated trajectories are
boundaries of star shapes, the flow field can be mapped to a
circular orbital model as in (5), where r ∈ R+, Θ ∈ [0, 2π),
using a linear map g : (x1, x2)T ∈W 7→ (r,Θ)T ∈ C, with

C :

(
ṙ

Θ̇

)
=

(
−ν(r)
Ω(r,Θ)

)
, (5)

such that Θ = arctan
(
x2−xz(2)
x1−xz(1)

)
(the angle from the gyre

center to the robot) and r = ri always holds for the same
non-dissipative trajectory Bi.

For any ri, the trajectory of Θ̇ = Ω(ri,Θ) forms a circular
orbit Ci, and ν(ri) > 0 captures the continuous shift to an
inner circle caused by the dissipation (whereas ν(ri) < 0
causes a continuous shift to an outer circle). There is a range
of radius (r, r), such that ∀Θj , there is always dΩ(r,Θj)

dr < 0,
if r ∈ (r, r). The period of completing one cycle along a
given orbit Ci is calculated as

Ti =

∫ 2π

Θ=0

1

Ω(ri,Θ)
dΘ,

and therefore Ti < Tj iff. r < ri < rj < r.
We design a controller that only relies on the robot’s

relative location from the center given by

ṙ = u(r) (6)

where r is a vector along the radial direction and ‖r‖ = r.
We consider completing 2π rad around xz as one cycle and
the trajectory formed over one cycle can be described as
Tu = (ru(Θ),Θ)T , where Θ ∈ [0, 2π) and ru(Θ) ∈ R+.

Theorem 1. Consider a trajectory Tu = (ru(Θ),Θ)T

formed in a flow field C, with its dynamics shown in (5)
and under a controller as shown in (6). The time needed to
complete a cycle of this trajectory is TTu . If ru(Θ) ∈ (ri, rj)
and (ri, rj) ⊂ (r, r), then TTu ∈ (Ti, Tj).

Proof. We have

TTu =

∫ 2π

Θ=0

1

Ω(ru(Θ),Θ)
dΘ.

Given that for any Θ, there is Ω(ri,Θ) > Ω(rj ,Θ) if ri < rj
and (ri, rj) ⊂ (r, r). Since ru(Θ) ∈ (ri, rj),∀Θ, we can
show that∫ 2π

Θ=0

1

Ω(ri,Θ)
dΘ < TTu <

∫ 2π

Θ=0

1

Ω(rj ,Θ)
dΘ.

Therefore TTu ∈ (Ti, Tj).

We can conclude that in a gyre-like flow, if (1) we
apply a controller only in the radial direction (i.e. towards
or away from the center with respect to the object) and
(2) the trajectory formed falls between two non-dissipated
boundaries Bi and Bj (without loss of generality, assuming
that Si ⊂ Sj), then the time needed to complete a cycle

Fig. 1. An overhead view of the racetrack shaped experimental tank. The
two propellers are visible at the top and bottom of the image, and a glass
observation window is present on the right-hand side. Inset: a photo of the
Modboat platform used for the experiments in this work. The Modboat is
described in [6], and the controller used in this work is developed in [7].

of the trajectory roughly falls in (Ti, Tj) where Ti and Tj
are the time periods completing one cycle of Bi and Bj
respectively. For any given range of periodicity (T , T ), if
we can find two non-dissipated trajectories with periodicities
in (T , T ), then applying control in the radial direction to
keep the robot in between the two boundary trajectories will
ensure its periodicity is bounded by (T , T ).

Consider a robot capable of producing thrust u ∈ [0, umax]
along an arbitrary orientation θr ∈ [0, 2π). Most underactu-
ated robots can be modeled as such given a sufficient time
scale τ � T . Given a desired range of periodicity (T , T )
and corresponding radii (r, r) ∈ C, r < r, the bang-bang
control strategy given by

(u, θr) =


(umax, Θ) r ≤ r
(0,Θ) r ∈ (r, r)

(umax,−Θ) r ≥ r
(7)

will ensure the robot stays within the desired region, and
therefore maintains the desired periodicity, as long as the
region is sufficiently wide r − r ≥ ε.

IV. EXPERIMENTAL SETUP

We experimentally validate the proposed strategy given by
(7) on the Modboat, which is shown in the inset to Fig. 1
and described in [6].

A. Robotic Platform

The Modboat is a low-cost, underactuated, surface swim-
ming robot developed by the authors at the University of
Pennsylvania [6] [35]. It consists of a light lower body with
two passive flippers, connected by a motor to a massive
upper body. Conservation of momentum allows the bodies to
rotate relative to one another when the motor is actuated; the
leading flipper swings open until it is limited by a hard stop,
at which point it creates thrust for the robot. Oscillating the
motor causes both flippers to open in sequence and generates
a paddling motion that can be used for propulsion and



steering2. An ESP32 microcontroller on-board runs position
control on the angle of the motor shaft, and various control
modes are possible by passing waveform parameters to the
boat over WiFi.

In this work, the Modboat uses the forced pendulum
controller given by

u = −K sin (ωt)− β sin
(
θr(t)− θ(t)

)
(8)

where u is the torque applied to the motor, θ is the observed
orientation of the Modboat, and θr = ±Θ is the reference
heading from (7) along which thrust is generated. This con-
trol strategy was developed in prior work [7] and allows the
Modboat to function as a pointable thruster when averaged
over a cycle of length τ = 2π/ω. Since τ � T for most
realistic gyre like flows, this meets the criteria for (7). When
inactive, a holding torque maintans the motor position.

The control gain K controls the amplitude of oscillation,
and the angular frequency ω determines their frequency
while β = ω2 is used for resonance [7]. Although the
values of K and ω can be adjusted to change controller
performance, K = 15 Nm and ω = 2π rad/s are used for all
experimental validation in this work. Under these parameters,
the Modboat produces 21 ± 1.7 mN of thrust on average
along the direction given by θr, which results in a top speed
of 9.3± 0.37 cm/s in still water.

We note that in prior work the control law (8) is combined
with a thrust direction controller to allow waypoint track-
ing [7]. This full control architecture is used when testing
in still water and referred to as the naive/waypoint approach
in this work. In flow-based control we are interested in the
effects produced by radial thrust rather than radial travel. As
such, only the lowest level of control (8) is used in the gyre
flow experiments.

B. Flow Field Generation

Experiments involving the Modboat are conducted in a
4.5 m × 3.0 m × 1.2 m racetrack shaped tank of water
equipped with an OptiTrack motion capture system that
provides planar position, orientation, and velocity data at
up to 120 Hz. Flows of various shapes and speeds can be
generated in this tank by the use of propellers. For this work,
a single gyre was created by placing two propellers, mounted
horizontally and spinning at 200 rpm, along the straight
edges of the tank as seen in Fig. 1. In this configuration,
the flow is shaped by the walls of the tank and forms an
outward spiraling gyre. Dissipative radial flow is observed
to be small, so the flow is mostly angular and meets the
criteria described in Sec. II-B.

The flow in the tank is measured using a Vectrino acoustic
velocimeter [36], which provides two-dimensional velocity
measurements of flow seeded with 50 µm glass beads. The
flow is initiated and allowed to reach steady state. Assuming
the flow is two-dimensional, the Vectrino is used to take
velocity measurements at various locations, which can then
be used to fit the model described in Sec. IV-C.

2An informative video of this motion and details of the robot design can
be viewed in [6].

C. Flow Field Modeling

Modeling the flow described in Sec. IV-B is challenging,
since the experimental enclosure is shaped like a racetrack
(see Fig. 1), which cannot be easily modeled by a continuous
function. Moreover, the flow is driven from the external edge.
To the authors’ best knowledge, these flows have not been
studied in depth. However, we experimentally observe that
the flow forms mostly concentric orbits whose shape is given
by the shape of the enclosure, and we assume the flows
roughly meet the properties listed in Sec. II.

An approximation of the tank shape can be generated
using interpolated implicit functions [37]–[39], which can
be used to generate continuous approximations γ = s(x, y)
of arbitrary functions. It has been shown that for such curves
a shape navigation function

φ(q) =
γ2

γ2 + (R0 −‖q‖)
(9)

can be defined [39] for a robot located at q ∈ R2 in a circular
workspace of radius R0. The gradient of the shape navigation
function, ∇qφ(q), gives a potential field

f = −Kr∇φ−Kθ∇×
[
0 0 γ

]T
(10)

in which Kr and Kθ are constants balancing the radial
and angular components of the field, respectively. This field
approximates concentric orbits flowing towards the boundary
γ [39], and Kr and Kθ can be obtained by a least-squares fit
using the flow velocity measurements obtained in Sec. IV-B.

The flow-field in (10) is used for simulation studies, but
the controller (7) requires a radius relative to a circular flow.
To achieve this we transform the racetrack coordinate system
into the form shown in (5) using

C(q) = rmax
√

1 + γ

(
q − g
‖q − g‖

)
(11)

for a gyre centered at g ∈ R2 [40]. It is important to
note that this flow model is only approximate. In [39], the
primary desired behavior is approach and stabilization on
the boundary γ, so the exact behavior of the function in the
interior is not significant. In flow characterization, however,
this is far more significant. In fact, the exact interior behavior
of the implicit interpolating function γ shows significant
dependence on the exact interior constraints, which impacts
the shape of the flow. While these issues require further
exploration, they are beyond the scope of this work.

V. RESULTS

A. Simulation

We use the flow field model given in Sec. IV-C to
demonstrate that the proposed high-level controller given
by (6) can effectively enable a minimally actuated robot to
periodically cycle in gyre-like flows such that the period
lies within a desired range. We note that the flow field is
approximate in two respects. First, it fails to capture the
shape of the flow close to the wall of the tank, where features
like the observation window disturb it. Second, although the



(a) (b)

Fig. 2. Regions relevant to the simulation studies, with an overhead view
in (a) and angular velocity plotted in (b). The tank boundary is shown in
blue, and the two non-dissipated boundary trajectories used in the study
are shown in red. Note the non-monotonic behavior outside the boundary
region in (b).
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Fig. 3. Simulation study results for 5000 s. (a) The simulated trajectory
and the non-dissipative boundary trajectories are shown in black and red,
respectively. (b) The periods T for each cycle. Every cycle is completed
between 42.67 s and 56.92 s.

real flow shows monotonically changing angular velocities
the simulated flow field does so only in the center, as shown
in Fig. 2b. Therefore, in simulation we consider a smaller
interior region where the constraints from Theorem 1 hold
(shown in Fig. 2a), whereas experimental validation utilizes
the entire area.

We consider two non-dissipated boundary trajectories
within this interior region, as shown in Fig. 2. Without a
radial component of the flow, completing one cycle of the
outer bound takes 56.92 s and the period of the inner bound
is 42.67 s. A simplified version of (7) is used in simula-
tion; the controller activates whenever the robot reaches the
outer bound, and remains activated until the inner bound is
reached. No outward control is applied because the radial
component of the flow provides outward movement. While
active, the controller provides a velocity randomly sampled
from the range (0.01, 0.04) m/s.

In Fig. 3 we show the trajectories of the robots in a
5000 s simulation as well as the periods the robot takes to
complete each cycle. Although the trajectories of each round
vary significantly, the robot always completes a cycle with a
period that falls in the specified range of (42.67, 56.92) s.

B. Experiments

Poor agreement between the flow model (as presented in
Sec. IV-C and Fig. 2b) and the observed flow made choosing
appropriate non-dissipated boundary trajectories for experi-
mentation difficult. As an approximation, boundaries were
generated by using the inverse of the transformation in (11)

TABLE I
ORBITAL PERIOD & CONTROL EFFORT PER PERIOD FOR FLOW-BASED

CONTROL AT INTERIOR RADII FOR 0.1m WIDE BANDS, AS µ± σ.

Radius [m] 0.90 1.1 1.3

Prescribed Period [s] 82− 97 75− 83 66− 70
Observed Period [s] 98± 11 85± 5.5 76± 3.6

Control Effort [%] 10± 3.7 16± 5.5 23± 9.1

TABLE II
ORBITAL PERIODS & CONTROL EFFORT PER PERIOD FOR VARYING

CONTROL MODES IN r ∈ (1.3− 1.4). PRESENTED AS µ± σ.

Control Waypoints No control Flow-based
strategy w/out flow w/ flow w/ flow w/ flow

Period [s] 130± 4.0 54± 1.5 72± 5.5 76± 3.6
Control [s] 130± 4.0 54± 1.5 0.0± 0.0 17± 6.2

to generate racetrack trajectories corresponding to various
radii spaced 0.1 m apart. The closest flow measurements
from Sec. IV-B were assumed to hold constant along the
trajectory, and the desired periodicity was then approximated
as the path length divided by the velocity. Controller (7) was
then used to enable the Modboat to stay within the desired
region. A sample such trajectory is shown in Fig. 4, and the
accompanying control variables in Fig. 5. The periodicity
of the resulting orbits is presented in Table I along with
the corresponding control effort (measured as active time
normalized to orbital period); the listed radius corresponds
to the interior boundary of the desired region. Each test was
repeated five times, and the presented data is averaged over
all recorded complete cycles.

Since flow-based control is meant to aid resource-
constrained robots and create more energy efficient swim-
ming, we also compared the observed performance to a
naive swimming approach designed for still water using
the desaturated thrust direction controller developed in [7],
which aims the Modboat at successive waypoints. The orbit
was approximated by waypoints placed every 0.5 m along the
transformed radius r = 1.35 m and executed both with and
without flow. This was compared to the flow-based control
maintaining the same orbit, and to a case where no control
was applied3. Each test was repeated five times, and the
results are shown in Table II, with control effort given as
active time. VI. DISCUSSION

The simulation results validate our conclusion about the
controller designed in Sec. III. In the simulation presented in
Fig. 3, the controller is able to keep the robot between the two
boundary oribts using only a minimal radial velocity. More-
over, the controller succeeds despite providing inaccurate
output velocities and knowing only its relative position in the
flow. Lacking a detailed model of the flow field or knowledge
of its own velocity in the flow, the robot can still maintain
a semi-periodic orbiting motion in the flow, even though
the actual trajectory varies every round. The period of each

3To set the initial region, the Modboat is powered according to (7) until
it gets to the desired region. It is then unpowered for the rest of the test.
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Fig. 4. Sample flow-based control (solid black) and unpowered (dashed
green) trajectories of a Modboat in a clockwise flow, starting from the
interior. The desired region boundaries are shown in red, and the tank
boundary in blue. Note the difference in shape between the observed orbits
and desired region, especially at the bottom right.

cycle varies as well but always stays between the periods
of the two non-dissipative boundary orbits. This aligns with
our predictions as in Theorem 1. However, the simulation is
run for a region that is significantly smaller than the region
used in real experiments (compare Figs. 2a and 4). This is
necessary to stay within a region of monotonically changing
angular velocity, which holds in real world conditions but
not in the model, as can be seen in Fig. 2.

Experimental results similarly validate our expectation that
flow-based control can maintain consistent orbital periods
by leveraging approximate knowledge of the gyre center
and orbit shape. As presented in Table I, flow-based control
consistently generates orbital periods that are close to the
desired periodicity but higher than it. This is reasonable,
since the desired values assume massless fluid particles and
the Modboat is expected to orbit more slowly. This also
results in occasionally exiting the desired region (as shown in
Fig. 4), since it takes the controller (7) time to overcome the
Modboat’s inertia. This further pushes the observed orbital
periods past their target ranges.

The observed periods deviate most strongly from the
desired values at the largest radii. We believe this is because
close to the tank wall the actual flow field deviates more
significantly from the assumed flow of the model, especially
around the viewing window seen in the right of Fig. 1. This
is further corroborated by the unpowered trajectory in Fig. 4,
which shows orbits whose shape does not match the desired
boundaries, especially in the bottom right (which follows
the observation window in the flow direction). A better flow
model can be constructed and is expected to lead to more
accurate boundary generation and better agreement between
the desired and experimentally achieved period bounds.

Even with poor boundary generation, however, experimen-
tal validation demonstrates that our flow-based control is
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Fig. 5. Control variables for the powered test in Fig. 4. The blue line
indicates the transformed radius r, bounded by dotted lines for (r, r). The
thick (thin) orange line indicates θr from (6) when the controller is on (off).

able to keep the Modboat mostly in the desired region. Our
strategy provides clear benefits in terms of energy efficiency
when compared to more naive approaches, as summarized in
Table II; it takes 1.4 times as long to complete an orbit of
the gyre, but only requires 31% as much control effort. This
is clear in Fig. 5, where the controller is visibly inactive for
the majority of the test. Thus a resource-constrained robot
utilizing our control approach would last nearly 3.2 times
as long (in the worst case) in an ocean monitoring situation
(assuming non-propulsive power consumption, i.e. hotel load
is minimal).

VII. CONCLUSION

We have shown that a flow-based control approach using
approximate knowledge of the gyre center is sufficient to
allow simple pointable thruster robots — with the Modboat
as an example — to maintain a desired periodicity within
a flow field. This allows them to function as active drifters,
maintaining a desired orbital region with minimal control
effort while mostly utilizing surrounding flow for navigation
and control. A simple control scheme compatible with highly
uncertain and time-averaged control inputs was used, which
makes these results applicable to a wide range of underac-
tuated or low-powered systems.

We have also demonstrated that this flow-based approach
shows significant energy savings over naive waypoint track-
ing approaches. Observed energy savings are over 68%
despite poor correspondence between the selected orbit shape
and any true orbit. We anticipate that better flow modeling
and the selection of a more appropriate region can lead to
even greater energy efficiency, as can more responsive con-
trol laws. This opens the door to long monitoring missions
that are not significantly constrained by the energy density
of their batteries even for resource-constrained systems.

Since poor flow modeling resulted in poor boundary region
selection in experiments and limited useful area in simula-
tion, future work will consider more accurate flow modeling
to improve the performance of the system, even with limited
information. Future work will also consider whether flow
modeling can be avoided by using local measurements to
approximate the necessary flow knowledge. Furthermore, in
this work, we focused simulation and experimental validation
in near perfect gyre flows. Another direction of future work
including validating and extending the proposed strategy to
more general flows.
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