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Abstract— In this paper, we propose a tightly-coupled SLAM
system fused with RGB, Depth, IMU and structured plane
information. Traditional sparse points based SLAM systems
always maintain a mass of map points to model the environment.
Huge number of map points bring us a high computational
complexity, making it difficult to be deployed on mobile devices.
On the other hand, planes are common structures in man-made
environment especially in indoor environments. We usually can
use a small number of planes to represent a large scene. So the
main purpose of this article is to decrease the high complexity
of sparse points based SLAM. We build a lightweight back-
end map which consists of a few planes and map points to
achieve efficient bundle adjustment (BA) with an equal or better
accuracy. We use homography constraints to eliminate the
parameters of numerous plane points in the optimization and
reduce the complexity of BA. We separate the parameters and
measurements in homography and point-to-plane constraints
and compress the measurements part to further effectively im-
prove the speed of BA. We also integrate the plane information
into the whole system to realize robust planar feature extraction,
data association, and global consistent planar reconstruction.
Finally, we perform an ablation study and compare our method
with similar methods in simulation and real environment data.
Our system achieves obvious advantages in accuracy and
efficiency. Even if the plane parameters are involved in the
optimization, we effectively simplify the back-end map by using
planar structures. The global bundle adjustment is nearly 2
times faster than the sparse points based SLAM algorithm.

I. INTRODUCTION
6DoF motion estimation in unknown environments is a very

critical and challenging technology for many applications,
such as robot navigation, autonomous driving and AR/VR. To
solve the indoor positioning problem, in recent years, many
researchers have concentrated on using onboard sensors for
real-time Simultaneous Localization and Mapping (SLAM).

At present, many visual SLAM [1], [2], [3], [4], [5], [6]
can achieve high positioning accuracy. However, only relying
on external scene information such as vision and geometry
is easily affected by the external environment. To solve the
problem of environment dependence, a lot of visual inertial
odometry [7], [8], [9] and visual inertial SLAM [10], [11],
[12] are proposed. They integrate IMU information that does
not depend on the external environment into the system.

Although the existing visual inertial systems have achieved
very high accuracy and robustness, there are still many prob-
lems in practical applications. The visual inertial odometry
has cumulative drift. Visual inertial SLAM needs to optimize
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many sparse map points, keyframe poses and IMU states,
and these high-complexity problems are difficult to solve in
real-time on mobile devices. There are many planar structures
in the indoor environment. The plane constraints have two
major advantages. 1) The plane usually is a larger structure
feature, and these large features may effectively suppress
the cumulative drift of SLAM; 2) Compared with feature
points, plane can use fewer parameters to model a larger
environment. Therefore, how to use these higher-level plane
features to improve the localization accuracy and stability of
the SLAM and reduce the system complexity are significant
problems that needs to be solved.

So far, there are many literatures [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22] using line and planar features to
improve the accuracy and robustness of SLAM in challenging
environments. But most of them are just odometry or pure
visual SLAM, and there is no literature to propose a complete
RGB-D inertial plane tightly-coupled SLAM. There is also
work [22] discussing the use of planes to reduce the dimension
of the Hession matrix and improve the solving speed of BA,
but it is the only odometry, and re-parameterization does not
reduce the number of constraints.

In summary, many previous works have shown that IMU
helps to improve the robustness of the system, and structured
plane helps to improve the accuracy and robustness of the
system. Moreover, compared with line and point features, the
plane can use fewer parameters to model the environment.
Based on this, we make full use of the characteristics of
multiple sensors to propose a highly robust and precise system,
which integrates IMU, RGB, Depth, and Plane information.
There are three contributions in this article:
• We are the first to propose a complete tightly-coupled

multi-sensor fusion SLAM system to fuse RGB, Depth,
IMU, and structured plane information. All the informa-
tion are integrated into an unified non-linear optimization
framework, which jointly optimizes the parameters of
keyframe poses, IMU states, points, and planes.

• We introduce plane information to reduce the number
of map points and speed up the optimization of BA. We
use homography to remove the states of the point in the
optimization and compress multiple constraints into one
at the same time. These measures reduce the optimization
time. The Fig 4(a) and 4(b) show the process.

• The plane information is integrated into the entire
SLAM system to realize high-precision tracking. We use
pure geometric single-frame point-to-plane constraints to
improve the accuracy and stability of plane estimation in
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Fig. 1: Trajectories and reconstructed planes from sequence 02. Top left is depth image, bottom left is RGB image. Right image: The gray area is horizontal
plane. Pink, green and blue areas are different vertical planes. Black, pink and yellow trajectories are Ground Truth, our VIP-SLAM and normal VI-SLAM.

textureless scenes. Moreover, we convert the reprojection
of the plane point to homography constraints to establish
the relationship between multiple frames and planes to
further correct the drift. Fig. 1 shows comparison of
trajectories and reconstructed planes.

We evaluate our system both on simulation and real data. The
data includes slow and fast movements, low texture, small
indoor rooms and large scenes. Experimental results show that
our system not only achieves higher accuracy and robustness
but also has a significant improvement in the efficiency of
solving BA.

II. RELATED WORK

RGB-D Inertial SLAM: In the past few years, RGB-D sen-
sors have become more and more popular. Many methods [4],
[6], [5], [3], [2] are proposed to use RGB-D cameras for real-
time 3D dense reconstruction or SLAM. However, traditional
RGB-D SLAM easily suffer from the robustness problem in
special scenarios, such as fast motion, weak textures, dynamic
environments, flat white walls, etc. To reduce the dependence
on vision and geometry, researchers proposed a few RGB-
D inertial SLAM systems. [23] proposes to integrate IMU
and RGB-D information to achieve the first tightly-coupled
RGB-D inertial SLAM system. Their experiments showed
the advantages of their proposed system in fast motion,
weak texture, and weak geometric scenes. VINS-RGBD [10]
integrates depth information to the monocular visual inertial
system VINS-Mono [9]. They use depth information to speed
up system initialization, stabilize system scale and improve
system accuracy and robustness. DPI-SLAM [13] proposes
the first plane inertial SLAM system which tightly couples
IMU, visual odometry (VO), and plane information. However,
the loose coupling of IMU and VO may encounter the same
robustness issues as RGB-D SLAM. In ORB-SLAM3 [11],
inertial constraints and the methods of multi-maps are fused
into ORB-SLAM2 [2]. However, ORB-SLAM3 only supports
monocular/stereo visual inertial SLAM or RGB-D SLAM.

Plane Based SLAM: Some researchers have explored
ways to improve the accuracy of SLAM systems using
planar structures. [14] proposes a RANSAC-based registration
method for localization based on points and planes. [15] uses
the global plane model to reduce the RGB-D SLAM drift.
Kimera [17] proposes to use 2D image Delaunay triangulation
and corresponding sparse point cloud to reconstruct 3D

Mesh. SP-SLAM [16] adds features to ORB-SLAM2, where
parallel and perpendicular plane constraints also are included.
[18] forces the points on the plane to fall exactly on the
plane, and add new feature points and plane constraints
based on this assumption. KDP-SLAM [24] develops a fast
dense planar SLAM system, which optimizes the keyframe
poses and planes in a global factor graph. But, the loose
coupling of planes and VO may lead to a decrease in the
accuracy of motion estimation in scenes with one or two
planes. Some works model the environment as the Manhattan
or Atlanta world and use this assumption to reduce the
cumulative localization error in rotation. [19] decouples
rotation and translation estimation based on Manhattan
assumption, and combines point, line, and surface features
to improve the accuracy of translation. [20]’s system is also
based on the Manhattan world hypothesis, but it can support
seamless switching to the non-Manhattan world. These world
hypothesis algorithm can work well under special scenes.
However, it does not work well under complex environments.
There are also some works focused on improving the speed
of plane bundle adjustment (PBA). [25], [26], [27] propose to
merge multiple measurements related to the same state into
one constraint, which significantly improve the efficiency of
PBA. Inspired by these works, we also merge point-to-plane
constraints and extend them to homography observations.
[22] forces the points associated with the plane to fall on the
plane and uses the plane and the corresponding anchor pose
to represent the point. This form of representation eliminates
the point state and reduces the dimensionality of the Hessian
matrix, which will increase BA solved speed.

III. OVERVIEW

A. System Overview

The overview of the proposed system is shown in Fig. 2.
Our system takes RGB, Depth, and IMU as input and has
three main components including front end, plane module,
and back end.

The front-end module is a VIO system based on a sliding
window and estimates 6-DoF poses in real-time. Our VIO
is similar to [7], except that we do not consider the SLAM
features and add additional depth measurements.

The plane module receives the front-end and back-end
data as input. The high-frequency front-end information
is only used to expand the plane. The low-frequency but



high-precision back-end information is accepted for new
plane detection, plane expansion, point-to-plane association,
and plane-to-plane merging. Since most planes of indoor
environment are horizontal or vertical, we only consider
the detection of horizontal and vertical planes. However, the
fusion optimization about planes is suitable for general planes.

The back-end module uses local bundle adjustment (LBA)
or global bundle adjustment (GBA) to jointly optimize planes,
points, IMU states and keyframe poses and corrects the drift
of the front-end pose.

Fig. 2: The pipeline of the proposed system.

B. Notation

We first define notations that used throughout the paper. We
consider (·)W as the world frame. (·)C is the camera frame
and (·)I is the IMU frame. We represent a pose by TTT ∈ SE(3)
which consists of rotation RRR ∈ SO(3) and translation ttt ∈ R3.
We use πππ = [nnn;d]T to represent a plane, where nnn is the
plane normal, and d is the distance between the origin and
plane. We adopt CP [28] vector to parameterize plane πππ ,
i.e.,ηηη = nnnd. XXX are the states need to be estimated, including
poses, velocities, IMU bias, points and plane landmarks.

IV. FRONT END

Feature Detection and Matching When a new image is
received, we detect ORB feature [1] points and compute
corresponding descriptors. First, we use KLT to track them
from the last image to the current image. Then, we project
features that have 3D information onto the current image
and use the Hamming distance to find the closest ORB
feature point. The remaining features are matched by using
the result of KLT tracking as the initial value to find the
optimal observation. Finally, we use the RANSAC-based
fundamental matrix to remove outliers.

Motion Estimation Motion estimation is a sliding window
based VIO, which tightly integrates RGB, depth, and IMU.
Our VIO is similar to [7], which uses a square root inverse
filter to fuse all measurements. The major difference is that we
do not consider the SLAM features and add depth information
to visual measurements. We will descript visual measurements
with depth in detail in Section VI-A.1.

V. PLANE DETECTION AND ASSOCIATION

A. Plane Detection and Merging

Plane Detection The plane module only detects planes
with back-end data. Once a plane is detected, the plane module
expands the plane with front-end and back-end data and
associates the plane with map landmarks. Like [17], we use

Delaunay triangulation to create 3D mesh and histogram to
detect planes. We only detect vertical and horizontal planes, by
checking out whether the mesh normal is vertical or parallel
to the gravity. Our plane module employs some additional
methods to improve the plane accuracy. When a plane is
detected from histogram, we will refine its parameters with
the data and 3D plane points in the histogram, instead of
using the scale value of the histogram directly. For horizontal
plane, we just set nnn = [0,0,1]T and the plane distance is the
average of the z axis of plane points. For vertical plane, we
set nnn = [nx,ny,0]T , and the vertical plane parameters can be
refined with the following Equation:[

P̄PPW
f1 , P̄PP

W
f2 , · · ·, P̄PP

W
fn

]T
·
[

nx/d
ny/d

]
=
[
−1,−1, ··· ··· ···,−1

]T (1)

where n is the number of plane points, PPPW
fk is the posi-

tion of kth landmark under the world frame, and P̄PPW
fk =[

PPPW
fk (0),PPP

W
fk (1)

]T
. We use QR decomposition to solve the

Equation (1). When plane parameters are detected, the plane
can associate 3D mesh by angle and distance. Our angular and
distance thresholds are about 10 degrees and 5 centimeters
between the plane and 3D mesh. Fig. 3 shows this process.

Plane Merging The plane merging has 2 strategies. First,
we check whether a plane satisfies a certain angle and distance
threshold with others. Once we find satisfied planes, secondly,
we will check the boundary points of satisfied planes whether
contain each other. Our angular and distance thresholds are
10 degrees and 10 centimeters. Plane merging occurs when a
new plane is detected or old planes are adjusted.

Fig. 3: Plane detection: (a) 2D mesh. (b) 3D mesh, where red and blue
areas indicate horizontal and vertical meshes respectively. (c) Planes where
vertical planes are yellow, and horizontal plane is grey.
B. Point and Plane Association

We use 3D meshes to associate more map points with
planes. Once a 3D mesh from the depth map has been
associated with a plane, we will find its 2D mesh. If both
the 2D coordinate of a map point is in the 2D mesh and
the distance from the map point to the plane is less than 10
centimeters, the map point will be added into the candidate
set associated with the plane. If a point on the candidate
set is observed in more than 3 keyframes, we will check its
geometric consistency. We calculate the reprojection error
of the point, force the point to be associated with the plane,
and then calculate another reprojection error. If the two
reprojection errors are similar, and the maximum reprojection
error is lower than a certain threshold, we consider the point to



be a plane point. If a point fails to pass geometric consistency
many times, it will be removed from the candidate point set.

(a) Homography Factor (b) Compressed Homography
Factor

(c) Plane Point Optimization Problem

Fig. 4: Our optimization problem. (a) and (b) are the factor graphs before
and after homography constraints are compressed. (c) is our global bundle
adjustment problem.

VI. BACK END

A. Measurement

1) IMU and Point Feature Measurement: The IMU data
between two continuous keyframes are processed by the
preintegration method [8], [9]. We define the cost term of
preintegration based IMU data, which is the same as [9].

Since depth image is valid, we integrate depth information
into visual point feature measurement. The projection and
depth residuals for the lth feature observed in the ith keyframe
is defined as:

rrrC(XXX) = Pro j(PPPCi
l )− zzzli

rrrCλ (XXX) = (PPPCi
l ).z()−λ

(2)

where PPPCi
l = RRRI

C
T
(RRRIi

W (PPPW
l − tttW

Ii )− tttI
C) is the 3D position

of lth feature in the ith keyframe. RRRI
C, tttI

C are rotation
and translation from the IMU frame to the Camera frame.
Pro j is the project function that project the point from
camera coordinate to image coordinate. zzzli is the lth feature
observation in the ith image. .z() is the third component of
the vector. λ is the corresponding depth obtained from the
depth image.

2) Compressed Homography Measurement: When the 3D
map point is associated with the plane, we enforce the point
must fall on the plane. So instead of using the common point-
to-plane distance constraint, we use the homography matrix
to constrain two keyframes and a plane. If the point on the
plane πππW is observed by frames ith and jth, we can write the
following Equations of point-to-plane and reprojection:

nnnW
π

T
(RRRW

Ci
pppiλ + tttW

Ci
)+dW

π = 0

RRRW
C j

T
(RRRW

Ci
pppiλ + tttW

Ci
− tttW

C j
) = ppp js

(3)

We define pppi = (xi,yi,1)T and ppp j = (x j,y j,1)T , where
(xi,yi,1)T = KKK−1(ui,vi,1)T is the point feature observation
on the normal plane of the frame ith. KKK is the intrinsic matrix,

and (ui,vi) is a 2D image feature. λ is the corresponding
depth. s is an unknown scale. Combining the above Equations
(3), we can get:

ppp js = RRRW
C j

T
[III−

(tttW
Ci
− tttW

C j
)nnnW

π

T

dW
π +nnnW

π

T tttW
Ci

]RRRW
Ci

pppi = HHH pppi (4)

where III is an identity matrix, and HHH is a homography
matrix. So the homography constraint and the reprojection
constraint are equal when the point is on the plane. It
is worth noting that homography does not require the
3D positions of point features. In the BA problem, we
convert the reprojection constraint to homography constraint,
which is equivalent to remove many state variables of points
on the plane. Finally, the efficiency of bundle adjustment
will be greatly improved through the smaller and sparser
Hessian matrix. There is also a similar work [22] to remove
the states of the plane points in optimization, but they
use the reprojection representation method, it is difficult
to compress multi-observation constraints, which limits the
further improvement of the optimization speed. Homography
associates the states of two keyframes and a plane. These
three states may have many common observations. We merge
these observations into one observation to further improve
the optimization speed. Assume there are N point features
on the plane πππ observed by ith and jth keyframes. According
to Equation (4), the homography constraint Equation of lth

point feature is:

s

x j
y j
1

=

H11 H12 H13
H21 H22 H23
H31 H32 H33

xi
yi
1

 (5)

We can eliminate unknown s from the above Equation (5)
and get the residual function as:

rrrl(XXX) =

[
xi yi 1 0 0 0 −xix j −yix j −x j
0 0 0 x j y j 1 −xiy j −yiy j −y j

]
[
H11 H12 H13 H21 H22 H23 H31 H32 H33

]T
=CCClH̄HH

(6)

The homography cost function of N point features on the
plane πππ is:

CCCch(XXX) =
1
2

N

∑
l=1

rrrl(XXX)T rrrl(XXX) =
1
2

H̄HHT
(

N

∑
l=1

CCCl
TCCCl)H̄HH

=
1
2

H̄HHT GGGhhhH̄HH =
1
2

H̄HHT LLLhhhLLLT
hhh H̄HH

(7)

where GGGhhh = LLLhhhLLLT
hhh is the matrix decomposition. To ensure

the stability of the solution, we use eigenvalue decomposition.
GGGhhh is a constant 9× 9 matrix during the optimization and
only depends on visual observations. We can calculate the
matrix in advance. Here, we have merged observations of
N point features on the plane πππ into one observation matrix
GGGhhh. Fig. 4(a) and 4(b) show this process. Combining many
cost functions into one cost function helps to improve the
efficiency of bundle adjustment. The jacobian of compressed
homography cost function can be define as JJJch = LLLT

hhh
∂ H̄HH
∂XXX , and

residue is rrrch = LLLT
hhh H̄HH



3) Compressed Point-to-Plane Measurement: The homog-
raphy measurement relies on feature matching of map point,
which is easily affected by the lighting and texture of
environments. Therefore, we add geometric constraint of
single frame point cloud and plane association to enhance the
accuracy of plane estimation and the stability of motion
estimation under textureless scenes. Similar to the work
related to the Lidar plane SLAM [27], [26], [25], we use
the compressed point-to-plane cost function. Pli is the set of
N points on the lth plane πππW

l observed in the ith keyframe.
pppilk is the kth 3D point of Pli in world . The point-to-plane
residue of kth plane point can be defined as:

rrrilk(XXX) = πππ
W
l

T
TTTW

i

[
pppilk
1

]
(8)

where TTTW
i is the ith keyframe pose. rrrilk(XXX) is only one

dimension, so the point-to-plane cost function of N points
on the lth plane has the following form:

CCCcpp(X) =
1
2

N

∑
l=1

rrrilk(XXX)rrrilk(XXX)T =
1
2

πππ
W
l

T
TTTW

i GGGpppTTTW
i

T
πππ

W
l

(9)
Similar to VI-A.2, GGGppp is a constant 4× 4 matrix, which

only depends on observations, not states. Through the matrix
decomposition of GGGppp = LLLpppLLLT

ppp , the jacobian of the new cost

function can be written as JJJcpp = LLLT
p

∂ (TTTW
i

T
πππW

l )

∂XXX , and residue
is rrrcpp = LLLT

pppTTTW
i

T
πππW

l .

B. Local Plane and Point Bundle Adjustment

When a new keyframe is inserted into the map, we perform
LBA optimization. LBA optimizes the newest K keyframe
poses, IMU states, as well as the points and planes observed
by these keyframes. Other keyframes where observe these
points and planes contribute to the cost function but remain
fixed in LBA. Here, K is set to 20. We adopt the LM algorithm
of Ceres1 to solve this minimization problem. We set the
maximum number of iterations to 10 and maximum solver
time is 0.2s.

C. Global Plane and Point Bundle Adjustment
Loop Detection and Pose Plane Graph Optimization

Similar to many visual SLAM [2], [11], we use DBoW2 [29]
to detect loop closure and use geometry information to verify
their reliability. If the loop is accepted, graph optimization is
firstly used to correct large drift. Our optimization problem
is to minimize the following energy function:

EEEPPG =
N−1

∑
i=1

∥∥∥(TTTW
Ci

T
TTTW

Ci+1
)TTTCi+1

Ci

∥∥∥2

ΣΣΣi(i+1)

+

∥∥∥(TTTW
Cm

T
TTTW

Cn
)TTTCn

Cm

∥∥∥2

ΣΣΣmn
+

N

∑
i=1

∑
l∈Mi

∥∥∥πππ
W
l −TTTW

Ci
πππ

Ci
l

∥∥∥2

ΣΣΣil

(10)

Here, N is the number of all keyframes. mth and nth is a
pair of loop keyframes. ΣΣΣ is the corresponding covariance
matrix. Mi is the set of planes observed by the ith keyframe.

Optimization After pose plane graph optimization, we
need to update all states including keyframe poses, IMU states,
points, and planes. For the GBA problem, we fuse all mea-
surements including preintegration, reprojection, compressed
homography, compressed point-to-plane and prior plane in

1http://ceres-solver.org

a tightly-coupled form. Fig. 4 shows this problem. The
optimization is to minimize the following energy function:

EEEGBA = ∑
i

∥∥∥rrrIMU
i(i+1)

∥∥∥2

∑IMU

+∑
ik

∥∥∥rrrC
ik

∥∥∥2

∑C

+∑
ik

∥∥∥rrrCλ

ik

∥∥∥2

∑C
λ

+

∑
i js

∥∥∥rrrch
i js

∥∥∥2

∑ch

+∑
is

∥∥rrrcpp
is

∥∥2
∑cpp

(11)

The first two items of Equation (11) are similar to most VI-
SLAM systems [12], [11]. {rrrIMU

i(i+1), rrrC
ik, rrrCλ

ik },{rrr
ch
i js},{rrr

cpp
is },

are respectively described in the Subsection VI-A.1, VI-A.2
and VI-A.3. We use LM algorithm to solve this minimization
problem. We set the maximum number of iterations to 100
and maximum solver time is 2s.

VII. EXPERIMENT
We conduct many experiments to verify the accuracy and

efficiency of our system. We perform an ablation study to test
the effects of different modules and compare them with some
similar algorithms. We ran our experiments on a computer
with an i7-6700 CPU and 16G RAM.

A. Dataset
Our data comprises simulation data and real environment

data. The simulation data is collected by AirSim [30]. AirSim
is a simulator for drones, cars and more. We use a drone
to collect data in an indoor scene of a large virtual office
building. The scene is quite challenging, which is large and
empty, with many textureless areas. To verify the effect in the
actual scene, we use a mobile phone on the market with ToF
sensor to collect RGB, Depth, and IMU data. We collected
the data in a small VICON2 room. The data in the VICON
room has a high-precision trajectory provided by VICON.
Sequences 01 to 05 are collected by AirSim, and 06 to 10 are
mobile phone’s data. The camera moves slowly on sequences
06 to 08, but rapidly on sequences 09 and 10.

We also test with EuRoC MAV visual inertial datasets [31].
Our algorithm fuses with RGB-D and IMU sensor, however,
EuRoC datasets have no depth images. So we generate depth
images through the 3D module from [32]. Considering the
noise of the actual depth image, we generate a Gaussian
random noise n∼ N(0,0.00172). Assuming original depth is
d, we change it to d

′
= d +d ·n.

B. Ablation Study and Baseline
To verify the influence of different modules of our

algorithm, we consider three variants of our algorithm. VI-
SLAM is our basic VI-SLAM fused with RGB-D and IMU
sensor, without plane-related constraints. VI-SLAM-P adds
planar constraints without compression on the basis of VI-
SLAM. VI-SLAM-CP compresses plane-related constraints
on the basis of VI-SLAM-P. VIP-SLAM is our complete
algorithm. Different from VI-SLAM-CP, VIP-SLAM removes
the states of the plane points in the optimization. We also
compare our algorithm with ORB-SLAM2 (RGB-D) [2],
ManhattanSLAM [20] and Kimera [17]. To better demonstrate
the influence of the plane on the cumulative error, we also
test the version without loop closure.

2https://www.vicon.com/



TABLE I: ATE RMSE(cm) of methods without/with loop closure.

Dataset Seq ORB-
SLAM2[2]

Manhattan-
SLAM[20] VI-SLAM VI-SLAM-P VIP-SLAM

AirSim

01 16.8/9.1 12.6/X 5.6/2.9 2.2/1.7 1.2/1.4
02 112.1/59.7 112.7/X 36.7/2.2 4.0/2.0 3.6/1.8
03 15.6/9.1 6.5/X 9.3/2.7 2.1/3.3 2.1/1.5
04 76.6/40.1 420.3/X 156.2/16.6 21.1/8.0 7.8/9.2
05 63.9/62.5 113.4/X 8.4/5.1 1.8/1.9 2.0/1.1

Mobile
Phone

06 5.9/1.7 14.8/X 9.3/2.3 9.6/2.7 7.9/1.8
07 14.3/3.0 8.3/X 10.0/1.6 3.4/2.7 3.3/2.4
08 10.4/3.6 6.2/X 6.5/2.3 3.6/2.7 3.0/2.3
09 X/X X/X 15.1/2.0 5.5/2.5 5.4/1.6
10 X/X X/X 34.4/2.4 14.0/2.8 24.5/4.0

Avg X/X X/X 29.2/4.0 6.7/3.0 6.1/2.7

TABLE II: ATE RMSE(cm) of methods without/with loop closure.

Dataset Seq ORB-
SLAM2[2]

Manhattan-
SLAM[20] Kimera[17] VI-SLAM VIP-SLAM

EuRoC

V101 2.2/2.2 6.4/X 5.0/5.0 2.9/2.9 2.2/2.0
V102 21.0/2.1 32.9/X 8.0/11.0 11.7/5.4 2.2/2.4
V103 24.0/6.2 7.2/X 7.0/12.0 5.2/3.1 2.1/2.2
V201 5.1/6.0 7.3/X 8.0/7.0 5.4/3.1 3.9/3.2
V202 5.3/4.0 9.3/X 10.0/10.0 5.5/4.4 2.9/3.1
V203 X/X X/X 21.0/19.0 20.5/8.1 7.8/7.5

Avg X/X X/X 9.8/10.7 8.5/4.5 3.5/3.4

C. Accuracy

We run each sequence three times and show the average
accuracy results in Tables I and II. The results of Kimera
came from [17]. Under the cases of weak texture and fast
motion, the VI-SLAM algorithm is more accurate and robust
than ORB-SLAM2 and Manhattan-SLAM, which is mainly
due to the integration of IMU does not rely on external
information. Both VIP-SLAM and VI-SLAM-P achieve the
best accuracy, which demonstrates that compressing multiple
observations and replacing the reprojection constraints of the
point on the plane with homography constraints are effective.
However, because of the loop closure effect, the cumulative
error of SLAM is effectively eliminated, resulting in the
accuracy difference between VIP-SLAM and VI-SLAM is
minor. With the loop closure module disabled, VIP-SLAM
and VI-SLAM-P have achieved obvious advantages on all
datasets, which effectively proves that plane constraints are
very helpful to ease the accumulated errors of SLAM.

In all sequences, the performances of Manhattan-SLAM
and Kimera are poor. For Manhattan-SLAM, we guess there
are two reasons. 1) Our data is more challenging, with
weak textures, large indoor areas, fast movements, etc. 2)
Manhattan-SLAM does not make full use of plane information.
Besides they only use observations from a single frame
to a plane. We use the point-to-plane constraints of direct
observation to achieve a more accurate estimation of single-
frame observations. Moreover, we convert the reprojection
of the plane point to homography constraints to establish
the relationship between multiple frames and planes. As
for Kimera, the poor accuracy of the plane and local plane
information cause poor performance. They only consider the
local planes within the small window.

TABLE III: Time-consuming and corresponding accuracy of GBA
for different variant algorithms

VI-SLAM VI-SLAM-P VI-SLAM-CP VIP-SLAM

Iter. 10 10 10 10
Redisual (ms) 65 181 117 22
Jacobians (ms) 145 777 213 86

Linear (ms) 425 593 462 113
Pre-processor (ms) 24 84 27 3
Post-processor (ms) 3 7 3 1

Sum (ms) 722 1845 912 254
RMSE (m) 0.038 0.032 0.027 0.032

Fig. 5: The GBA time for variants of our algorithm.

D. Runtime

To verify VIP-SLAM cost time of optimization, we do an
experiment of GBA with sequence 09. All algorithms have
a maximum number of 10 iterations and do not limit the
optimization time. Fig. 5 shows a comparison of the GBA
time for variants of our algorithm. The horizontal axis is the
numbers of keyframes, and the vertical axis is the optimization
time of GBA. We find that the optimization time of VI-SLAM-
P is much higher than VI-SLAM due to too many additional
point-to-plane and homography measurements. After using the
compressed measurements as VI-SLAM-CP, the optimization
time is close to VI-SLAM but still higher. Finally, removing
the state of plane points, optimization time is nearly 2 times
faster than VI-SLAM. We also find the optimization time
consumption will be reduced obviously as the number of
keyframe increases. Table III shows the time-consuming and
accuracy of GBA for different variant algorithms. The states of
GBA include 215 keyframes, 2,236 planar points, 2,032 non-
planar points, 10 vertical planes, and 6 horizontal planes. We
list several important sections of optimization time-consuming,
as we can see, time-consuming is reduced for all important
sections of our VIP-SLAM with close accuracy.

VIII. CONCLUSIONS

Our goal is to make full use of multiple sensors’ informa-
tion to achieve a high-precision, lightweight and robust SLAM
system. The experiments demonstrates the effectivess of the
proposed system. Using plane information not only helps to
reduce the cumulative error of the system but also accelerates
the GBA. Our points and planes GBA is nearly 2 times faster
than the sparse points based SLAM algorithm. So far, the
back-end map of our system still includes a lot of points. In
the future, we will explore whether a more lightweight pure
plane-based visual SLAM back end is feasible.
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