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Optimizing Space Utilization for More Effective Multi-Robot Path Planning

Shuai D. Han!

Abstract— We perform a systematic exploration of the prin-
ciple of Space Utilization Optimization (SUQO) as a heuristic
for planning better individual paths in a decoupled multi-
robot path planner, with applications to both one-shot and
life-long multi-robot path planning problems. We show that
the decentralized heuristic set, SU-I, preserves single path
optimality and significantly reduces congestion that naturally
happens when many paths are planned without coordination.
Integration of SU-I into complete planners brings dramatic
reductions in computation time due to the significantly reduced
number of conflicts and leads to sizable solution optimality gains
in diverse evaluation scenarios with medium and large maps,
for both one-shot and life-long problem settings.

I. INTRODUCTION

Recent years have witnessed a dramatic acceleration in
the deployment of multi-robot systems for general logistic
tasks [1]], especially in the domain of shipping and ware-
housing [2]]. Fast-paced expansion is predicted across the
board, with the warehouse domain alone expecting a 14%
year-over-year growth in the next five years [3]. This in turn
demands the push for enhancing the scalability of multi-
agent and multi-robot systems, which in the end boils down
to achieving the maximum possible output attainable. Holding
other variables constant, maximizing system throughput is
most readily achieved by increasing robot density and plan
optimality, which calls for faster and better computational
methods for Multi-Robot Path Planning (MPP) and Life-long
Multi-Robot Path Planning (LMPP) problems.

Toward the development of more efficient and higher per-
formance multi-robot systems catering to the rapidly growing
need of automation, in this work, following the decoupled
planning paradigm [4], we perform a systematic study of
an intuitive principle for the design of better performing
heuristics for MPP. The decoupled setting generally involves
two planning phases, where the first phase plans individual
robot paths ignoring other robots and the second one resolves
robot-robot conflicts within some spatio-temporal window.
Traditionally, this phase is executed by running single robot
path plannings ignoring other robots. The Space Utilization
Optimization (SUQ) principle tackles the first planning phase,
seeking to make robots use the free space “evenly”.

Based on vertex, edge, and temporal usage information,
SU-I, as our implementation of the SUO principle, builds a
global heuristic that tracks how the free space is being used
among all participating robots. We then exploit applying SU-I
as both an estimated cost-to-go, for reducing congestion, and
as part of the cost-to-come, for reducing conflicts along the
entire robot path. Theoretically, we prove that SU-I does not
compromise individual path optimality while simultaneously
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achieves its design goal of providing better space utilization.
In practice, SU-I leads to significant improvement in initial
path quality, resulting in over 40% reduction of path conflicts.

The introduction of SU-I brings notable improvement to a
multitude of MPP and LMPP benchmarks. SU-I, which may
be applied as an orthogonal heuristic to many MPP algorithms,
leads to sizable gains in both computation time and solution
optimality when combined with efficient methods for the
second phase of a decouple planner for path scheduling, like
DDM [35]] and ECBS [6]. For example, using SU-I with
the database-driven collision resolution from [5] leads to
15%+ reduction in computation time and improves solution
optimality by roughly 25%. For LMPP, SU-I, with additional
planning horizon management, could reduce the computation
time of a state-of-the-art methods [7] by more than 65%,
while keeping the same level of optimality.

Related Work. Multi-Robot Path Planning (MPP), or
equivalently, Multi-Agent Path Finding (MAPF) [_8], has been
actively studied for decades from many angles including
computational complexity and effective algorithm design [4]],
[9], [10]. Until a few years back, studies on MPP focus
mainly on one-shot or static problems, where n robots are to
reach n specific goals. Many algorithms for computing high-
quality or optimal solutions have been proposed. Decoupled
solutions [4] dominate the algorithmic attack, with methods
using techniques including independence detection [L1]], sub-
dimensional expansion [[12]], conflict-based search [[13], [|14],
among others. Methods have also been proposed through the
reduction to other problems including satisfiability (SAT) [15],
Answer Set Programming (ASP) [16], and multi-commodity
flow [17]. There also exists prioritized methods [[18]-[21]
and a divide-and-conquer approach [22] which achieve good
scalability but at the cost of either completeness or optimality.
In [23]], an any time algorithm is proposed to quickly find a
feasible solution, which is subsequently improved. A learning-
assisted approach [24] has been developed to automatically
select the algorithm for solving MPP challenges.

With the rise of multi-robot applications in the logistics
domain [_2], dynamic or life-long MPP variants, or LMPP, have
attracted attentions in the past few years. Recent work has
focused on dynamic warehouse setups, pursuing both better
planning algorithms [25] and robust execution schedules [26].
Prioritized planning method with a flexible priority sequence
has also been developed [27].

The general idea behind the SUO principle, better usage
of the shared free space, has been explored under both single
and multi-robot settings. For single robot exploring a obstacle-
laden domain, a path ensemble can increase the chance
of succeeding in finding a longer horizon plan [28]], [29].
Similar to what we explore in the current study, path diversity



is just one of the relevant factors in MPP resolution [30].
Survivability is also examined under a probabilistic framework
for multi-robot systems [31f]. Under a similar context, a
heuristic based on path conflicts expedites the solution process
of an MPP algorithm [6].

Despite the fact that the SUO principle is intuitive, to our
knowledge, our exploitation of the principle, building on our
initial work [5)], makes novel contributions to the field. In
contrast to [5]], this study (i) thoroughly exploits the SUO
principle with the introduction of the SU-I heuristics with a
number of variations; (ii) proves SU-I’s collision avoidance
property: it finds the shortest paths while minimizes certain
collision-based metrics; (iii) integrates SUO to MPP and
LMPP algorithms and empirically shows that using SU-I
benefits both computation time and solution optimality.

II. PRELIMINARIES
A. Problem Statement

Multi-Robot Path Planning (MPP) tasks to find collision-
free paths that efficiently route robots. Consider an undi-
rected graph G(V, E') and n robots with start configuration
S = {s1,...,8n} € V and goal configuration G =
{91,---,9n} C V. Each robot has start and goal vertices
Si, gi- We define a path for robot ¢ asamap P; : N — V
where N is the set of non-negative integers. A feasible P;
must be a sequence of vertices that connects s; and g;: 1)
P;(0) =s;;2) 3T; € N, s.t. VE > T, Pi(t) = gi5 3) Vi > 0,

Here, we first define the single robot version of the problem.

Problem 1. Single-Robot Path Planning (SPP). Given
Gg,s,q, find a feasible path P.

Following the feasibility definition of P;, we denote T; as
the length of P;. We call P; the shortest path for robot ¢ if and
only if it minimizes T;. Given a set of paths { Py, ..., P,} for
all robots, we call them collision-free if and only if there are
no simultaneous occupancy of the same vertex or edge. That
is, V1 < i < j < n, P;, P; must satisfy: 1) V¢ > 0, P;(t) #
Py(): 2) ¥t > 0, (Pi(t — 1), Pi(t)) # (P;(t), Py(t — 1)).

We say paths are independent if they are feasible single
robot paths but not necessarily collision-free.

The traditional one-shot MPP problem is defined as

Problem 2. Multi-Robot Path Planning (MPP). Given
G, S, G, find a collision-free path set {Py,...,P,}.

An optimal solution for MPP may minimize the makespan
maxi<i<n |T;| or sum-of-cost Y ;.. T;.

Apart from MPP, we also study the life-long variation LMPP
where each robot has a list of goal vertices. We denote the goal
configuration as G = {g1,...,8,} where g; = (g}, 97,...).
Here, g is the k-th goal in robot i’s goal list g;. Note that for
an actual LMPP instance, g; is often a list that is constantly
updated. In LMPP, the second condition for a feasible path
P; becomes: 2) 3T} < T2 < --- € N, s.t. Bi(TF) = gF.

With all other conditions inherited from MPP, we have

Problem 3. Life-long Multi-Robot Path Planning (LMPP).

Given G, S, G, find a collision-free path set {Py,...,P,}.

LMPP algorithms often optimizes throughput, i.e., the
average number of goal reaches in a unit time step. Given
a large T' € N, the throughput can be expressed by
(X1 <icn arg max, (TF|TF < T))/T.

For practicality and simplifying explanation, we assume G
is a 4-connected grid. All algorithms and heuristics proposed
in this paper apply to arbitrary graphs.

B. Importance of SPP in Solving MPP and LMPP

Solving SPP is a stepping stone toward MPP and LMPP.
Many MPP solvers incorporate SPP planners as sub-routines,
e.g., decoupled planners generally use a two-phase approach
to first plan independent paths and then resolve collisions.
Such methodologies are popular for two reasons. First, unlike
multi-robot planning which is hard to optimize [32], SPP has
been thoroughly studied and can be solved efficiently and
optimally using A* search with simple heuristics. Second, in
a practical setting with relatively low robot density, usually
only small sub-groups of robots have local interactions at
any given time, which can be quickly resolved.

However, such a two-phase approach
tends to overuse parts of the free space
while leaving other parts underutilized. To
demonstrate the effect, we plan shortest
paths from the top left corner to the
bottom right corner on a 7 x 7 grid with =
randomized node exploration and randomized tie-breaking.
The shades of cells in the figure visualizes the probability a
cell is to be used. The paths concentrate along the diagonal
connecting the two corners, leaving the top right and bottom
left corners underutilized. This effect gets more pronounced
when obstacles exist and the available path choices are limited.

LMPP, more general and practical than MPP, is often solved
iteratively using existing MPP algorithms. Thus, unbalanced
graph utilization issue also negatively impacts LMPP solvers.

ITI. SUO: PRINCIPLES AND IMPLEMENTATION
A. Optimizing Space Utilization: Principles
From the discussion in Section [[I-B} robots’ individual
paths should be spread “evenly” across the free space to
reduce congestion. We call this idea the Space Utilization
Optimization (SUQO) principle. In this work, we develop a
first SUO implementation, SU-1 (SU-First), which serves
as a global heuristic to help generate independent paths for
MPP/LMPP algorithms to better utilize graph resources. The
example in Fig. [I| demonstrates that SU-I could potentially
enhance both computational efficiency and optimality.
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(a) Without SU-I (b) With SU-I
Fig. 1: Two sets of individual paths in a 5 x 3 grid. The robots
start configuration is shown as colored disks. The planned individual
paths are drawn as colored lines. (a) Randomly generated paths may

result in congestion. (b) When using SU-I, which “spreads out” the
robots’ paths, the number of conflicts is reduced.

s

In SU-I, each path uses vertex, edge, and temporal
information from other paths to avoid more congested areas



or to reduce the sum of conflicts along the path. SU-I
improves upon its predecessor [5] which only considered
vertex information. In Appendix [I, we use several examples
to highlight the essence of vertex, edge, and temporal
information when applying SUO.

B. Path Planning with SU-1: High Level Procedure

We now describe the implementation of SU-I, including
theoretical guarantees and evaluation results to show that SU-
I with the proposed path planning procedure indeed optimizes
space utilization. Since LMPP algorithms are often based on
MPP solvers, we only describe SU-I in the context of MPP;
SU-I is directly applicable to LMPP.

Algorithm 1: Generate independent paths with SU-I

Input: Graph G, n robots with starts S and goals G
1 7 < GETORDERBYDISTANCETOGOAL(G, S, G)
2 8« w(S),G + 7(Q)
3 for 1 <i¢<ndo P; + None
4 for number of planning iterations r do
for 1 <i<ndo
T+ BUILDSUO(}%7 o, Pioq, Pi+1, -
P; < FINDPATH(G, 84, 9:, T)
return 7~ (Py,..., P,)

s Pn)

5
6
7
8

Alg. [T] shows the high level procedure that uses SU-I to
generate individual paths. In lines [T}j2] robots are sorted in
descending distance-to-goal order. Then, paths for the robots
are planned sequentially (lines while using SU-I to avoid
previously planned paths. The rationale for the descending
ordering is that planning longer paths first helps quickly
collect graph utilization information. As indicated in line [4]
the path planning procedure is repeated for r iterations as
more iterations capture the space utilization more accurately,
improving the collision avoidance. Both robot ordering and
number of iterations are tested in Section [Vl

C. SU-I Heuristic Construction and Computation

At line @, before each time we call SPP planner, BUILD-
Suo first builds an SU-I lookup table 7 to memorize
the space usage of existing paths. Denoting 7 (v,t) (resp.
T (v1,v9,t)) as the expected usage of vertex v (resp. directed
edge vy, v2) at time step ¢, 7 aggregates vertex, edge, and
temporal information over all BUILDSUO input paths:

T(v,t) = > pl(v) = Pil,
T(Ul, Ug,t) = ZP[(Ul, 1)2) j Pz]

Here, [-] on the right hand side of the equations is an indicator
variable: it is 1 if the expression inside is true, otherwise it
takes 0. We use = to denote a sub-sequence relationship.

SU-I is mainly used to generate initial paths for MPP
algorithms. Since the initial paths can be modified (e.g.
delayed or diverted for collision avoidance) in a full MPP
algorithm, we add integer parameters a;, > 0 and vy > 0 to
reason about graph usage in adjacent time steps and handle
robot movement uncertainty:

T(v,t) =Y pl(v) 2 P{t—am:t+ar),
T (v1,v2,t) = Y pl(v1,v2) X Pt —am : t+ ag)].
For each path, the occupancy of graph utility at time ¢ can
now expand its influence to time steps in (t—«y,, t+agy ). The

values of o,y are empirically determined based on the
MPP algorithm itself; in Section [V} we observe that such an
temporal reasoning feature delivers better collision avoidance
results when the movement of robots is uncertain.

We use 7 to calculate SU-I heuristic and then use it during
SPP path planning (line 7). Given a state transition (v1, va, t)
which means the robot moves from vertex v; to vertex vy at
time t, the SU-I heuristic value is

Hsy.1(vi,v2,t) = 5, T(Q;j’t) + ﬁeT -

Here, the first term indicates the amount of vertex conflicts the
robot may encounter for the inferred state transition, while the
second term is associated with head-to-head edge collisions.
Parameters (3,, 8. > 0 are used to balance between vertex
and edge information; S5, + 8. = 1. When each vertex/edge
in the graph is visited for at most once by each single robot
path, we have

Lemma IIL.1. When 8, + 8. =1, 0 < Hsy.1(+) < 1.

The condition Hgy.1(+) < 1 is essential for SU-I to behave
as a tie-breaker, which facilitates a good balance between
single path optimality and congestion avoidance.

(U27 V1, t)

Remark 1. A special case for constructing 7 is to ignore tem-
poral information, i.e., instead of using (v,t) and (vy,ve,t)
as lookup table keys, we use (v) and (v1,vs). Thus, T (v)
(resp., T (v1,v2)) simply records the total number of times
the vertex v (resp., the edge (v1,v2)) is used by the existing
paths. This leads to smaller lookup tables but potentially
worse collision avoidance as a result.

Remark 2. Note that for the actual implementation, in Alg.
line |6 7 is not re-constructed but updated based on the
previous iteration which makes the computational complexity
for the construction step O(|P|(ar + agr)).

Line [7| uses standard A* to find a path from s; to g;. In
the next two subsections, we discuss two ways to integrate
SU-I into A*. For simplicity, we now assume SU-I only uses
vertex information (i.e., 8, = 1, 8. = 0) without temporal
information (see Remark , unless otherwise specified.

D. SU-I as Part of Estimated Cost-To-Go

We use Hgor(v,g;) to denote the shortest path distance
between v and g; in G. Hgon(v, g;) is graph-dependent and
can be calculated before path planning. For a grid without
obstacles, Hgor(v, g;) is the Manhattan distance heuristic.
The heuristic we use in A* search is

H(v) = Hnot (v, ;) + Hsu-1(v)-
Lemma IIL.2. A path planned using A* search with H as
heuristic is a shortest path from s; to g;.
Proof. See Appendix O

H not only ensures a shortest path is found; the path also
minimizes the maximum single step conflict. Given path P;,
its maximum single step conflict can be represented as

Csingle(Pi) = MaXo<t<|P]| TP (1)]-
Lemma IIL.3. A path P; planned using A* search with H
heuristic is a shortest path minimizing Ciingie(F;).
Proof. See Appendix O



Now, given paths Pi,..., P, returned from Alg. [1} denot-
ing the maximum conflict on a single vertex as

Csingle = MaXyeg Zlgign[v € Im(Pi)]a

we reach the following property.
Lemma IIL4. Cgg. cannot increase after the first SU-1
planning iteration.
Proof. See Appendix O

Lemma directly leads to the following theorem.
Theorem IIL1. Cyyg. will converge as the number of
planning iterations increases.
E. SU-I as Part of Cost-To-Come

With the default transition cost as 1 for all states during
A* search, when aggregating SU-I it into cost-to-come. we
define the new transition cost leading to vertex v as

C(v) =14 Hgy1(v)/(maxi<i<n Haort (i, gi) + 1).

The collision avoidance property of using SU-I with cost-to-

come is different from that of using SU-I with cost-to-go,
We hereby define the number of vertex collisions on P; as

Cpalh( ) Zl<]<n YE) ‘Im( ) N Im(P )‘
Lemma IIL5. A path P; planned using A* search with C
as transition cost and an admissible heuristic is the shortest
path which minimizes Cpan(F;).
Proof. See Appendix O

Given resulting paths as Py, ..., P, when using SU-I as
cost-to-come, we denote the total number of collisions as

Cpath = Z1§i§n Cpath(Pi)a
we find the following property.
Lemma IIL.6. C,.;, cannot increase after the first SU-1
iteration.
Proof. See Appendix O

Lemma directly leads to the following theorem.

Theorem IIL2. C,.;, will converge as the number of planning
iterations increases.
Remark 3. Regardless of whether SU-I is used as part
of the cost-to-come or the cost-to-go, even though the
properties mentioned above are only proved for SU-I without
temporal information, similar properties exist for SU-I with
temporal information when using state-time A*. Instead of just
considering vertex conflicts, all lemmas in this section remain
true when edge conflicts are considered (i.e. 5. > 0), except
for Lemma [[I.4] and Lemma [[IT.6] However, in evaluation, we
empirically observe that running multiple planning iterations
considering edge conflicts is still beneficial.

IV. SPACE UTILIZATION OPTIMIZATION APPLICATION

The paths generated by SU-I can be directly used as input
to some MPP/LMPP algorithms. The more balanced graph
utilization and reduced conflicts facilitate collision resolution,
improving both computation time and solution optimality.

SU-I can also be combined with time-based divide-and-
conquer to provide better intermediate goals. With a baseline
structure adapted from [7]], we first propose a horizon cut
technique to reduce unnecessary node explorations and then
use SU-I to further enhance the performance.

A. Baseline Bounded-Horizon Search for LMPP

It is well known that solving an entire LMPP instance in
one-shot is impractical, not only because the long lists of
goals makes the problem computationally demanding, but
also because the goal lists could be dynamically updated in
real world scenarios, which invalidates the current solution
and brings the need for online re-planning.

Given the above factors, LMPP is usually solved by a
bounded-horizon approach, The basic idea is to plan the paths
for the h time steps, execute the paths, and then iteratively re-
plan and execute. Here, h is called the planning horizon. The
pseudocode of such a baseline horizon-based structure [7] is
provided in Alg. [} readers may ignore lines for now as
we will discuss later. In the beginning, the goal list g; for each
robot ¢ is shortened until there is at most one unreachable
goal for horizon h (lines [I}{f6); we use (—1) to index the
last element in a sequence, and + to indicate sequence
concatenation. Then, in line [T3] the current state (denoted as
S) and the modified goal list are sent to a windowed MPP
solver. The behavior of the windowed solver is to output an
h-step collision-free path set, where each robot i aims to
traverse the shortened goal list g; in order. The selection of
the windowed MPP solver is flexible. In this work, we use
Bounded-Horizon Enhanced Collision Based Search [[7] with
weight parameter w = 1.5 and treat it as a black box.

Algorithm 2: BOUNDEDHORIZONSEARCH

Input: Graph G, current state S, goal lists G, horizon h.
Output: A h-step solution

1 Vlgzgn,gﬁ—(sz),dﬁ—o

2 for 1 <i<ndo

3 for g € g; do

4 g < & +(9)

5 d; < d; + SHORTESTDISTANCE(g;(—1), g)
6 if d; > h then break

7 if using horizon cut then

8 | Vi<i<n, P+ ()

9 for 1 <i<ndo

10 if using SU-I then

1 Hsy.1 < BUILDSUO(Px, ... Pn)

12 P; < FINDPATH(G, gl( 2),8i(—1), Hsu-1)
13 else P; < FINDPATH(G, &:(—2),8i(—1))
14 8(1) « Pi—(P| ~ dirh_ 1)

)
8n(1:),h)

15 return WINDOWEDSOLVER(S, &1(1 :), .

B. Horizon Cut and SU-I Integration

Due to using SPP algorithm as subroutine, the baseline
bounded-horizon method wastes computation power due
to unnecessary reasoning about paths outside horizon h:
although these paths are not collision-checked, they are
planned by the windowed solver and are discarded afterwards.
To overcome this weakness, we propose horizon cut, which
reduces the number of search nodes generated outside of h
while still ensures that the robots move toward their future
goals. Horizon cut further truncate the goal list by changing
the last goal to a vertex that is in-between the second last goal
(i.e., 8;(—2)) and the last goal (see Alg. 2} lines [13][14). In
our implementation, we find a shortest path between g;(—2)
and g;(—1) and select the vertex at t = h + 1. The dashed



paths in in Fig. 24 and Fig. 2b] demonstrate that we can avoid
planning redundant paths when using horizon cut.
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(a) Baseline (b) Horizon cut (¢) Adding SU-I
Fig. 2: An example comparing bounded-horizon baseline, horizon
cut, and horizon cut with SU-I. The robots each has 2 goals to
reach, marked as colored numbers. The planned configuration after
the current horizon (h = 4) is visualized as transparent disks. (a)
The paths planned by the baseline bounded-horizon method. The
dashed part is planned but not executed. (b) Using horizon cut, we
avoid planning unnecessary steps by setting the last goals as 2*. (c)
With SU-I, we have a better selection of 2* so that the conflicts in

the next planning horizon may be avoided beforehand.

We then integrate SU-I to help select better target vertices
(see Alg. 2] lines [TT{I2} which is a similar procedure as
Alg. [T). By selecting target vertices on paths which better
utilize graph resources, we can avoid conflicts in the future
planning iterations. We visualize the effect in Fig. where
we anticipate less conflicts between the two robots in the
next planning and execution iteration when using SU-I.

V. EVALUATION

We performed comprehensive evaluation of SU-I and asso-
ciated algorithms on randomly generated graphs, warehouse-
style graphs, and large DAO maps (Fig. [3] shows a subset of
graphs). All experiments are performed on an Intel® Core™
17-6900k CPU. Data points are averaged over 30 to 100 runs
on randomly generated problem instances.
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Fig. 3: Example of graphs used for evaluation. The bright cells

visualize vertices. The black and green cells visualize obstacles.
Our evaluation focuses on testing SU-I with existing

MPP algorithms. Before that, we also conducted analytical
experiments, showing that the graph utilization conflicts
indeed converges to some minimal value with SU-I, especially
when considering both vertex and edge information with a
descending ordering of robots. For details, see Appendix [ITI}

A. SU-1 in a Full MPP Algorithm

Combining SU-I with an existing collision resolution
method makes MPP solver more efficient and optimal. For this
evaluation, we used the database-driven collision avoidance
routine from [S]. The test cases are in 30 x 20 grids with
10% obstacles (see an random example in Fig. . We report
computation time and solution optimality (based on sum-of-
cost) with varied number of robots. For both metrics, lower is
better. All data points are normalized in terms of the baseline
algorithm’s performance where SU-I is not used.

Starting with 3, = 8. = 0.5, r = 1, and no temporal infor-
mation, we first compare using SU-I as a part of estimated
cost-to-go and cost-to-come. As shown in Fig. fi] using SU-I
as cost-to-go can significantly reduce the computation time

e

i

(by 15%+) when robots have interactions. As a comparison,
using SU-I as cost-to-come only makes the algorithm slightly
more efficient when the number of robots is large. Both SU-I
variations significantly improve the optimality, by up to 25%.
The efficiency difference was due to SU-I as cost-to-come
minimizes collisions along single paths and thus has a larger
search space (state-time). Hence forth, we use SU-I as part
of estimated cost-to-go by default.
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Fig. 4: Comparison between using SU-I as a part of estimated
cost-to-come and cost-to-go in a full MPP algorithm.

We then try different 3, 8. to demonstrate that using vertex
and edge information together is beneficial. Shown in Fig. [3]
the performance improvement of using vertex information
alone over the baseline is already significant. While using
edge information alone is weaker than vertex, combining
the two elements pushes both computation time and solution

optimality even lower. From now on, we set 5, = 8. = 0.5.
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Fig. 5: SU-I MPP solver evaluation with different 3,, 8. values.

In Fig. [6] temporal information is added with different o,
and ap values. As stated earlier, due to the modifications to
the initial paths in the second planning phase, using “soft”
temporal information via extended temporal reasoning is
beneficial. This effect is shown here as the green line (af, =
o = 0) under-performs SU-I without temporal information,
while the brown line (o = 2, a = 15) improves solution
quality. Computation time wise, using temporal information
adds overhead since it takes a longer time to construct SU-I.
So whether to use temporal information is a choice to be
made by practitioners.

Fig. shows that using multiple planning iterations
generates better solutions when r < 4.

B. LMPP Bounded-Horizon Search with SU-I

We evaluate LMPP algorithms discussed in Sec. [[V-A] in
a warehouse-style environment (see Fig. [3b). Each robot
starts from a random vertex and is given a random list of
goal vertices. The goal lists are continuously extended to
make sure each robot always has future goals. The horizon-
based planners with 2 = 5 and internal ECBS [6] parameter



S s

o N

£ g

= £0.

2 Q

g 51 £

a M %

é Ad—d—t—b—b—b—aara| ©
T T T T T T T T
50 100 150 200 50 100 150 200
Number of robots (1) Number of robots (1)

-®-Baseline o, =000y =0 *q,=1,ay=5

SU-I w/o temporal %oy =104 =1 »oar=2,ay =15
Fig. 6: Comparison between different ar, ap values.

S 1.0 {o—e—o—o—o—o—9o—9o9o9

bt S

£2:0 1 2

2 g

.5 ;0.9 .

£1.5 g

E =

& E

Lc_3].0-0—b—-‘ - : 20.8 ~

1 1 1 1 I I I I

50 100 150 200 50 100 150 200
Number of robots (1) Number of robots (n)
-®-Baseline r=1 ¥r=2 -r=3 *r=4
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w = 1.5 are called iteratively until a total of 10000 goals
are reached. The evaluated methods are the bounded-horizon
search [7]] (the baseline), with horizon cut, and with SU-I.
We report the total computation time in Fig.[8] and the system
throughput in Table [l The throughput is calculated as the
average number of goal reached in a single time step; the
higher, the better. The data shows that using horizon cut can
effectively decrease the computation time by more than 50%.
At the same time, using SU-I not only makes the computation
time even lower (by about 65%), while keeping a same level
of throughput as the baseline.
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Fig. 8: Computation time of bounded-horizon methods.

TABLE I: Throughput of bounded-horizon methods

n | Baseline | Horizon cut | SU-I w/o temporal | SU-I w/ temporal
40 | 1.981 1.945 1.968 1.974
80 | 3.737 3.647 3.710 3.719
120 | 5.421 5.273 5.370 5.387
160 | 6.873 6.714 6.888 6.896

C. Bounded-Horizon Search with SU-1 on MPP

As the last evaluation, we directly apply bounded-horizon
search to MPP by considering MPP as a special case for LMPP
where all goal lists have length 1. The tested graph is DAO
den520d (see Fig.[3c), a public MPP benchmark [33]. The map
size is 257 x 256 with 28178 vertices. We set h = 50. Fig. [0]
shows that SU-I remains effective in large environments with
a sparse robot setup. Note that when not using horizon cut and
SU-I, the baseline bounded-horizon search is significantly
slower due to its unnecessary exploration. When we divide
the solution quality metric over under-estimated lower-bounds

)
S

’;u; ®

‘:‘; -®-Baseline -& SU-I vertex edge

g 20 Horizon cut ~€SU-I vertex edge time
= ¥ SU-I vertex e
g

210

=

2

g

3

0

50 100 150 200 250 300 350
Number of robots (1)

Fig. 9: Bounded-horizon search’s computation time on a den520d.

(see Table |E|), we find that our method is able to generate
solutions very close to the optimal.
TABLE II: Optimality ratio of MPP solutions in den520d

n 50 100 150 200 250 300 350
Makespan | 1.0002 | 1.0011 | 1.0020 | 1.0031 | 1.0040 | 1.0052 | 1.0064
Sum-of-time | 1.0019 | 1.0023 | 1.0034 | 1.0051 | 1.0057 | 1.0076 | 1.0090

Experiments in Section and Section were repeated
with different randomly generate graphs, more DAO maps
(e.g., brc200d, 1ak201d), and different number of robots. The
results show similar trends as provided in this section.

VI. CONCLUSION

In this work, with SU-I, we performed an in-depth
exploration optimizing the space utilization for planning better
individual robot paths in the first phase of a modern decoupled
MPP and LMPP pipeline. In addition to proving that SU-I's
desirable properties as a heuristic, thorough simulation study
validates the effectiveness of SU-I in significantly reducing
the computation load while maintaining or improving the
optimality of the resulting solution, for both one-shot and
life-long multi-robot path planning problems.

Together with [5]], this research opens up a new direc-
tion in multi-robot path planning. In a sense, SUO, and
its implementation, SU-I, are taking the decoupled multi-
robot path planning paradigm a step further by reducing
possible robot-robot interactions, making the process more
like planning single robot paths with loose interactions. In
future research, it would be interesting to exploit the SUO
principle further to observe how far we can further minimize
robot-robot interaction to boost the performance of the system.
One immediate direction is to add weights to SU-I so that
non-optimal single robot paths will be generated and gauge
the trade-off between optimality loss at the first phase and
the gain (in computation time and optimality) in the second
phase of a decouple multi-robot path planner. Apart from
handling uncertainty in time, we also plan to add mechanisms
to treat space uncertainty.

Acknowledgement. We sincerely thank Joseph W. Durham
for many insightful discussions of the work.
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APPENDIX I
EXAMPLES TO SHOW THAT VERTEX, EDGE, AND
TEMPORAL INFORMATION ARE ALL ESSENTIAL

Fig. [I04 [T0b] illustrate that using only vertex information
is not strictly better than using only edge information and
vice versa. In both sub-figures, when planning the path for
the green robot, the green candidate paths have less conflicts
than the red ones. In Fig. [[0a] using only edge information
cannot tell the difference between the green and red paths
in terms of path quality since the only conflict is between
the red and blue paths at the middle verfex. Similarly, in
Fig. [I0b] using only vertex information cannot distinguish
between the green and red paths since they have the same
number of vertex conflicts. However, the red path also has
head-to-head edge conflicts with the blue path.
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(a) Edge info essential (b) Vertex info essential (c¢) Time info essential
Fig. 10: (a) (b) Two MPP instances to show vertex and edge
information does not dominate each other. (c) An MPP instance
showing that temporal information is helpful in selecting a path with
fewer potential conflicts. In all scenarios, the solid lines show existing
paths that are already planned, The dashed lines are candidate paths
for the green robot which we are currently planning. The dark square
is an obstacle that cannot be traversed.

Fig. highlights the benefit of temporal information.
Similar to Fig. [T0a] [I0b] vertex and edge information without
temporal consideration cannot tell the green and red paths
apart in terms of path quality. But in fact, although the green
and orange paths intersect, no conflict between them exist
because they arrive at same vertices at different time steps.
On the contrary, the blue path will collide with the red path
for three consecutive time steps at the bottom vertices.

APPENDIX II
DETAILED PROOF OF SU-I PROPERTIES

Proof of Lemma [[11.2}

Proof. We denote the shortest path length for robot ¢ as | P},
and a path returned by the described A* algorithm as P;.
Suppose |P;| > | P;|, then there must exist a vertex v on P}*
which is explored (adjacent to some vertex in FP;) but not
expanded. We further denote G(v) as the cost-to-come for
v and F(v) = G(v) + H(v) as the priority value of v in A*
open list. We have
F(gi) — F(v)

= (G(gi) + Hsu-1(9:)) — (G(v) + Hsnori (v, 9i) + Hsu-1(v))
=G(gi) — (G(v) + Hsnor(u, 9i)) — (Hsu1(v) — Hsu1(9:))
>Ti_Ti*_]- >0,

which indicates that vertex v must be explored earlier than
g;. We find a contradiction. O

Proof of Lemma [[IL3t

Proof. Lemma |[lI1.2] implies that that all vertex expanded
during A* search are on some shortest paths from s; to g;.

Reusing the definition of F' from the proof of Lemma [[II.2]
for an expanded vertex v, we have

F(v) = G(v) + Hpon(v, 9i) + Hsu1(v) = T + Hsu-1(v).
Define (); as an arbitrary shortest path for robot i. Denote

Im(P;) as the set of all vertices traversed by P;. By the
searching property of the A* algorithm, we have

maXy,eim(p;) F(U) < MmaXyecim(Q;) F(v)v
maX,emm(p,) Hsu-1(v) < max,em(q,) Hsu-1(v),
Csingle(lgi) § Csingle(Qi)- O

Proof of Lemma [IL4}

Proof. 1t is straightforward that the most conflicted vertex on
a single path cannot exceed the most conflicted vertex globally,
i.e., Csingle(Pi) < Cingle. For single robot path planning with
result P;, we divide all vertices in G into two sets: the vertices
on P; and the others. Cgngle cannot increase due to vertices
in the first set since by Lemma [[II.3] P; cannot increase
Csingk:(Pi)- Csingle cannot increase due to vertices in the second
set since the paths for other robots are unchanged. O

Proof of Lemma [[11.5]

Proof. P; is a shortest path because by Lemma [[IL.T] and the
definition of C, the total accumulated extra cost added by
SU-I cannot exceed 1. For minimizing Cpan(F;), note that

Cran(Pi) = % Zq;elm(Pj) Hgu-1(v),
s0 Cpan(P;) is directly associated with the extra SU-I cost,
which is by definition minimized by A* search. O

Proof of Lemma [[IL.6}

Proof. Due to the fact that collision between two paths is
correlated, if Cpan(P;) changes, 215 i<njsi Cran (P;) will
also change by the same amount. The proof is completed
because each single robot path finding process cannot increase
the robot’s path conflict Cpym(P;). O

APPENDIX III
STANDALONE EVALUATION OF SU-I

We evaluate SU-I using metrics including Cinge, Cpan t0
show that SU-I balances graph utilization and reduces path
conflicts. The parameters of SU-I are adjusted to the specific
metric we are optimizing, e.g., when minimizing the number
of edge conflicts with temporal information, SU-I is set to
By = 0,8, = 1 with temporal information considered. All
experiments are performed by planning individual paths for
100 robots with randomly generated starts and goals in 20 x 10
grids with 5% randomly generated obstacles. For plotting,
the horizontal axis is the number of SU-I planning iterations
r; 7 = 0 means paths are randomly generated without SU-I.
The vertical axis is the specific metrics we want to minimize
(i.e., lower is better); the metrics are normalized to [0, 1].

In Fig. [ITal we show the metrics with regard to the most
utilized graph resource when using SU-I as part of estimated
cost-to-go. For Vertex entries, the values correspond to the
maximum number of times a vertex in the graph is traversed.
For Edge entries, the values correspond to the maximum



number of head-to-head conflicts on an edge. With the Time
entry, we consider the above metrics on the time domain. The
plot shows that SU-I significantly reduces the usage of the
most conflicted graph area. The effect of SU-I improves with
increased number of planning iterations r and stabilizes after
r > 4, i.e., the reduction diminishes after a few iterations.
Using SU-I as part of cost-to-come produces similar result,
which is omitted here due to limited space.
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Fig. 11: The ratio of the max number of conflicts on a vertex/edge
versus the number of SU-I planning iterations.

In Alg. [T} the robots are sorted in the descending distance-
to-goal order before path planning. In Fig. [[1b] we show
the maximum vertex collision metric when using descending,
ascending, and random order. The plot shows that the ordering
does not make much difference when r gets large, but the
descending order is beneficial when r = 1.
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