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Abstract— We present a novel framework for floor plan-
based, full six degree-of-freedom LiDAR localization. Our
approach relies on robust ceiling and ground plane detection,
which solves part of the pose and supports the segmentation
of vertical structure elements such as walls and pillars. Our
core contribution is a novel nearest neighbour data structure
for an efficient look-up of nearest vertical structure elements
from the floor plan. The registration is realized as a pair-wise
regularized windowed pose graph optimization. Highly efficient,
accurate and drift-free long-term localization is demonstrated
on multiple scenes.

I. INTRODUCTION

Robust, accurate, and efficient localization is the back-
bone of many mobile autonomous systems such as smart ve-
hicles and robots. In this context, Simultaneous Localization
And Mapping (SLAM) is often pro-claimed as an essential
algorithm to be run on data captured incrementally by
exteroceptive sensors such as LiDARs or cameras, especially
in GPS-denied indoor environments. SLAM relies on the
assumption that no prior knowledge about the environment
is given, and a map of the surrounding scene needs to be
constructed alongside tracking the pose.

This assumption often does not have to be made. Priors
about the architecture of indoor environments may often be
available and given for example in the form of a dense 3D
point cloud. The construction of such point clouds is however
expensive and requires accurate large-scale SLAM with loop
closures and semantic annotations to be run upfront. High-
end devices that can be used for this task are offered by
FARO [1], GeoSLAM [2], or NavVis [3].

A much cheaper prior for the geometry of indoor envi-
ronments is given by building floor plans, which are often
readily available from the construction phase or Building
Information Models (BIM). We present the first approach to
perform full six degree-of-freedom tracking of 3D LiDARs
in indoor environments using floor plan priors. Our method
relies on the existence of horizontal ceiling and ground
planes, and robustly measures those planes in 3D LiDAR
scans. Ceiling and ground floor plane sensing is used to
identify the roll and pitch angles as well as the height of the
sensor. We furthermore use this information to compensate
for rotation and extract vertical wall features from the scans.
The wall points are finally projected onto a horizontal plane,
after which they can be aligned with the features of a floor
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plan. We assume that an initial pose is given and focus on
continuous tracking of the absolute pose of the sensor.

Our contributions are listed as follows:
• We propose a novel data structure in the form of an

approximate nearest neighbour field (ANNF) which
enables an efficient look-up of the nearest geometric
floor plan elements (e.g. wall segments) for any given
point in the localization space. This method greatly
assists in reducing the required computation time for
correspondence matching while maintaining high suc-
cess rate in retrieving the nearest neighbour.

• We design a LiDAR indoor localization algorithm using
our newly proposed ANNF structure, which achieves
drift-free six degree-of-freedom tracking performance.

• We evaluate our system on benchmark datasets across
various texture-less environments under different mo-
tion speeds. The comparison results not only show
that our algorithm is suitable for long-term localization
in challenging scenarios such as long corridors, but
also outperforms traditional SLAM-based algorithms
in computational efficiency. It runs at 5x real-time on
a laptop, and thus remains applicable on embedded
hardware.

II. RELATED WORK

LiDAR-based localization and mapping is often solved
using LOAM-based odometry algorithms [25], [26], [17],
[24], [18]. Instead of using fundamental geometric methods
such as the point-to-point ICP algorithm [4] or one of its vari-
ants (e.g. point-to-plane ICP [15], Generalized-ICP [16]), the
LOAM paradigm consists of downsampling the point clouds
by extracting distinctive features. Feature-based methods are
favored over dense ICP variants owing to their robustness
and efficiency. Furthermore, the use of matched features
enables the construction of optimization problems over poses
and landmarks, similar to what bundle adjustment achieves
for regular camera-based solutions. Note that many of the
aforementioned frameworks perform loose coupling with an
Inertial Measurement Unit (IMU) for motion compensation
in LiDAR readings and motion priors for the registration of
consecutive frames [25], [26], [17]. Tight coupling with pre-
integrated IMU readings and thus better accuracy is achieved
in [24], [18]. In addition, [18] also takes GPS signals into
account in order to support drift-free outdoor localization and
mapping.

For absolute indoor localization, the above methods are
not an option as they are lacking absolute reference sensor
readings in those environments. Several alternatives based
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on RFID, WiFi, Bluetooth, or ultra-sonic beacons exist. A
complete review of the various technologies is given in [13].

In the present work we use prior map information to
support absolute localization. Existing approaches rely on
Monte Carlo Localization (i.e. Particle Filtering) [20], [23],
[12], [10], [14], [21], [7], Stochastic Gradient Descent [11],
and Voronoi segmentation [9]. [14], [12] introduce Free-
Space Density, a measure of the free-space in a given circular
radius around the current position used to support their
Monte-Carlo Localization framework. [22] use information
from a depth camera in conjunction with generalized ICP.
Further alternatives are given by [12], [23], and [10] who
use a depth sensor, an inertial RGB-D, or a combination
of an RGB-D sensor and WiFi information, respectively. In
contrast to our work, the above works primarily focus on
the question of how to initialize the absolute pose, and map
information is not given in the form of a floor plan prior.

An approach specifically tailored to tracking is given in
[8]. However, the method again does not rely on floor plans
as prior map information. The most similar works compared
to ours are given by Boniardi et al. [5], [6]. They also utilize
a CAD floor plan prior to support long-term navigation based
on pose graph optimization or Bayes filtering. However, their
work is different and outperformed by ours in three regards:
First, their method addresses a three DoF estimation problem
and uses only 2D LiDAR scans. This can easily lead to
robustness issues, for example in the case of occlusions or out
of plane motion. Second, they transform the floor plan into
a discrete occupancy grid, which leads to a loss in accuracy.
Third, their method is not as efficient as ours as demonstrated
by a performance of only 12 Hz on a 4.00GHz i7-4790K
CPU. In contrast, our method achieves up to 50Hz real-time
performance on a 1.60GHz i5-8250U CPU.

III. CORRESPONDENCE SEARCH IN FLOOR PLANS

This section first reviews the pros and cons of different
nearest neighbour search methods between point clouds and
a floor plan-based map. After a clear problem definition, we
introduce a novel approximate nearest neighbour field to effi-
ciently retrieve point to floor plan element correspondences.
We conclude the section with a validation test to prove its
accuracy and efficiency.

A. Motivation

Let EM be a set that consists of parametric forms of
geometric elements such as line segments, circular columns,
and curve segments. It is obtained from a CAD floor plan
through several pre-processing steps including reading of
semiotic labels. Let PL furthermore be a set of points
captured during one LiDAR scan, and PM be a set of 2D
sampled points from EM . For convenience, here we assume
that all points are 2D readings from a horizontal single-
line LiDAR or sampled in the 2D floor-plan, i.e. p ∈ R2.
The handling of 3D point clouds will be discussed later
on. Suppose we have an estimated rotation matrix R and
translation vector t, a transformed point can be deduced as

p′i = Rpi + t , pi ∈ PL . (1)

We then define the point-to-point registration as

σ∗p2p = min
R,t

∑
pi∈PL

||π(p′i,PM ),p′i||2 , (2)

where π(p′i,PM ) finds the closest corresponding sample
point from the set PM given p′i, and ||·, ·||2 is defined as
the squared Euclidean distance between two points.

The form of the above objective is similar to the classical
ICP problem, which consists of registering the point sets
of two LiDAR scans with adjacent timestamps [4]. We
converted a continuous representation into a discrete form
by sampling points on line and curve segments in order to
meet the required form for point-to-point registration. This
is sub-optimal. Even if we may use a KD-tree to store and
search the reference points in logarithmic time, the point-
level data format inevitably incurs a loss in accuracy yet
still can be significantly improved in terms of look-up time.

We omit the point sampling and define the point-to-
element registration as

σ∗p2e = min
R,t

∑
pi∈PL

||π(p′i, EM ),p′i||2 . (3)

π(pi, EM ) now finds potential correspondences by retrieving
closest elements from the set EM given the input point pi.
Note that here and remainder of this paper, the definition of
||·, ·||2 is more general and defined as the smallest distance
between a point and any point sampled on another geometric
element. The above distance measure has the advantage of
behaving continuously as a function of the input sampling
point, as it does not suffer from discretization noise. The
challenge is now given by a data structure enabling efficient
and robust retrieval of nearest points. In the following, we
will introduce a novel Approximate Nearest Neighbour Field
(ANNF) structure to support the function π(·) in Equation 3
for efficient nearest neighbour matching.

B. ANNF for geometric element retrieval

ANNFs and their relation to more commonly used rep-
resentations such as distance fields have been introduced in
prior work such as [27]. The theory about ANNFs contains
two parts: construction and search. Other operations such as
insertion, deletion, and traversal are not put into considera-
tion in the present application, as we assume that the floor
plan of a building is fixed.

To construct the ANNF, we first rasterize the input floor
plan into multiple quadratic root fields with pre-set length.
This makes sure that each field initially has the same length,
and that—irrespectively of the size of the floor plan—a cer-
tain minimum resolution is guaranteed. Next, we iterate over
every element, check which fields they are passing through,
and note down the distance to the center of each field. For
each field, the two elements with shortest distance to the field
center are retained. In order to increase resolution, we then
divide every field into four smaller quadratic subfields with
only half the length of their parent field. The two nearest
elements are again found using the above procedure. If a
child subfield shares the same two nearest elements with its



Fig. 1. Approximate Nearest Neighbor Fields (ANNF) with at most d = 5
layers in depth. Every quadratic subfield stores two nearest elements from
the floor plan. For example, the highlighted subfield marked with a cross
stores a blue line segment as its nearest neighbor and a pink line segment
as its second nearest neighbor. The data structure can be constructed up-
front, and can be used as a look-up table with O(d) complexity. On the
left, we show a performance validation as two zoom-in figures. The orange
dot indicates a tested position that has the second nearest element from
the ANNF as its closest element. The green dot indicates a location where
the ANNF search did not include the ground truth closest element. An
interactive demo can be found at https://mpl-annf.github.io/

parent field, it will not be further divided and set as a leaf
field. If all four subfields of the same parent field have the
same two nearest neighbours as their parent’s, the division
operation will be withdrawn and the parent field will be set
as a leaf field. Note that there are pathological cases in which
this leads to approximations. However, these cases are rare
and the above termination criteria are helpful in maintaining
an overall small size for the tree. We furthermore store
two nearest elements in each field, which helps to reduce
occasional errors happening at the boundary of fields. We
also define a maximum depth d to control the overall size of
the ANNF. Any subfield reaching this depth will no longer
get divided.

Looking up in the ANNF is similar to a search through
an adaptively-sampled quad-tree structure. Given a certain
2D point, we first locate the root field it lies in, which is a
simple rounding operation. We then iteratively jump to child
subfields until the corresponding leaf field is reached. The
leaf field will output two nearest elements as potential nearest
structure elements for the input point. Using the ANNF
transfers computation time for calculating point-to-nearest-
element distances to the field construction phase, which can
be done offline in advance. The computational complexity
of a look-up is reduced from O(|EM |) to O(d), where |EM |
represents the cardinality of set EM , and d stands for the
maximum depth of the ANNF, respectively.

C. Performance Validation

The ANNF will only return an approximate result for cor-
respondence matching. In order to analyze its accuracy, we
make an exhaustive test on a floor plan denoted Corridor. We
construct a series of ANNFs with different depths. For each
one, we uniformly sample about 40 million points within the

TABLE I
PERFORMANCE VALIDATION FOR ANNF

Depth Leaf field Hit by Hit by 1st Search
Length[cm] 1st elmt or 2nd elmt Time[ns]

3 150.00 61.61% 76.10% 0.24
4 75.00 76.08% 87.85% 0.16
5 37.50 86.29% 93.61% 0.24
6 18.75 91.96% 96.24% 0.18
7 9.38 94.90% 97.28% 0.25
8 4.69 96.46% 98.84% 0.35

boundaries of the environment, and record the retrieved first
and second nearest elements from the ANNF. We also find
the ground truth information about the nearest element by
exhaustively calculating the distance to all elements in the
floor plan for every sampled point. Quantitative results can
be found in Table I and a visualization1 is also provided in
Fig. 1, where orange dots indicate correct hits by the second
nearest neighbor, and green dots are locations where none
of the two approximate nearest neighbours corresponded to
the ground truth element.

It is intuitively clear that accuracy rises as the maximum
depth of the ANNF is increased. The search time for single
points however remains in the same order, ranging from 0.16
to about 0.35ns. As can be observed from the visualization
in Fig. 1, most of the positions where the second nearest
element is the best (orange dots) are lying on the angle
bisector between two intersected elements. Furthermore,
most of the samples where the nearest neighbour was entirely
missed (green dots) are lying in a dense area where curves
are approximated by multiple line segments, thus leading to
an incorrect nearest neighbour but still an acceptable match
for our registration. Note that a large portion of the samples
where the nearest neighbour was missed are lying outside the
boundaries of the floor plan. In practice, almost no samples
will occur in this area, which is why it has very limited
impact on the performance of our actual registration result.

In our experiments, we set a maximum depth of d = 7,
which ensures a resolution of about 10cm, a reasonable
choice given that the depth accuracy of common LiDAR
sensors lies in the same order. This configuration enjoys
high success rate and low time consumption for the nearest
neighbour search.

IV. FLOOR PLAN-ASSISTED INDOOR LOCALIZATION

An overview of the whole pipeline along with inputs,
outputs, intermediate results, and six sub-modules is pre-
sented in Fig. 2. The ANNF is constructed upfront from an
input floor plan (cf. Section III). At online stage, the system
will first segment the point clouds into ceiling, ground, and
wall points by a robust plane fitting algorithm (cf. Section
IV-A). The ceiling and ground plane parameters implicitly
reveal the gravity direction and the height of the sensor,

1For visualization purpose, the example in the figure only contains around
100 thousand points on a 5-layer ANNF.
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Fig. 2. Block diagram illustrating the full pipeline of the proposed Floor
Plan-assisted Indoor Localization (FP-Loc). The system uses readings from
a 3D LiDAR and prior knowledge of a floor plan. It generates a six DoF
trajectory from a two-stage optimization procedure.

which determines the first three Degrees of Freedom (DoF)
of the trajectory [tz, θroll, θpitch]. Next, the wall points are
used to extract features which are furthermore projected onto
the horizontal plane using the gravity direction (cf. Section
IV-B). The projected features are finally used to look-up
nearest geometric elements in the ANNF and conduct a
two-stage optimization of the pose. The first stage aligns
a single frame and judges whether or not it constitutes
a keyframe. The second stage then jointly aligns multiple
frames taking into account pair-wise regularization terms.
This pose-graph optimization produces the remaining three
DoF of the trajectory [tx, ty, θyaw] (cf. Section IV-C).

A. Ceiling and Ground Plane Segmentation

We denote the set of points scanned during a full turn of
one of the LiDAR’s rotating laser beams as a ring. Before
we introduce the core idea behind the segmentation of the
ceiling and ground planes of an indoor environment, we first
make two important statements about the nature of LiDAR
scans:
• If the LiDAR is mounted horizontally on a platform,

the top ring of each LiDAR scan will have the largest
possibility of hitting the ceiling owing to the fact that
its rays have the largest elevation angle compared to the
rays of all other rings.

• If the LiDAR is mounted horizontally on a platform,
on one and the same ring, points with larger distance
along the ray have a higher possibility of belonging
to the ceiling. On the other hand, if a scanning ray is
obstructed, the distance along the ray and thus also the
distance to the sensed point will be smaller.

We start by using these insights to design our ceiling
segmentation algorithm. Initial plane parameters are obtained
by taking the points with the largest depth-along-ray for the
top Kr rings. We then obtain an initial guess of the ceiling
plane parameters by simple linear regression. We finally
proceed to an M-estimator that robustly fits the ceiling plane
by using all points on the upper half rings. The resulting
closed-form plane parameters easily reveal the normal vector
of this plane which is equivalent to the direction of gravity.

We may furthermore extract the Euclidean distance from the
origin to the plane, and use it as information to calculate any
height variations of the sensor. Note that the strategy works
well in any environment in which the dominant part of the
ceiling is made up by a horizontal plane, which includes a
majority of indoor spaces. In summary, the first three DoF
of the trajectory—[tz, θroll, θpitch]—are retrieved by a plane
fitting strategy.

The previous statements and the resulting algorithm can
be easily modified towards ground plane segmentation by
vertical flipping (i.e. we start from the bottom ring instead
of the top ring). However, the result of ground plane seg-
mentation is only used to further support the singling out
of points on vertical walls and pillars, not to refine the
orientation or vertical position of the sensor. This strategy
is supported by our real world setup, in which the LiDAR
is mounted in a relatively high position on a large tripod.
Owing to this positioning, the sensor simply samples more
points on the ceiling and fewer points on the ground. Thus,
using the ceiling points to estimate the gravity direction and
the vertical position is a more robust solution.

B. Feature Extraction and Projection

We use feature extraction techniques adopted by LOAM
[25] in order to turn the segmented wall points into robust
and distinctive points. Our algorithm classifies 3D points
into two feature categories, which are corner points and
surface points. They are distinguished by evaluating local
curvature or smoothness in individual scan rings. Both corner
features and surfaces features are later on projected onto the
horizontal ground plane using the gravity direction. Note that
point clouds are easily compensated for roll and pitch angles
by using the gravity direction.

Although projected surface points and corner points are
weighted equally during the later registration, the projected
corner points can be used as anchors to further classify the
projected surface points into subgroups. More specifically, if
all the projected surface points between two corner points
constitute a line segment (judged by principal component
analysis), the corresponding points are labelled as belonging
to the same geometric element. This information is used
during optimization to enforce consistent matching of those
points to one and the same geometric element from the map.
If the projected surface points do not satisfy this constraint,
they are labelled as unclassified and remain able to find
independent correspondences.

C. ANNF-based Pose Graph Optimization

Our localization is based on pose graph optimization and
contains two steps: Single-Frame Registration and Windowed
Optimization for pose refinement. The factor graph is pre-
sented and explained in Fig. 3.

For single-frame registration, we first define a transformed
point,

p′n = R(θyaw)pn + t(tx, ty) , pn ∈ F , (4)

where the estimated three parameters tx, ty and θyaw form the
translation vector t and the rotation matrix R, respectively.



Fig. 3. Factor graph illustrating the optimization problems during local-
ization. The green nodes show the poses corresponding to each LiDAR
scan, the orange rectangle is the prior knowledge given by the floor
plan (represented in the form of an ANNF), and the grey squares are
approximating linear/angular velocities based on the relative pose and the
elapsed time between key poses. The latter are regularized over time to
smoothify the motion. The first stage of our optimization—single-frame
registration—optimizes only a single pose based on the floor plan prior. We
then consult the distance between the optimized pose and the previous key
pose to perform keyframe selection. If it is not a key pose, the current scan
will be discarded. If it is a key pose, the new frame is added and we proceed
to the second stage of our optimization, which is windowed optimization
over multiple keyframes. In addition to the floor plan prior, this pose-
graph optimization also considers the regularization terms on linear/angular
velocities.

F refers to the set of all projected 2D feature points. The
objective is given by

σ∗sfr(i) = min
tx,ty,θyaw

∑
pn∈F

||ANNF(p′n, EM ),p′n||2 , (5)

where ANNF(·) is our nearest neighbour field-based search
for geometric elements corresponding to a given 2D point.
Here, i indicates the i-th frame of the LiDAR scan.

Next, the optimized parameters tx, ty along with tz are
subjected to a distance check with respect to the previous
key pose. If the distance threshold is not exceeded, the scan
is dropped after single-frame registration. If the distance
reaches a certain threshold, the scan is selected as a key
frame, and we proceed with windowed optimization. We first
define the linear velocity and angular velocity between two
consecutive key poses as

vjx =
tj+1
x − tjx
τj+1 − τj

, vjy =
tj+1
y − tjy
τj+1 − τj

and ωj =
θj+1

yaw − θjyaw

τj+1 − τj
, (6)

where τj refers to the time of the j-th keyframe. Note that the
j-th keyframe is defined as the first keyframe in a window
of W most recent keyframes. Thus, the objective is defined
as

σ∗wo(j, · · · , j +W ) = min
tjx ,t

j
y ,θ

j
yaw,···

j+W∑
m=j

σ∗sfr(m)+

j+W−1∑
m=j

α||vm+1
x − vmx ||2 +α||vm+1

y − vmy ||2 +β||ωm+1−ωm||2,

(7)
which includes W distinct single-frame registration objec-
tives but additionally regularizes first-order approximations
of linear and angular velocities over time, thus smoothing the
overall trajectory result. α and β are hyper-parameters. Each
key pose is optimized W times, and the final position and
orientation [tx, ty, θyaw] in the results is the one after the final
optimization, just before it leaves the optimization window.
In our experiments, we set α = 1.1, β = 0.9, and W = 10.

V. EXPERIMENTAL EVALUATION

We perform two sets of experiments to validate our
algorithm’s accuracy and efficiency, and to qualitatively and
quantitatively compare our method against a popular SLAM
alternative (LeGO-LOAM [17]). Note that our aim here
is not to introduce an alternative to SLAM, but merely
to demonstrate how FP-Loc is effective in preventing the
accumulation of drift.

A. Datasets and implementation

We use our own datasets captured in unfurnished rooms
or low-texture maze-like long corridors. Data is captured by
a tripod placed on a dolly and carrying an Ouster OS-1 64-
line LiDAR (running at 10Hz), an XSense Mti-30 9-axis
IMU (running at 200Hz), and a Grasshopper RGB camera
(running at 30Hz, used for visualization purposes). The entire
sensor set has been calibrated and synchronized in advance.
All our methods are implemented in C++ and executed
using the robot operating system (ROS) under Ubuntu. All
experiments are conducted on a laptop with an Intel Core
i5-8250U 1.6 GHz CPU and 8GB RAM. Ground truth for
each data sequence is generated by running LIO-SAM with
loop closure activated [18].

B. Results in unfurnished rooms

Our first experiments are conducted in a 200m2 room with
two doors and windows located on opposing walls. The room
furthermore contains square and circular pillars. The room
is recently constructed and therefore has limited furnishing
and almost no visual texture.

We have performed tests over nine sequences under dif-
ferent conditions: Small Loop, Large Loop, and No Loop,
with different speed. Mean Relative Pose Errors (RPE) and
Mean Absolute Trajectory Errors (ATE) [19] before and
after windowed optimization are indicated in Table II. Bird’s
eye views of the optimized trajectories with comparison to
ground truth are indicated in Fig. 4.

As can be observed, we obtain drift-free results very close
to ground truth, and our pose-graph optimization module
helps to smooth the trajectory and improve RPE and ATE
scores. Averaging runtime ranges between 35 and 50Hz,
which is up to 5x faster than real time given the LiDAR
sampling frequency of 10Hz.

C. Long corridor

In a final experiment, we aim at demonstrating the drift-
free localization ability of our algorithm under challenging
conditions. The dataset is recorded in a low-texture under-
ground environment with four highly self-similar bended
corridors. The width of each corridor lies between 1.5m and
3m, and their length is roughly 20m each. We again per-
form tests for three different motion speeds, Slow, Medium,
and Fast. In order to prove the advantage of our absolute
registration technique, we have also tested LeGO-LOAM
with loop closure deactivated (the latter is necessary to
prevent unwanted loop closures due to the highly self-similar
environment). Table III indicates the corresponding RPE and



TABLE II
ACCURACY RESULTS ON THE UNFURNISHED ROOM SEQUENCE

Data Motion Type Max. Speed Avg. Speed Length Single Frame Registration Windowed Optimization
[m/s] [m/s] [m] RPE[cm] ATE[cm] RPE[cm] ATE[cm]

Small Loop
Fast 0.8719 0.6236 25.797 2.7338 4.8188 2.6900 4.6736

Medium 0.5641 0.4090 25.849 3.3473 4.9413 3.3470 4.6676
Slow 0.4425 0.3109 25.714 3.3062 5.3061 3.3132 5.2476

Large Loop
Fast 0.9213 0.7253 46.725 3.1447 5.9842 3.1234 5.8678

Medium 0.6878 0.5357 46.773 3.0335 5.3048 3.0256 5.1823
Slow 0.4742 0.3552 46.421 3.7812 6.0282 3.7555 5.9972

No Loop
Fast 0.8458 0.6926 25.287 1.7505 5.9954 1.7013 5.5408

Medium 0.5277 0.3904 25.322 2.1412 4.4469 2.1360 4.3437
Slow 0.4028 0.2954 25.208 2.0445 4.9362 2.0422 4.9270

TABLE III
PERFORMANCE COMPARISON ON THE LONG CORRIDOR SEQUENCE

Data Motion Type Max. Speed Avg. Speed Length LeGO-LOAM FP-Loc
[m/s] [m/s] [m] RPE[cm] ATE[cm] RPE[cm] ATE[cm]

Loop
Fast 1.2678 1.0487 81.448 2.6785 132.6895 3.3826 24.3258

Medium 0.9296 0.7777 81.789 9.2715 131.7793 3.1069 23.8171
Slow 0.6603 0.5547 82.072 7.5712 129.9051 3.0835 24.8676

Fig. 4. A bird’s eye view onto a trajectories captured in an unfurnished
room (large loop with fast motion).

ATE compared against LIO-SAM [18] based ground truth.
We also show a bird’s eye view of both our and ground truth
trajectory in Fig. 5. The averaging frame rate for this dataset
lies between 15 and 20Hz, which still exceeds real-time.

VI. CONCLUSIONS

We presented a novel approach for continuous, floor plan
based, full six degree-of-freedom localization of 3D LiDARs.
The introduction of an efficient nearest-neighbour field for
geometric floor plan elements enables the construction of
smooth, continuously differentiable residual terms, and thus
outperforms more conventional discrete distance fields. Our
chosen data structure furthermore enables highly efficient ex-
ecution that potentially runs on computationally constrained
hardware. We believe that the introduced algorithm rep-
resents a highly interesting alternative to existing indoor
localization schemes, which all depend on the installation of

Fig. 5. Top: A bird’s eye view onto trajectories estimated with fast motion
in a corridor environment. Bottom: Details along Z-axis.

dedicated hardware. Our future efforts consist of increasing
the generality of the method by adding more complex,
inertial-assisted ceiling segmentation and artificial intelli-
gence modules aiming at the detection and active removal
of objects and clutter in the measured point clouds.
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