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Abstract— Achieving robust performance is crucial when
applying deep reinforcement learning (RL) in safety critical
systems. Some of the state of the art approaches try to
address the problem with adversarial agents, but these agents
often require expert supervision to fine tune and prevent
the adversary from becoming too challenging to the trainee
agent. While other approaches involve automatically adjusting
environment setups during training, they have been limited
to simple environments where low-dimensional encodings can
be used. Inspired by these approaches, we propose genetic
curriculum, an algorithm that automatically identifies scenarios
in which the agent currently fails and generates an associated
curriculum to help the agent learn to solve the scenarios and
acquire more robust behaviors. As a non-parametric optimizer,
our approach uses a raw, non-fixed encoding of scenarios,
reducing the need for expert supervision and allowing our
algorithm to adapt to the changing performance of the agent.
Our empirical studies show improvement in robustness over the
existing state of the art algorithms, providing training curricula
that result in agents being 2 - 8x times less likely to fail without
sacrificing cumulative reward. We include an ablation study
and share insights on why our algorithm outperforms prior
approaches.

I. INTRODUCTION

When training an RL agent, learning to solve the remaining
10% of the scenarios is often significantly more difficult
compared to learning to solve the first 90% of the scenarios.
This presents a challenge to using RL in safety critical
applications, such as autonomous vehicles, where robustness,
the probability of an agent not landing in irreversible and
catastrophic states (i.e. collision) plays a crucial role in
determining product viability. In a typical RL setup, as an
agent’s performance improves, it becomes not only rare to
encounter and collect data on the scenarios in which the
agent does poorly but also difficult to learn new behaviors
when approaching a local minimum. This results in an
agent converging to a suboptimum with several scenarios
left unsolved.

One prominent approach for robust RL is to use adversarial
agents to inject adversarial noise to explore challenging
situations. However, adversarial agents often converge to
the worst case scenario in which the protagonist cannot learn
and requires expert supervision to avoid this issue. Some
scenarios are not well represented by adversarial noise, such
as a particular sequence of tasks or environment setup difficult
for the agent. While other approaches involve encoding the
environment or generating a curriculum to help learn difficult
tasks, they are mostly limited to benchmarks with small
scenario space where low-dimensional encodings can be used.
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In this paper, we propose genetic curriculum (GC) which
uses a genetic algorithm to generate curricula for training
robust RL agents. By running a genetic algorithm, GC
will generate training scenarios that the agent cannot solve,
helping the agent to explore the scenario space efficiently.
As scenarios generated by the genetic algorithm will be
similar to each other, a skill learned from one scenario can
easily be transferred to another scenario, allowing them to
work as a curriculum helping the agent to learn faster and
converge to a more optimal policy. As our algorithm is
non-parametric, it can use raw scenario encoding of non-
fixed length, minimizing expert supervision of designing
encoding methods and helping support highly complex
scenario description as the agent’s performance improves.

II. RELATED WORKS

In robust RL where an agent should be trained against and
verified in a variety of different scenarios, recent advances
in sim2real [1]–[4] and high fidelity simulators [5], [6]
makes it feasible to collect realistic training data in scenarios
too dangerous and difficult to collect in real life. However,
even with this setup, an agent would often leave a long tail
of unsolved scenarios. As an agent becomes more robust,
it becomes less likely to encounter and collect data from
situations where the agent fails. Even when data is available,
it is often difficult to learn new skills as the agent would
often be approaching a local minimum optimized towards
more probable scenarios.

Adversarial training is one such method for gathering
data in the region where the agent does not do well.
Showing success with classical RL [7]–[9] and deep learning
architectures [10]–[13], adversarial training in RL pairs
a protagonist agent with an adversary agent each playing
a zero-sum game of maximizing/minimizing reward in the
environment. Robust adversarial RL (RARL) [14] uses an
adversary to apply external force to the protagonist. Risk
averse robust adversarial RL (RARARL) [15], probabilistic
action robust Markov decision process (MDP) and robust
action robust MDP (PRMDP / NRMDP) [16] uses adversaries
to inject action noise. However, some challenging situations
are difficult to represent as noise, such as particularly hard
scenarios or environment setups. Also, such a min-max setup
often leads to the adversary quickly converging to a worst-case
scenario too difficult for the protagonist to learn. Our approach
differs by not only encoding scenarios and environment setup
instead of adversarial noise but also generating supporting
scenarios that help the agent to learn new skills.

Fingerprint policy optimization (FPO) [17] shares insights
on encoding environments and scenarios. Building upon
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the previous works on classical RL [18] [19], FPO uses
Bayesian optimization to select the training setup with the
biggest expected performance improvement. However, such
approaches have been limited to low-dimensional fixed-length
encoding for training environments. Our approach differs
by using non-parametric optimizers to use non-fixed length
encoding. This allows us to minimize expert supervision by
directly using the raw values of a simulator while being
more versatile to adapt to the agent’s changing needs with
no information loss.

Curricular learning explores generating supporting sce-
narios to help learn new skills. Organizing training data to
gradually introduce more complex concepts, [20], curricular
learning has shown success in supervised learning tasks [21]–
[25] as well as various RL tasks [26]–[33]. Automatically
generating a curriculum of similar yet gradually more
complex scenarios is an ongoing question in curriculum
learning. Self-paced deep RL (SPDL) [34] is one such
approach of exploring how curriculum can automatically be
generated based on the agent’s current performance. At each
epoch, SPDL locates the distribution of scenarios the agent
currently performs well and will select training scenarios
as a distribution progressively moving towards the goal
distribution. However, SPDL likewise has been limited to
low-dimensional fixed length encoding of scenarios. We will
explore non-parametric approaches to expand the ideas to
non-fixed raw encoding of curriculum.

Fig. 1. Curriculum generation during POET [35]. Unlike our proposed
approach, POET runs training inside genetic algorithm, greatly increasing
computational load.

Paired open-ended trailblazer (POET) [35] borrows several
elements from genetic algorithms to use non-fixed length
encodings. As shown in Figure 1, POET starts by adding a
pair consisting of a random agent (A0) and a random training
example (E0). During an epoch, all pairs that haven’t reached
a satisfactory performance are trained in parallel. At the end of
each epoch, a new pair is generated by adding a small random
perturbation, or mutation, to an existing example and pairing
it up with a new agent that inherits the parameter weights of
the existing agent that performs best on the new example. As
POET has training nested inside the genetic algorithm, the
algorithm is computationally expensive as resources spent by
any agents not contributing to the performance of the best-
performing agent are wasted. Our approach is computationally
more efficient by separately running the genetic algorithm
outside of the loop. At the end of each epoch, the current
policy is fixed and the genetic algorithm runs to generate a set
of scenarios the agent cannot solve. Furthermore, POET uses
mutation to generate new scenarios. This makes the search

for new scenarios an inefficient random walk and makes it
difficult to advance towards scenarios drastically different
from the starting scenario. Our approach on the other hand
incorporates crossover, the processing of mixing sequences
from two parent sequences to generate two offspring, to help
cover a wider variety of scenarios faster.

III. BACKGROUND

This paper examines continuous space MDP represented
as a tuple: [S,A, Pψ, rψ, γ] where S is a set of states, A
action space, and γ ∈ [0, 1) is the temporal discount factor.
Scenario ψ are not fully observable to the agent, such as
obstacles situated out of the line of sight or an internal systems
failure. Pψ and rψ represent the state transition dynamics
and reward function of the scenario. In the event of a partial
engine failure related to fuel pumps, the engine would be
burning less fuel per second and will be delivering less thrust,
hence the state transition probability and reward on fuel
usage will be different from those of a nominal scenario. The
agent’s policy, π(a | s) maps states s ∈ S to a ∈ A. The
utility of a policy π for scenario ψ is the expected return,
Jψ(π) = Eat∼π

∑
t γ

trψ(st, at).
During training, an RL algorithm seeks the optimal policy

π∗ by exploring and gathering data about reward and state
dynamics. The data gathered will be dependent on the
distribution of scenarios the agent experienced during training
ptrain(ψ);

π∗ = argmax
∑
ψ

ptrain(ψ)Jψ(π) (1)

IV. PROBLEM STATEMENT

For a given scenario, ψ, we measure success as follows;

Gψ(π) =

{
0, if π fails for ψ
1, otherwise (2)

Failure is defined as failing to achieve a goal before
exhausting a resource budget set by the user. This could
be a walking robot falling down before reaching a target, a
wheeled robot crashing into a stationary object, a manipulator
robot reaching certain time steps with a cumulative reward
lower than a threshold. A robust algorithm should minimize
the probability of failure during testing;

π∗
robust = argmax

∑
ψ

ptest(ψ)Gψ(π) (3)

Ideally, the trained agent should satisfy the robustness
criteria π∗ = π∗

robust. As the distribution of scenarios
encountered during testing, ptest(ψ), and the definition of
failure Gψ(π), are problem specific, most papers focus on
Jψ(π) and ptrain(ψ). While reward shaping with Jψ(π)
is possible, such as giving a high penalty towards failure,
this often requires expert supervision and fine-tuning for
the training to be stable. We, therefore, take the curricular
approach of investigating how ptrain(ψ) can be better selected
to train a robust agent.



V. APPROACH

To train a robust agent, we select training scenarios as
scenarios the agent currently fails in. Solving these examples
directly addresses Equation (3). We also select the scenarios
to be similar to each other. This follows the idea of curricular
learning on building a set of similar scenarios with varying
types of challenges and levels of difficulty to help transfer
skills from one task to another more easily. Also, just as
adversarial RL adds perturbations to make an agent robust to
a variety of situations, the differences in our scenarios will
help an agent learn not only a specific task but also a variety
of similar tasks as well. This paper proposes GC, which
borrows concepts from genetic algorithms and curriculum
learning to achieve these goals.

At each epoch, curriculum generation starts by initializing a
population Ψpopulation of size Mpop with randomly generated
scenarios. We express scenarios as a sequence of none-fixed
length ψ = (z0, z1, z2, ...) where each vector z defines the
order of values to be used which would otherwise be filled
in by a random number generator in the original benchmark.
Factors of variation include size and duration of obstacles
and bumps on terrain to the time of occurrence, or type and
magnitude of an actuator failure of a legged robot depending
on the benchmark. At each iteration, Ψpopulation is evaluated
by current policy π. ψ is appended to Ψtraining if π is unable
to solve ψ.

The next Ψpopulation is generated by crossover. With L(ψ)
as the length of encoding for ψ, the probability of a scenario
being chosen as a parent for a crossover operation is higher if
the scenario’s encoding is shorter. This encourages sequences
to only retain the sections critical to failure and avoid having
offspring diverse in irrelevant ways. A selected parent change
a random section of its encoding with a random section
of another parent’s encoding as shown in Figure 2. The
crossover operation repeats until |Ψpopulation| ≥ Mpop. To
introduce new vectors to the gene pool, every ψ in Ψpopulation

has mutation probability pµ. The mutation is equivalent to
conducting crossover with a randomly generated sequence as
shown in Figure 2.

Once |Ψpopulation| ≥Mpop, GC exits the scenario gener-
ation cycle and Ψtraining is used to train π for an epoch.
Algorithm 1 shows the pseudocode of our proposed approach.

Fig. 2. Visualization on crossover and mutation. Our approach use genetic
algorithm to use raw, non-fixed length encoding to generate similar scenarios
that can act as a curriculum and dynamically change length of encoding to
keep up with agent’s performance.

pparent(ψ) =

{ 1
(max(L(i))−L(i)+1) , if π fails ψ
0, otherwise

(4)

Algorithm 1 Genetic Curriculum (GC)
1: Initialize Policy π0

2: Input training steps, iterations, epochs, Mtrain, Mpop, pµ
3: for i in epochs do
4: Initialize Ψpopulation

5: Initialize Ψtrain = {}
6: for k in iterations do
7: Fitness = evaluate(Ψpopulation, πi+1)
8: Ψtrain = collect(Ψtrain,Ψpopulation,Fitness)
9: if |Ψtrain| > Mtrain then

10: Break
11: end if
12: Ψpopulation = crossover(Ψpopulation,Mpop,Fitness)
13: Ψpopulation = mutate(Ψpopulation,pµ)
14: end for
15: while steps < training steps do
16: πi+1 = Train Agent(πi, Ψtrain)
17: end while
18: end for

Our algorithm has several desirable features. As a non-
parametric optimizer, it is easy to adapt to various types
of tasks and policies. ψ not only has no fixed length, but
as visualized in Figure 2, offspring scenarios can easily
get longer or shorter during curriculum generation. This
allows encoding length to expand and contract as needed to
accommodate changes in the agent’s performance over time.
During the experiments, the encoding dimension dynamically
changed from 20 - 300D, which would have been difficult with
Bayesian optimization as used in FPO [17]. Another feature
visible in Figure 2 is that scenarios within a curriculum will
be similar to each other. With the crossover and mutation
operations, all scenarios have part of their sequence shared
recurring in another scenario. This similarity makes it easier
to transfer skills from one to another.

VI. EXPERIMENTS

A. Benchmarks

Fig. 3. Screenshot of Benchmarks used in this paper (from left to right),
BipedalWalker(Hardcore/System), LunarLander, Hopper, and Walker which
tests agent’s robustness against a variety of obstacle courses / actuator failure.

BipedalWalkerHardcore [36] involves agent observing the
world with LIDAR, IMU, and joint encoder values to control
torque on each of the bipedal walker’s leg servos. The goal is
to traverse through a randomly generated obstacle course filled
with stairs, pitfalls, and walls. While individual obstacles are
easy, the challenge is to learn a robust policy that can solve
a variety of sequences of obstacles without falling.

BipedalWalkerSystem is a modified version of the above
where the agent traverses through a fixed sequence of
obstacles with simulated random system failures. When a
failure is triggered at a random timestep, the affected servo
will only be able to deliver 60 -100% of the original power



depending on the severity. While individual scenarios are easy,
the challenge is to learn a robust kinetic energy management
skill to go through obstacles even if an actuator fails.

LunarLander is a modified benchmark of the one provided
by [36]. Using position and velocity observations, an agent
has to safely land on the landing pad using its main engine
(ME) and side thrusters. When failure is triggered at a random
timestep, the throttle of the affected rocket motor is limited
to 60 - 100% of the nominal power. Under nominal scenarios,
the best policy is to wait until the last moment and fire the
ME at full thrust to minimize fuel used. However, if a system
failure occurs, the lander may crash due to ME being unable
to provide enough thrust. A robust policy should keep the rate
of descent to a manageable level to maximize the possibility
of landing even when a failure occurs.

Hopper and Walker are modified benchmarks based on the
original versions provided by [37]. When a random system
failure occurs, a torque limit of 75 - 100% of the nominal
maximum is applied to the affected servo. To make the
benchmarks more challenging, we mount a simulated payload
of sizes 0.75 and 0.5 on the Hopper and Walker legged robots.
A policy is considered to have failed if its simulated payload
touches the ground.

B. Baseline Algorithms

Some of the state of the art approaches have been chosen as
follows. To compare GC against adversarial RL approaches,
we chose RARL [14], RARARL [15], and PRMDP
/ NRMDP [16]. We chose FPO [17] for comparison
against approaches that control the training environment. For
comparison against curricular RL, we chose SPDL [34]
for parametric curricular approaches and POET [35] for
non-parametric approaches.

The algorithms in this paper require a base RL algorithm for
updating policies. RL algorithms listed on top of the respective
leaderboards for the original version of the benchmarks are
used as base RL algorithms. BipedalWalker and LunarLander
use soft actor-critic (SAC) [38], while Hopper and Walker
use twin delayed DDPG (TD3) [39]. SAC uses γ = 0.99,
learning rate of 1e-4, batch size of 100, and replay memory
size of 1e6, while TD3 uses γ = 0.98, learning rate of 3e-4,
batch size of 100, and replay memory size of 2e5. Both
algorithms use fully connected networks consisting of layers
sized 400 and 300 updated by ADAM [40] and activated
with the ReLU function.

C. Evaluation and Hyperparameters

One of the main challenges for comparing the performance
of each algorithm is the vastly different computation require-
ments of each algorithm during training. FPO, POET, SPDL,
and ours require additional steps for evaluating the agent’s
performance. While this can be expensive, evaluation can
not only run in parallel but is also cheaper than exploration
which requires backpropagation. Adversarial RL algorithms,
on the other hand, had extra computational costs for training
both protagonist and adversarial networks at the same time.
As we are concerned about how robust a converged solution

TABLE I
TRAINING DURATION AND TESTING RESOLUTION

Benchmark Steps per
Epoch

Testing
Set Size

Number of
Epochs

BipedalWalkerHardcore 1e5 1000 350
BipedalWalkersystem 1e5 2500 30

LunarLander 1e4 2500 80
Walker 5e4 2500 60
Hopper 5e4 2500 40

TABLE II
HYPERPARAMETER SEARCH ON BASELINE ALGORITHMS

Algorithm Parameter Tested Selected
RARAL α 0.05,0.1,0.5 0.1

RARARL ξ 1,5,10,20 10
PRMDP α 0.05,0.1,0.3,0.5 0.1
NRMDP α 0.05,0.1,0.3,0.5 0.05

is, we report results based on how many epochs have passed.
Each epoch consists of the same numbers of policy updates
and exploration steps per benchmark. To share insights in
cases where the total number of environment interactions is
more important, we also include a separate set of experiments
on the LunarLander benchmark where values are reported
based on how many steps each algorithm interacted with the
simulator.

We report performance with mean and standard error
on 10 random seeds per algorithm per benchmark, with
testing sets consisting of randomly generated scenarios. For
BipedalWalker benchmarks, only 3 random seeds were used
to balance accuracy and computational cost. This is because
it would take 7 - 14 days to approach convergence for such
benchmarks. In the case of POET where multiple agents are
trained simultaneously, we report the performance of the best
agent in terms of reward as the result of the random seed.
Table I shows the length of each epoch, testing set size, and
the number of epochs for each benchmark.

To offer a fair comparison, a hyperparameter search is
conducted for adversarial RL algorithms as shown in Table II.
Hyperparameters that performed the best overall throughout
the benchmarks were selected.

The size of policy evaluation for FPO, POET, SPDL is
the same as the size of policy evaluation used for reporting
performance during training. POET also requires manual
reward thresholds on what is considered as not too trivial nor
difficult before adding an scenario for training. BipedalWalker
benchmarks use the same threshold of 50 - 300 as used in the
original POET paper. For other benchmarks, we selected the
value by checking their training curves and marking when
the reward starts to climb and flatten. The threshold is set as
100 - 250 for LunarLander and 1000 - 2000 for Walker and
Hopper benchmarks.

The default versions of the benchmarks random use number
generators to create scenarios at each run. For FPO and SPDL,
we engineered a fixed-length encoder where the range of the
numbers coming out of the random number generator was
defined. For POET and our method, the string of numbers
to be used in the place of the random number generator was
stored in a sequence.

For GC, the curriculum size is 300 for BipedalWalker



benchmarks and 100 for the rest, which is a rounded value
on how many times the simulators are reset per each epoch.
The size of parent and offspring populations is 100 each
which is a rounded value on the minimum size required to
have at least two or three failure sequences upon random
initialization to act as parents for subsequent generations.
While hyperparameter tunning was also conducted on pµ,
GC didn’t show much sensitivity towards pµ and a value of
0.1 is used. The GC’s reliance on crossover more than the
mutation rate is highlighted in the ablation study.

D. Ablation Study

To better understand how our approach help improves
the robustness of an agent, an ablation study with Bipedal-
WalkerHardcore is conducted. When generating a curriculum
filled with failure scenarios, NoMutation turns off mutation,
NoCrossover turns off crossover, and RandomFailure fills a
curriculum with examples that are randomly generated and are
unsolvable when tested by current policy. To see how a genetic
algorithm can generate a curriculum of similar examples
and its effect on performance, the mean genetic distance of
a curriculum is also reported. Every time a new example
is loaded during training, genetic distance is calculated by
counting the minimum number of variables that have to be
changed, added, and deleted to convert the previous example
to the new example. Single Run provides additional data on
the effect of genetic distance on robustness by generating
a curriculum consisting of one failure scenario, making the
mean genetic distance of the curriculum to be zero.

VII. RESULTS

A. Comparison with Baseline Algorithms

Fig. 4. Training Curve for BipedalWalkerHardcore. Lower the better

As shown in Figure 4 and Table III, our proposed GC
consistently improves over the state of the art algorithms
especially in terms of robustness. Agents trained by GC are
2 - 8x times less likely to fail compared to those trained on
baseline SAC / TD3.

One interesting observation from Table III is that even
when agents show quite a difference in performance in
terms of robustness, such differences are less obvious when
looking at rewards only. When trained, big reward coming
from the majority of the cases tends to dominate over bad

rewards coming from the minority of cases. During training,
similar issues are observed where the failure rate continues to
converge when the reward does not show significant progress.
This highlights the challenge of capturing robustness alone
by reward and using it to optimize the policy.

The results from FPO and SPDL highlight the GC’s benefit
of using raw scenario encoding of non-fixed length. As a non-
parametric optimizer, GC can adapt the length of its encoding
to generate more complex scenarios as the protagonist agent’s
performance improves. The effect is most well observed in
the case of BipedalWalkerHardcore where GC expanded the
encoding size by 10 - 15 times during training to precisely
describe the what training scenarios should be.

Also, the results from adversarial RL show selecting a
supporting curriculum is as important as generating challeng-
ing scenarios during training. While adversarial agents can
generate challenging situations during training, they do not
present in a way that the trainee can easily learn new skills.
The challenges of injecting difficult cases without supporting
a curriculum are further highlighted in the following section
on the ablation study.

The effect of not nesting training within the genetic
algorithm can be observed from POET’s results. The original
POET paper reported a reward of around 250 when trained
and tested on scenarios based on the BipedalWalkerHardcore.
POET showed a similar performance when evaluated on the
training set during our experiments. However, when evaluated
against the testing set which includes the entire scenario
space as designed by the benchmark, POET performed poorly
agent’s skills were not generalizable across a wide variety of
scenarios. As POET is computationally expensive and relies
only on mutation for curriculum generation, each trained
agent could only experience less training data from a less
diverse set of scenarios compared to those from GC.

An interesting observation from the trained policies is while
there are some scenarios where an agent had more difficulty
solving than the others, there was no clear trend describing
which scenario is objectively more difficult than others or a
priori difficult scenarios where solving one case means being
able to solve all the easier cases. When a scenario that a
trained agent consistently fails are used as a training scenario
to a randomly initialized agent, the agent would learn how to
solve the scenario. However, regardless of the random seed
used, finding a general policy that solves all the scenarios
was difficult. This shares insight that a robust training scheme
should not only focus on performance per each task but also
on learning a general skillset applicable across the tasks.

B. Comparison with Respect to Environment Interactions

One of the important criteria in RL is how efficiently it can
learn per the number of environment interactions. Figure 5
shows that while GC is a bit slow at the start due to the
extra cost of running genetic algorithms, the cost is offset
by having better training examples. Unlike the baseline RL
(SAC) and adversarial RL methods where marginal utility per
environment interaction quickly diminishes, GC can sustain



TABLE III
REWARD AND MEAN FAILURE RATE OF TRAINED AGENTS(%)

Reward
Algorithm BipedalWalkerHardcore BipedalWalkerSystem LunarLander Walker Hopper
Base RL (SAC / TD3) 291.76 ± 17.41 300.94 ± 1.85 265.30 ± 1.92 2300.81 ± 29.30 2266.64 ± 3.05
RARL 7.67 ± 13.49 289.25 ± 5.08 28.00 ± 12.24 122.60 ± 4.58 203.12 ± 4.53
RARARL 230.14 ± 19.52 270.89 ± 13.59 272.29 ± 0.80 2156.48 ± 10.31 2199.82 ± 3.18
PRMDP 285.30 ± 25.66 298.42 ± 0.23 260.73 ± 2.28 2165.19 ± 11.36 2275.72 ± 2.04
NRMDP 289.82 ± 19.25 291.42 ± 5.05 254.99 ± 1.27 2147.51 ± 1.30 2092.10 ± 3.85
FPO 118.60 ± 1.21 286.47 ± 10.84 256.31 ± 4.61 2134.83 ± 5.09 2044.73 ± 3.21
POET 24.60 ± 18.61 -62.58 ± 14.14 213.30 ± 3.94 2068.50 ± 31.01 2129.93 ± 1.81
SPDL 305.90 ± 0.45 289.13 ± 5.19 221.31 ± 10.71 589.78 ± 74.04 2274.70 ± 13.06
GC (Proposed) 304.33 ± 1.65 300.00 ± 1.00 272.82 ± 0.30 2342.61 ± 5.45 2283.48 ± 2.01
Failure Rate(%)
Algorithm BipedalWalkerHardcore BipedalWalkerSystem LunarLander Walker Hopper
Base RL (SAC / TD3) 10.20 ± 0.71 3.62 ± 0.58 5.19 ± 1.20 4.31 ± 1.00 12.99 ± 3.52
RARL 91.27 ± 3.28 5.97 ± 2.87 73.56 ± 13.52 79.01 ± 16.82 85.61 ± 9.77
RARARL 27.69 ± 3.14 15.29 ± 5.27 4.33 ± 0.88 3.85 ± 0.41 14.36 ± 5.27
PRMDP 11.23 ± 0.36 2.85 ± 0.40 2.24 ± 0.90 3.88 ± 1.75 12.46 ± 4.70
NRMDP 11.00 ± 1.27 5.02 ± 1.38 6.41 ± 1.15 6.96 ± 2.09 28.32 ± 5.91
FPO 67.60 ± 19.05 8.30 ± 4.55 11.73 ± 2.71 12.12 ± 4.83 38.33 ± 5.11
POET 84.96 ± 9.45 100 ± 0.00 29.53 ± 2.36 12.31 ± 7.40 24.98 ± 7.26
SPDL 20.87 ± 7.40 12.57 ± 2.41 27.47 ± 4.13 21.18 ± 6.56 8.69 ± 6.57
GC (Proposed) 3.96 ± 0.37 2.16 ± 0.45 0.64 ± 0.02 2.35 ± 1.11 7.30 ± 2.79

Fig. 5. Characteristic Training Curve from LunarLander Benchmark with
Respect to Environment Interaction Steps

TABLE IV
REWARD, FAILURE RATE, AND MEAN GENETIC DISTANCE BETWEEN

TRAINING EXAMPLES DURING ABLATION STUDY

Method Reward Failure Rate(%) Genetic Distance
Base RL (SAC) 291.76 10.2 22.65
GC (Ours) 304.33 3.96 10.60
No Mutate 294.17 8.51 10.44
No Crossover 271.72 17.63 20.92
Random Failure 251.37 24.50 23.34
Single Run 99.45 33.33 0

the rate of performance improvement longer and converges
to a better solution.

C. Ablation Study

One of the insights from Table IV is, except for Single
Run, curricula with similar scenarios, i.e. shorter mean genetic
distance, perform better. While Random Failure builds a
curriculum with failed scenarios, the similarity between the
scenarios is not ensured. In the case of No Crossover, genetic
similarity between scenarios is low as unlike crossover which
mixes sequences from two parents to generate two offsprings,
mutation only creates one offspring from one parent. The

Fig. 6. tSNE analysis on genetic distance of generated scenarios

difficulty in transferring skills between more distant scenarios
seems to result in No Crossover and Random Failure performs
poorly.

Figure 6 on the other hand highlights how a coverage
over scenario space affects performance for curriculums with
short mean genetic distance between scenarios. As an agent is
trained based on scenarios it experiences, having curriculum
scenarios more spread out in the scenario space can help the
agent generalize across diverse scenarios. While Single Run
keeps genetic distance between scenarios to a minimum, it
offers a poor coverage of the scenario space as in Figure 6.
Genetic Distance between scenarios generated by No Mutate
is similar to those in GC, but the former offers narrower
coverage of the scenario space. While No Mutate can only
reorganize genetic sequences it had upon initialization, GC
can introduce new sequences through mutation, allowing it
to explore a wider scenario space and train a more robust
agent.

VIII. CONCLUSION AND FUTURE WORKS

This paper proposes genetic curriculum, an RL algorithm
that uses a genetic algorithm to generate a curriculum of
scenario for training RL agents. Through empirical study,
our algorithms show improvement over existing state-of-
the-art approaches concerning robustness. Future works will
focus on decreasing the computational load of our algorithms,
improving rate of convergence, as well as implementing our
method in real and more complex benchmarks.
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