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Abstract— Underwater image enhancement has become an
attractive topic as a significant technology in marine engi-
neering and aquatic robotics. However, the limited number of
datasets and imperfect hand-crafted ground truth weaken its
robustness to unseen scenarios, and hamper the application
to high-level vision tasks. To address the above limitations,
we develop an efficient and compact enhancement network
in collaboration with a high-level semantic-aware pretrained
model, aiming to exploit its hierarchical feature representation
as an auxiliary for the low-level underwater image enhance-
ment. Specifically, we tend to characterize the shallow layer
features as textures while the deep layer features as structures in
the semantic-aware model, and propose a multi-path Contextual
Feature Refinement Module (CFRM) to refine features in
multiple scales and model the correlation between different
features. In addition, a feature dominative network is devised
to perform channel-wise modulation on the aggregated texture
and structure features for the adaptation to different feature
patterns of the enhancement network. Extensive experiments on
benchmarks demonstrate that the proposed algorithm achieves
more appealing results and outperforms state-of-the-art meth-
ods by large margins. We also apply the proposed algorithm
to the underwater salient object detection task to reveal the
favorable semantic-aware ability for high-level vision tasks. This
code is available at STSC.

I. INTRODUCTION

Underwater image enhancement is a practical but chal-
lenging technology in the field of underwater vision, which
is widely contributed to many applications such as aquatic
robotics [21], underwater path planning [2], and underwater
object real-time tracking [3], etc. Over the past few decades,
a series of underwater enhancement methods also have been
explored, ranging from traditional model-free methods [1],
[6], [7], [16] to physical model-based methods [10], [17],
[20], [25], [31].

In recent years, significant progress has been witnessed
on underwater image enhancement tasks due to the use of
deep CNNs [13]–[15] and GANs [?], [5], [9]. These kinds
of methods are either employed to estimate the parameters
of the physical models or directly generate the enhanced im-
ages, which have shown impressive advantages in improving
image contrast and alleviating color cast. However, they fail
to preserve the pleasing texture and structure information
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(a) WaterNet [15] (b) UWCNN [14]

(c) FGAN [9] (d) Ours
Fig. 1. Saliency object detection on enhanced underwater images. WaterNet
and UWCNN tend to miss detection, and FGAN tends to incomplete
detection and blurry edges, while our method obtains a pleasing saliency
map.

due to the limited number of datasets with imperfect hand-
crafted ground truth, which hinders their application in high-
level visual tasks. As shown in Fig. 1, the human outlines
in (a) and (b) cannot be detected due to the loss of structure
information, and (c) shows blurred edges due to the loss of
texture details. Thus, how to develop an effective algorithm
for learning complete image structures and precise textures
is very urgent for underwater enhancement tasks.

Recent researches reveal that semantic clues of the high-
level vision tasks [?], [18], [29], [30] offer guidance in low-
level vision tasks, such as super-resolution [33], [34], de-
hazing [26], deraining [32], and deblurring [27]. A common
theme is that the semantic labels are exploited as global pri-
ors to guide networks to generate photo-realistic results. To
be specific, one idea is to directly concatenate the semantic
probability map with the corrupted image as the inputs of the
networks [27], [33], and the other idea is to extract features
from the semantic labels to guide the decoding of features
from inputs [26], [34]. Considering the extreme complexity
of underwater scenes, semantic probability maps, the final
products of segmentation networks, can only resolve the
ambiguity in category-related object boundary but are not
enough to restore accurate textures and structures required
by underwater image enhancement. Thus, we characterize
the semantic-aware features of high-level visual tasks from
texture and structure perspectives, and build our algorithm
to exploit more informative features to facilitate underwater
image enhancement.

Based on the above motivation, we develop a novel un-
derwater image enhancement algorithm in cooperation with
a classical pretrained semantic-aware model. Our algorithm
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Fig. 2. The overview architecture of the proposed semantic-aware texture-structure feature collaboration network for underwater image enhancement.

framework is designed into three parts: 1) With the semantic-
aware model as a powerful auxiliary, we present an efficient
and compact UNet-like framework as the base network. 2)
Since the generation of near-lossless image content depends
on the collaboration of textures and structures, we represent
features from the semantic-aware model via two independent
branches according to the consensus that the shallow features
imply textures while the deep features imply structures.
Besides, to refine texture and structure features in multiple
scales and model correlation between features, we design
and deploy a multi-path Contextual Feature Refinement
Module (CFRM) on the two branches. 3) Aiming at the
characteristics of the non-uniform illumination and various
degradation in underwater images, we present a feature
dominative network to perform channel-wise modulation for
the aggregated features, to adapt to different feature patterns
of the base network. Given that the modulated features
have gone through an encoding-like process, we determine
to embed them into the decoder of the base network to
facilitate feature reconstruction. Our algorithm is a general
framework, in which any semantic-aware model from high-
level vision tasks (i.e., classification, semantic segmentation,
and object detection) can provide important guidance for the
enhancement models to restore the photo-realistic images.
We further apply the proposed algorithm to the underwater
salient object detection task. The results in Fig. 1 reveal that
our algorithm has the semantic-aware ability.

The main contributions of this paper are three-fold:

• We exploit the hierarchical feature representation of the
high-level semantic-aware model as an auxiliary and
propose an efficient and compact underwater enhance-
ment framework.

• We characterize semantic-aware features as textures and
structures separately, and propose a multi-path contex-
tual feature refinement module to model the correlation

between features for formulating near-lossless image
content. Besides, a feature dominative network is de-
veloped to perform channel-wise feature modulation to
adapt to the base enhancement network.

• We conduct extensive experiments and demonstrate
that the proposed algorithm performs favorably against
state-of-the-art methods. The application on underwater
salient detection reveals its semantic-aware ability.

II. PROPOSED ALGORITHM

A. Network Architecture

As shown in Fig. 2, the architecture of the proposed
algorithm consists of three main components, a UNet-like
base network, a semantic-aware feature aggregation network,
and a feature dominative network.

UNet-like Base Network. It serves as a base network for
underwater image enhancement, which takes an underwater
image x as input and is suppose to reconstruct an enhanced
image y with complete structures and precise textures. Let E
and G denote the encoder and decoder of the base network,
respectively. The input image x is first fed into the E to
capture hierarchical multi-scale features denoted by f i =
E (x; ΘE), where i ∈ {1, 2, . . . , w} and w is scale factor.
To enlarge the receptive field and maximize the information
utilization, we employ a pyramid context block P (·) at the
bottom of the UNet-like network. Thus, the features to be
decoded are noted as P (fw), and multi-scale reconstructed
features gi = G (P (fw) ; ΘG) are generated by the decoder.
ΘE and ΘG are model parameters of the E and G.

Semantic-aware Feature Aggregation Network. In this
network, we exploit a high-level semantic-aware model as the
feature extractor, which is a widely-used model VGG16 [28]
on classification tasks. Thanks to the training on an extra-
large scale benchmark ImageNet [4], this model embraces
powerful feature representation ability and does not need to



be retrained on the underwater datasets. We directly feed x
into the semantic-aware model to extract hierarchical multi-
scale features denoted by Fi, and also i ∈ {1, 2, . . . , w}.
Due to the influence of too deep semantic-aware features on
low-level tasks is negligible, the value of w is set to 4 in all
the experiments. The core of the network is to build texture
branch Bte and structure branch Bst to tackle the extracted
features separately. We represent the shallow features from
the first two scales as textures and represent the deep features
from the last two scales as structures, and reorganize them via
reshaping operation and concatenation. For the reorganized
texture features Fte and structure features Fst, we present a
multi-path Contextual Feature Refinement Module (CFRM)
to implement two refinement processes Fte → F̃te and
Fst → F̃st. As shown in Fig. 2, there are three parallel
convolution paths with progressively increased kernel sizes in
the CFRM. The refined texture and structure features by each
path are denoted as φkte (Fte) and φkst (Fst), where k ∈ K
and K = [3, 5, 7]. Note that both φkte (·) and φkst (·) denote
the convolution paths with kernel size of k × k in Bte and
Bst, respectively. Thus, the textures and structures refined by
the CFRMs are represented as

F̃te = C
(
φkte (Fte) , k ∈ K

)
,

F̃st = C
(
φkst (Fst) , k ∈ K

)
.

(1)

Subsequently, we aggregate the texture and structure features
by

Fste = C
(
F̃te, F̃st

)
, (2)

where C denotes the concatenation and a followed 1 × 1
convolution layer to reduce the feature channels.

Feature Dominative Network. Due to the characteris-
tics of non-uniform illumination and various degradation in
underwater images, it is not applicable to directly embed
the aggregated features into the base network. Hence, we
present a feature dominative network to learn image-specific
and region-specific features through performing channel-
wise feature modulation. To match features with different
scales of the base network, the aggregated features Fste are
first reshaped into those with specific sizes, which are then
fed to the Channel Transformation Layer (CTL) to obtain
applicable feature embeddings matching the base network.
As shown in Fig. 2, a convolution layer of 1×1 is fist used to
conduct a transformation Fste → f it , also i ∈ {1, 2, . . . , w}.
And then an adaptive weight vector wi

t is obtained by global
average pooling, down-upscaling operations, and sigmoid
function. The final modulated features f iste are obtained by
f it⊗wi

t, where ⊗ represents the element-wise multiplication.
Finally, we embed modulated features into the decoder

of the UNet-like base network to generate an enhanced
underwater image by

y = Gi→w

(
f i→w, f i→w

ste , gi→w
)
, (3)

where i→ w is the scale range of the features. Gi→w denotes
the progressive feature reconstruction by the decoder under
the scale range.

TABLE I
DESCRIPTION OF THE BENCHMARK UNDERWATER DATASETS.

Datasets Training (#) Testing (#) Paired/Unpaired
UIEB [15] 712 238 Paired
EUVP [9] 7, 200 4, 284 Paired
RUIE [19] 0 300 Unpaired
USOD [8] 0 300 Paired

B. Loss Functions

Considering that human visual perception often pays more
attention to image details and textures, we use multi-scale
structure similarity (MS-SSIM [35]) loss function Lsm

ssim to
optimize our network, thus generate more realistic image
content. However, doing so leads to image contrast change
and color distortion. In view of this, we use a widely-used
pixel-wise loss function L1 to ensure the insensitivity of the
network to image contrast and color, so as to achieve a good
trade-off between content restoration and picture fidelity.
Therefore, the loss function is defined as:

L = λ · Lms
ssim + (1− λ) · L1, (4)

where, λ is a balance parameter. It is set to 0.8 in our work.

III. EXPERIMENTAL RESULTS

A. Dataset and Implementation Details

Datasets. We evaluate the proposed algorithm using two
labeled underwater datasets UIEB [15] and EUVP [9],
and an unlabeled real-world underwater dataset RUIE [19],
respectively. Moreover, we also utilize a new challenging
underwater salient object detection dataset USOD [8] to
verify the semantic-aware ability of our algorithm on the
high-level vision tasks. Table I provides a detailed description
of these datasets.

Training Settings. We randomly crop 8 image patches of
size 224 × 224 to form a batch. The Adam optimizer [12]
(β1 = 0.9, and β2 = 0.999) is used to optimize our model.
The initial learning rate is 5 × 10

−4

, and decreasing to 0.2
times every 8, 000 iterations during training. The whole train-
ing phase goes through 100, 000 iterations. We implement
the proposed network using the PyTorch framework with an
NVIDIA 1080Ti GPU.

Evaluation Metrics. For the sake of the comprehensive
and fair assessment, we employ four metrics involving ref-
erence and non-reference approaches. For the UIEB [15]
and EUVP [9] dataset with reference images, we mainly
adopt two widely-used metrics (i.e., PSNR (dB) and SSIM)
for evaluation. For the RUIE [19] dataset without refer-
ence images, we mainly use the other two non-reference
evaluation metrics (i.e., Underwater Image Quality Mea-
surement UIQM [23] and Natural Image Quality Evaluator
NIQE [22]).

B. Comparison with State-of-the-art Methods

We conduct extensive experiments to quantitatively and
qualitatively evaluate our algorithm against several state-
of-the-art methods including conventional methods [1], [6],
[16], physical model-based methods [10], [31], and data-
driven deep learning-based methods [5], [9], [13]–[15].



TABLE II
QUANTITATIVE PSNR AND SSIM VALUES OF DIFFERENT METHODS ON REAL-WORLD BENCHMARK DATASETS (UIEB AND EUVP). THE VALUE

WITH RED BOLD FONT INDICATES RANKING THE FIRST PLACE IN THIS ROW WHILE THE VALUE WITH BLUE FONT IS THE SECOND PLACE.

Dataset Metric EUIVF [1] OCM [16] UDCP [10] TSA [6] UGAN [5] WaterNet [15] AIO [31] FGAN [9] UWCNN [14] Ucolor [13] Ours

UIEB PSNR 21.93 16.19 11.73 14.32 17.73 19.65 12.69 18.16 13.35 20.62 22.45
SSIM 0.823 0.759 0.509 0.763 0.765 0.824 0.466 0.597 0.773 0.921 0.902

EUVP PSNR 17.06 15.62 14.53 13.21 19.31 18.68 16.25 19.49 18.37 −− 23.23
SSIM 0.894 0.843 0.888 0.672 0.890 0.952 0.881 0.963 0.948 −− 0.987

Quantitative Evaluation. We report the quantitative re-
sults on UIEB, EUVP, and RUIE benchmarks in Table II and
Table III. It can be seen that our algorithm numerically out-
performs most existing methods by large margins and ranks
first or second in the four evaluation metrics. Especially,
compared with Ucolor [13], a recent research, our algorithm
gains 1.83dB and 0.982 improvements in PSNR and UIQM
on the UIEB dataset. Due to the fact that transmission maps
are required by Ucolor and the code [24] for estimating them
has not been released, we cannot make comparisons with
it on EUVP and RUIE datasets. In addition, our algorithm
performs better than current prevalent data-driven methods in
all four metrics, such as WaterNet [15] and UWCNN [14].

Qualitative Evaluation. We first show the qualitative
evaluations on the UIEB benchmark in Fig. 4. By observing
the local enlarged areas, we note that some methods such
as TSA [6], AIO [31], WaterNet [15], and FGAN [9], can
not effectively alleviate the underwater haze-effect, while
the UDCP [10] and UWCNN [14] cause severe contrast
reduction and color cast. More seriously, almost all the
comparison methods fail to restore the complete structures
and precise textures. In contrast, the underwater image en-
hanced by our algorithm has a sharper structure and richer
texture and achieves a balance of contrast and color cast
simultaneously. Then, we also show qualitative results on the
EUVP benchmark in Fig. 5. It can be observed that our algo-
rithm performs well in dealing with structure characteristics
such as contrast and color, and the precise textures are also
clearly displayed incidentally. Moreover, we also show some
visualization examples on the RUIE benchmark in Fig. 6.
The greenish color cast weakens structure information and
hides texture details of the underwater scenes as shown in
(a). According to (b)-(k), we can observe that these visual
results are either under-enhanced or introduce the reddish
and brownish color cast, while our algorithm shows relatively
more realistic textures.

Time Complexity Evaluation. For the efficiency of our
algorithm, we compare time complexity against the state-
of-the-art models on a single 1080Ti GPU. As shown in
Fig. 3, our model performs faster, especially compared to the
latest underwater enhancement method Ucolor [13]. Com-
bined with ahead experimental results, it can be illustrated
that the proposed algorithm can obtain desirable underwater
enhancement results at a low computational cost.

C. Application for other High-level Tasks

To further verify that the improvement can be provided
by our algorithm for high-level visual tasks, we apply an
underwater salient object detection algorithm [11] to evaluate

TABLE III
QUANTITATIVE NIQE AND UIQM VALUES OF DIFFERENT METHODS ON

REAL-WORLD BENCHMARK DATASETS.

Methods
NIQE ↓ UIQM ↑

UIEB EUVP REIU UIEB EUVP REIU

EUIVF [1] 4.059 4.358 4.542 2.679 2.763 3.073

OCM [16] 3.877 4.628 4.538 2.545 2.776 2.912

UDCP [10] 4.303 4.398 5.131 1.772 2.079 2.099

TSA [6] 4.165 5.623 4.842 1.996 2.869 2.512

UGAN [5] 7.057 6.467 6.680 2.528 3.254 3.043

WaterNet [15] 4.484 4.375 4.544 2.857 3.065 3.150
AIO [31] 3.994 4.892 5.637 3.078 3.346 3.137

FGAN [9] 6.364 5.175 5.696 2.512 3.211 2.982

UWCNN [14] 4.441 4.251 4.411 3.078 2.231 2.781

Ucolor [13] 3.772 −− −− 2.871 −− −−
Ours 3.451 4.165 3.694 3.763 3.297 3.966

Fig. 3. Running time comparisons against state-of-the-art methods on a
color image of size 648× 480.

it on the benchmark USOD [8] dataset. Fig. 7 shows that
the saliency maps generated by our algorithm have a more
integrated structure and precise boundary, even though in
the dark underwater environment. By contrast, some state-
of-the-art methods [1], [6], [10] even fail to capture the rough
outline of the objects. We implement quantitative evaluation
on the USOD dataset. As summarized in Table IV, the
proposed algorithm performs favorably against the state-of-
the-art methods in three common evaluation metrics (i.e., F-
measure, S-measure, and MAE). Application examples and
quantitative results illustrate that the proposed underwater
enhancement algorithm can make further effects on the
implementation of relevant high-level vision tasks in the
underwater environment.

D. Ablation Studies
In Table V, M0,M1, . . . ,M3 refer to algorithms imple-

mented for ablation analysis. M0 is the UNet-like base net-
work called BaseNet for underwater image enhancement. M1

refers to that the multi-scale features F from the semantic-
aware Feature Aggregation network (SFANet) are directly
embedded into the decoder of the BaseNet. M2 is a variant of



(a) Input (b) EUIVF (c) OCM (d) UDCP (e) TSA (f) UGAN

(g) WaterNet (h) AIO (i) FGAN (j) UWCNN (k) Ucolor (l) Ours
Fig. 4. Qualitative comparisons on the UIEB dataset. The enhanced result by our algorithm has more pleasing contrast and more precise textures.

EUIVF OCM UDCP TSA UGAN WaterNet AIO FGAN UWCNN Ours
Fig. 5. Qualitative comparisons on the EUVP dataset. The enhanced results by our algorithm have better textures and colors.

(b) EUIVF (c) OCM (d) UDCP (e) TSA (f) UGAN

(a) Input (g) WaterNet (h) AIO (i) FGAN (j) UWCNN (k) Ours
Fig. 6. Visualization of the underwater enhancement results by different methods on the RUIE dataset.

Input EUIVF OCM UDCP TSA UGAN WaterNet FGAN UWCNN Ours GT
Fig. 7. Application examples of different methods on the salient object detection task in real-world USOD underwater dataset.

our algorithm with only structure branch Bst in the SFANet,
and M3 is another variant with only texture branch Bte.
M4 denotes that the final aggregated features of the SFANet
are directly embedded into the decoder of the base network
without the feature dominative network (FDNet).

Effectiveness of Texture and Structure Branches. We
can observe from Table V that: i) On the whole, compared
with M0, M1 only obtains a gain of 0.70dB, while our

algorithm outperforms M1 by a large margin (1.51dB). It can
be explained that texture and structure branches are indeed
conducive to maximizing feature utilization for underwater
image enhancement. ii) For texture branch Bte, the perfor-
mance of the algorithm with it is improved by 1.96dB via
comparing M3 with M0. To more explicitly demonstrate the
effect of texture branch, a Gaussian filter is applied to the en-
hanced images to obtain texture layers for analysis. As shown



TABLE IV
QUANTITATIVE COMPARISONS ON SALIENT OBJECT DETECTION TASK WITH STATE-OF-THE-ART UNDERWATER ENHANCEMENT METHODS.

Metric EUIVF [1] OCM [16] UDCP [10] TSA [6] UGAN [5] WaterNet [15] AIO [31] FGAN [9] UWCNN [14] Ours
F-measure ↑ 0.850 0.840 0.835 0.715 0.836 0.852 0.813 0.851 0.834 0.854
S-measure ↑ 0.833 0.831 0.811 0.705 0.822 0.833 0.797 0.830 0.808 0.837
MAE ↓ 0.081 0.081 0.088 0.124 0.084 0.080 0.096 0.082 0.092 0.080

TABLE V
ABLATION ANALYSIS ON THE UIEB DATASET.

Method BaseNet SFANet FDNet UIEB
F Bst Bte PSNR SSIM

M0 X 20.244 0.8772
M1 X X 20.943 0.8932
M2 X X X 20.879 0.8821
M3 X X X 22.202 0.8893
M4 X X X 21.846 0.8918
Ours X X X X 22.448 0.9019

(a) (b) (c)
Fig. 8. Ablation analysis of the texture branch. (a) Texture layer of the
enhanced image of the algorithm without Bte. (b) Texture layer of the
enhanced image of the algorithm with Bte. (c) Histogram comparison of
(a) and (b).

in Fig. 8(a) and (b), the enhanced image of the algorithm
with Bte has more textures. Besides, the statistical results
in Fig. 8(c) show that the texture branch contributes to the
restoration of image textures. iii) For structure branch Bst,
the algorithm with it gains 0.64dB improvement compared
with M0. The corresponding qualitative results in Fig. 9 show
the content of the structure layer enhanced by the algorithm
without Bst is seriously blurred. Therefore, we argue that
texture and structure branches can model the correlation
between features, and both of them are significant to generate
near-lossless underwater image content.

Effectiveness of Feature Dominative Network. To il-
lustrate the effectiveness of the feature dominative network
(FDNet), we also train the model without the feature domi-
nating process. As shown in Table V, using the FDNet can
obtain a gain of 0.58dB, which indicates that the FDNet can
reasonably dominate aggregated features from the SFANet to
make them more applicable to underwater image enhance-
ment.

Effectiveness of Multi-path CFRM. To show the ef-
fectiveness of the multi-path Contextual Feature Refinement
Module (CFRM), we remove it as our comparison model. As
shown in Table VI, an improvement of 0.879dB is obtained
using CFRM, suggesting that the feature refinement module
can highlight more informative features by modeling the
correlation between features.

E. Additional Analysis

Encoder embedding vs. Decoder embedding. We con-
duct feature embedding investigations on the encoder and de-

(a) w/o structure branch (b) w/ structure branch
Fig. 9. Ablation analysis of the structure branch. (a) and (b) are structure
layers through gaussian filtering corresponding to the enhanced results
without and with structure branch, respectively.

TABLE VI
INVESTIGATION OF THE MULTI-PATH CFRM ON THE UIEB DATASET.

w/o CFRM w/ CFRM
PSNR 21.569 22.448↑0.879
SSIM 0.8902 0.9019↑0.012

coder of the UNet-like base network, respectively. As shown
in Table VII, we note that the performance of the proposed
algorithm is improved by a large margin by embedding
the aggregated features from the SFANet into the decoder
rather than the encoder, on the UIEB and EUVP datasets. It
indicates that embedding features from the semantic-aware
model into the decoder of the base network for feature
reconstruction can maximize feature utilization and achieve
better enhancement performance.

TABLE VII
ANALYSIS OF THE FEATURE EMBEDDING LOCATION.

Dataset Encoder Decoder
PNSR SSIM PNSR SSIM

UIEB [15] 21.703 0.8836 22.448↑0.745 0.9019
EUVP [9] 22.858 0.9007 23.079↑0.221 0.9033

IV. CONCLUSIONS

In this paper, we proposed an efficient underwater image
enhancement algorithm based on semantic-aware texture and
structure feature collaboration. The main novel points of the
proposed algorithm lie in that the hierarchical features of
the high-level semantic-aware model were exploited as an
auxiliary and were characterized via structure and texture
branches. A multi-path contextual feature refinement module
was deployed on both branches to model the correlation
between features resulting in near-lossless image content. We
presented a feature dominative network to perform channel-
wise feature modulation to adapt to the different feature pat-
terns of the enhancement network. Experiments implemented
on four widely-used underwater benchmarks demonstrated
the superiority of our algorithm and its semantic-aware
ability for high-level vision tasks. In future work, we plan to
explore the potential of the proposed algorithm in the field
of underwater machine vision, such as underwater robotics
and underwater object detection.
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