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Kinematic Stability based AFG-RRT* Path Planning for Cable-Driven
Parallel Robots †

Utkarsh A. Mishra1, Marceau Métillon2 and Stéphane Caro2,∗, IEEE Member

Abstract— Motion planning for Cable-Driven Parallel Robots
(CDPRs) is a challenging task due to various restrictions on
cable tensions, collisions and obstacle avoidance. The presented
work aims at proposing an optimal path planning strategy in
order to both maximize the wrench capability and the dexterity
of the robot in a cluttered environment. First, an asymptotically-
optimal path finding method based on a variant of rapidly
exploring random trees (RRT) is implemented along with the
GilbertJohnsonKeerthi (GJK) algorithm to account for the
collision detections. Then, a goal biased Artificial Field Guide
(AFG) is employed to reduce convergence time and ensure
directional exploration. Finally, a post-processing algorithm is
added to get a short and smooth resultant path by fitting
appropriate splines. The proposed path planning strategy is
analyzed and demonstrated on a simulated and experimental
setup of a six-DOF spatial CDPR.

I. INTRODUCTION

Cable-Driven Parallel Robots (CDPRs) belong to the class
of parallel robots in which the end-effector (EE), a moving-
platform, is connected to a rigid frame by means of cables
instead of articulated limbs. CDPRs can have a low inertia, a
higher payload to weight ratio and a large workspace which
enables a variety of usage of such robots in large scale 3D
printing [1], large scale telescopes [2] and in rehabilitation
mechanisms [3]. However, there are some challenges with
such systems along with the advantages accompanying it.
The cables used in such robots can only apply unilateral
forces, i.e. they can only pull the moving platform and not
push it [4].

Given that, the designing of CDPRs based on manipulabil-
ity and structural stability to external wrenches plays a vital
role in governing the workspace and reliability under varying
conditions. Gosselin and Angeles first used the condition
number of the kinematic Jacobian matrix in 1990 [5] [6]
which was extended by Cui and Hao [7] as a measure of
the mechanism dexterity. The problem of non homogeneous
jacobian was addressed by Guay et al. [8] which further ex-
plored an index used for supporting varying force and motion
capabilities of the actuator, called the capacity margin. A
similar index [9] was also established for twist feasibility
based on cable velocities. Various works [10], [11] have
used related indices as a measure of the effectiveness of the
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Fig. 1: 6-DOF spatial CDPR in a cluttered environment

mechanism, the design problem being generally formulated
as an optimization problem.

Based on a particular configuration, motion planning for
CDPRs has been explored by means of various strategies.
Cluttered environment with obstacles introduces many chal-
lenges related to obstacle avoidance, cable collision and
management of cable tensions. A dynamic point-to-point
trajectory planning for underactuated CDPRs was proposed
in [12]. Previously, various strategies to plan point-to-point
trajectories using polynomial and trigonometric functions
were introduced in [13], [14] for navigating through way-
points. Point-to-point motion planning is required for pick-
and-place like operations. However, these works only val-
idated the wrench feasibility conditions without obstacle
avoidance. Motion planning of reconfigurable Mobile CD-
PRs with Direct Transcription Method while considering the
static equilibrium and the tipping conditions of the overall
system along the searched path was further explored [15]
along with obstacle avoidance.

In context of path planning, sampling based path plan-
ning algorithms like rapidly-exploring random trees (RRT)
perform effective planning in cluttered environments. RRT*,
a variant of general RRT, will guarantee asymptotic op-
timality [16] in finding path to a goal, if it exists. A
modified RRT* along with a fast GJK obstacle avoidance
algorithm [17] [18] [19] was proposed in [20] considering
cable/cable and cable/moving-platform collisions as well as
the wrench capability of the system. A faster convergence
criterion based on the condition number of the kinematic
Jacobian matrix with the help of an artificial potential field
was introduced in [21]. Recently, RRT* has also been used
to compute efficient trajectories based on horizontal linear
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periodic motion energies of the state [22].
In this paper, RRT* based offline path planning has

been explored for pick-and-place operations (point-to-point
motions) in a cluttered environment. A pose based capacity
margin as a measure of robustness on sustaining external
wrenches is used as the cost function in addition to the dex-
terity. Finally, the AFG-RRT* algorithm is formulated and
solved under the guidance of a goal-biased Artificial Field
Guide (AFG) and a GJK based detection of cable/cable, ca-
ble/obstacles and moving-platform/obstacles collisions. The
overall objective is to plan the path to the goal, if it exists,
maximizing the structure stability to external wrenches and
with proper manipulability. The motion was simulated and
demonstrated on a 6-Degrees Of Freedom (DOF) spatial
CDPR shown in Fig. 1.

Section II describes the robot model and presents the
problem statement. Section III formulates the cost indices.
Section IV deals with the implementation of the AFG-RRT*
algorithm along with the functions of transition between
poses and collision detection. The simulated and experimen-
tal results are discussed in Section V. Finally, conclusions
are drawn and future work is presented in Section VI.

II. ROBOT MODEL

Let us consider an n-DOF CDPR with m cables. Its ith
closed loop is represented in Fig. 2. The frame Fb of
origin O is attached to the base. The frame Fp of origin P
is attached to the Moving-Platform (MP). ai denotes the
Cartesian coordinates vector of exit point Ai expressed in Fb.
bi denotes the Cartesian coordinates vector of anchor point Bi
expressed in Fp. The MP pose is defined by the vector p
pointing from O to P and the unit quaternion bQp ∈ SU(2)
(and equivalent rotation matrix bRp ∈ SO(3)) from Fb to
Fp.

Fig. 2: ith closed-loop of the CDPR

The ith loop closure equation is expressed as:

bai + lb
i ui− bRp

pbi−b p = 03 (1)

ui is the unit vector along the ith cable pointing from Ai
to Bi. The subscript b (p, resp.) means that the corresponding
vector is expressed in frame Fb (Fp, resp.).

The upper and lower bounds on cable tensions are denoted
as t and t, respectively (t = 86 N, t = 1 N). The MP mass
is named mE .

This paper aims to define a methodology to generate
optimal paths in a cluttered environment from a given starting
pose to a given ending pose while maximizing the overall
robot performances. The maximum and minimum tension
impose significant restrictions to the motion of the moving
platform. The only external wrench action on the moving
platform is due to its own weight. The practical setup shown
in Fig. 1 of size 4.24 m x 3.67 m x 2.76 m (l x b x h) has a
5.6 Kg moving platform of size 0.28 m x 0.28 m x 0.20 m.

III. PERFORMANCE INDEX
A. Capacity Margin Formulation

Let an external wrench, we, is applied on the moving
platform given by, we = [fT

pτττT
p ]

T for an external force fp
and moment τττ p. For the moving platform to remain in
equilibrium, there must exist a m-dimensional vector of cable
tensions, t = [t1, t2, . . . , tm], in order to satisfy the Newton-
Euler equation given by,

−Wt+we = 06 (2)

where, W is the Wrench matrix of the mechanism at this
particular pose of the moving platform, given by

W =

[ bu1 . . . bum

(1/r)bRp
pb1×b u1 . . . (1/r)bRp

pbm×b um

]
(3)

and we = [fT
p (1/r)τττT

p ]
T reformulated as dimensionally ho-

mogenized matrices with the help of a characteristic length
r. This length is determined by imposing isotropy conditions
on the wrench matrix. For planar manipulators [10], it is
given by r2 = (2/m)∑

m
i=1

∥∥F bi
∥∥2

2, whereas, for spatial
manipulators, it is obtained for minimum Euclidean distance
between square matrix WWT and diagonal matrix of squared
eigenvalues (σ1, . . . ,σn) of WWT .

Given the above formulation, the equilibrium in eq. (2)
must hold for all the possible external wrenches (we) which
can be specified as path planning requirements. Let us
denote this set of external wrenches as We in R6, given
by We = {we ∈ R6 } represented as a polytope in the
wrench space of the robot. Similarly, due to bounded cable
tensions, let the allowable tension set, T be composed of
all the feasible cable tension vectors such that

T = {t ∈ Rm : t≤ t≤ t} (4)

represents another polytope (a hypercube) in the tension
space of the robot.

The two sets We and T are defined in two different spaces,
namely the wrench space and the tension space, which are
connected by eq. (2). The feasible tensions t ∈T are linear
mapped onto the wrench space using the transformation
wrench matrix, W, to get the set of available feasible
wrenches, wt . Hence, after transformation, T becomes a
special type of polytope in wrench space called the zonotope,
given by

Wt = {wt : wt = Wt ∀ t ∈T } (5)



and referred to as the Available Wrench Set (AWS). This can
be visualized from Fig. 3 as a low dimensional representation
of tension space (3 dim.) and wrench space (2 dim.).

Fig. 3: Cable tension space, Available wrench set, External
wrench set and capacity margin index (γC)

For the system to be able to reach an equilibrium, there
must be available cable tensions to balance the external
wrench, i.e.,

We ⊆Wt (6)

This can be analysed graphically as the degree of inclusion
of We in Wt i.e. the distance between two polytopes which is
represented as a signed distance, s, that is positive when We
is completely within Wt , zero when they touch each other
and negative when We is partly outside Wt . Mathematically,
the Hyperplane Shifting Method (HSM) [8] is implemented
to convert the zonotope, Wt , to a set of hyperplanes satisfying
Ax = b, where x ∈ R6 is a vector in wrench space. Finally,
between the ith hyperplane, aix = bi, and jth task wrench,
wT

e j, the signed distance, si j, is given as

si j =
(bi−aiwT

e j)

‖ai‖
(7)

and capacity margin (γC) for such a pose is defined as the
minimum degree of such inclusion, given by

γC = min(si j) (8)

B. Dexterity Margin Formulation

Let the linear and angular velocities of the moving plat-
form in Cartesian space be denoted as bν and bωωω respec-
tively. The Kinematic Jacobian matrix, J, defined as[bν

bωωω

]
= Jθ̇θθ (9)

linearly maps the actuated cable velocities θ̇θθ to the twist for a
particular pose and by calculation, J = WT . While analyzing
transfer of error for the transformation from cable space to
the cartesian space in eq. (9), effective manipulability can
be well ensured by reducing the magnitude of the transfer
of error and can be related to the dexterity of the robot [23],
which is the second performance index considered in the
paper. The conditioning number of the kinematic Jacobian
matrix is defined as,

κ =

√
λmax(JT J)√
λmin(JT J)

(10)

where, λmax,λmin denote the maximum and minimum eigen-
values of matrix JT J, σmax,σmin denote the maximum and
minimum singular value of the matrix. The Jacobian matrix
conditioning number, κ is a measurement for the dexterity
and it’s a number no less than 1, i.e. 1≤ κ ≤ ∞. Hence, the
dexterity margin, γD, is formulated as the reciprocal of this
conditioning number i.e.

γD = 1/κ (11)

and thus 0≤ γD ≤ 1. When γD = 1, the mechanism is at its
optimal transmission capacity. Whereas, when γD = 0 the
mechanism loses its control and attains a singular configu-
ration. Thus γD is used to measure a robots dexterity and
controlling precision.

IV. MODIFIED AFG-RRT* FORMULATION

A. RRT* Algorithm

The implemented RRT* algorithm, as in Algorithm 1,
includes the cost of traveling to each vertex relative to its
parent vertex based on the cost function which is modelled
as a combination of the capacity, γC, and dexterity, γD,
margins defined in the previous section. A simple path

Algorithm 1: Modified RRT*
Result: Path from Start to Goal Node
while True do

for V in G do
if Distance(V,Goal) < (ε,δ ) then

return G;
end

end
Xrand = RandomNode(AFG,Obstacle);
Xnearest = Nearest(G,Xrand);
Xnew = Transition(Xrand ,Xnearest );
if PATH(Xrand ,Xnearest ) ∈ Obstacle then

Continue;
else

Xnew.Cost = Cost(Xnew,Xnearest );
Xbest ,Xneighbors = Neighbors(G,Xnew,DN);
Link = Chain(Xnew,Xbest );
for X ∈ Xneighbors do

if Xnew.Cost + Cost(Xnew,X) < X.Cost then
X.Cost = Xnew.Cost+Cost(Xnew,X);
Parent(X) = Xnew;
G += {Xnew,X};

end
end
G += Link;

end
end

cost is the cumulative increment in capacity margin and
dexterity achieved during the transition. Points are generated
over the workspace and connected to the closest available
node based on the cost metric. For a graph, G(V,E), of
edges and vertices initialized with a start node, the closest



node (Xnew) is obtained. Now, if a node with a better
cost (Xbest ) is obtained within a neighborhood of existing
vertices (Xneighbours) marked by a fixed distance radius, DN ,
it will replace the proximal node using the distance metric.
The algorithm ends when a node is generated within the
goal region bounded by ε Cartesian distance and δ angular
distance. The overall transition between intermediate nodes
in governed by a pose transition rule and checked for obstacle
avoidance.

B. Collision Detection

In order to account for the large number of collision checks
in sampling based algorithms like RRT*, the GJK algorithm
is integrated for its faster and more accurate collision detec-
tion behavior. It calculates the distance between objects, with
reference to distance from origin. To deal with the limitation
of the algorithm to convex polytopes, the moving-platform,
obstacles and the cables are approximated as convex objects
[20]. All possible interference between the moving-platform,
cables and obstacles (shown in Fig.4) are considered to
determine the paths free of collision between two nodes.

Fig. 4: Convex shape representation of the Moving Plat-
form (MP), Cables (AiBi) and Obstacles (Oi) for satisfying
the prerequisites of GJK Algorithm

For considering collisions between two convex polytopes
A and B, Algorithm 2 defines the support function (get-
Support()) as the Minkowski difference between the farthest
point on A in direction v and the farthest point on B in
direction −v. S is a simplex set containing the simplest con-
vex polytope with (m+1) points in a m-dimensional space.
A sub-algorithm is iterated within, which makes a simplex
in Minkowski difference try to contain the origin. If such
an event occurs, the polytopes, that make the Minkowski
difference contain the origin, are in a state of collision.

C. Transition Law

The transition between intermediate poses play a signifi-
cant role in the nature of the solution obtained by the RRT*
exploration policy. The node generated for the above RRT*
algorithm represents a configuration of the mobile platform
i.e. [bp,bQp]. The transition from a pose, [p1,Q1], towards
a randomly sampled pose, [p2,Q2], is modelled using a
fixed transition ratio, λ and new pose after transition can
be expressed as a linear interpolation of the position vector

Algorithm 2: GJK Collision Detection
Result: Collision Flag
Direction (~v), Simplex (S0) ← Initialize()
Next Point (~w) = getSupport(~v)
S ← newSimplex(S0,~w)
~v ← updateDirection(−~w)
while False do

~w = getSupport(~v)
if ~w.~v < 0 then

~v ← updateDirection(−~w)
return False

else
S ← newSimplex(S ,~w)
if intersect(S ,O) then

return True
else

S ← reduceSimplex(S )
~v ← updateDirection(−~w)
return False

end
end

end

and a spherical linear interpolation of the unit quaternions.
For the new pose, [pN ,QN ],

pN = p1 +λ (p2−p1) (12)

QN =
sin[(1−λ )Ω]

sinΩ
Q1 +

sin[λΩ]

sinΩ
Q2 (13)

where, cosΩ = Q1.Q2, i.e. the 4-dimensionsal dot product
between the two quaternions of the form Q = [q0, q̃1 (3×1)].

D. Artificial Field Guide (AFG)

Simple uniform random number generators reaches
asymptotic optimality with RRT*. Such numbers encourage
exploration at the expense of increasing computation time
[21]. Thus, a goal biased artificial field guided formulation
of generating random numbers is used to attract the search
towards the goal and, ensure faster convergence. This way the
searching and exploration is much more directional towards
the desired goals. Nodes, N(p,Q) are generated based on the
AFG,

N(p) =C(p)+(Ds(ψ)c(φ),Ds(ψ)s(φ),Dc(ψ)) (14)

P(D | D ∈ [Dmin,Dmax]) ∝
1

‖N(p)−C(p)‖2
(15)

N(Q) =
sin[(1−λr)Ωr]

sinΩr
C(Q) (16)

where s(ψ) = sinψ and c(ψ) = cosψ . The probability of
choosing D in eq. (15) governs the attraction phenomenon
where Dmin is a decision variable and Dmax is the maxi-
mum radius coverage of the AFG (in Fig.5) extended to
Dmax = ∆XWorkspace

max . N(p,Q) must be within the wrench
feasible workspace (i.e. γC |@N(p,Q) ≥ 0) and outside any
obstacle. Further chosen conditions on decision variables
are ψ,φ ,Ωr ∈ Random(0,2π) and λr ∈ Random(0,1). The



probability of C being the goal node or any random node is
defined using a probability Pg, i.e., P(C = Xgoal) = Pg and
P(C = Xrand) = 1−Pg.

The AFG, as visualized from Fig. 5, is modelled as a
potential field where the random node generation is based on
an attraction phenomenon by the goal node Xgoal . The field
also preserves randomness by generating random nodes and
the degree of randomness is controlled by adjusting Pg. The
generated node will be neglected if it lies on the obstacles.

Fig. 5: AFG within the complete workspace of the CDPR

E. Post Processing

The intermediate nodes between the start and the goal
node, as obtained by the modified RRT* undergo a post-
processing strategy while retracing the nodes from the goal
to the start. Each subsequent node will be connected to the
most furthest node, if the path connecting them lies out of
the obstacle region. The final output is provided as the post
processed output and a spline is fitted based on the final
nodes to get a smoother path.

V. RESULTS AND DISCUSSIONS

A. Simulation Results

In this section, the above formulated AFG-RRT* algorithm
is simulated in a cluttered environment to obtain near optimal
path for point to point motions. The complete strategy is
simulated on a 6-DOF spatial CDPR shown in Fig. 1. The
rotation of the MP about x and y axes is restricted in order
to simulate pick-and-place operations. Therefore, a node for
RRT* is defined by a 5-dimensional vector composed of
[p,Q] where p = [x,y,z] and Q = [q0,q1] which forms a unit
quaternion q = q0 + 0î+ 0 ĵ+ q1k̂ representing MP position
and orientation about z-axis (also denoted as β in Euler angle
notation in paper).

The wrench matrix was calculated for each pose without
considering orientation i.e. β = 0 rad and the tension space
was mapped into the wrench space to get Wt . We is consid-
ered to be composed of the gravity wrench of the MP, i.e.,
wE = [0,0,mEg,0] where, g = 9.81 m/s2 is the gravitational
acceleration.

Fig. 6a depicts the isocontours of the capacity margin γC
for a constant and a null orientation (β = 0) of the MP
throughout the xz plane and for the mid-plane along y-
direction. This margin was normalized by considering its

(a) γC|@y=Mid Isocontours (b) γD|@y=Mid Isocontours

Fig. 6: Normalized Cost functions in 4-DOF Spatial CDPR
AFG-RRT* Simulations

upper bound, γmax
C = 2rt such that γC ∈ (0,1). Similarly,

Fig. 6b illustrates the isocontours of the dexterity index γD
throughout the same plane. γD is bounded between 0 and 1
too. The global performance index γ is defined as a convex
combination of indices γC and γD, namely,

γ = γC + γD ∈ (0,2) (17)

This metric is used to conduct the AFG-RRT* simula-
tion while analyzing separately for the individual metri-
ces (γC and γD). All the simulations are performed using
©MATLAB with CPU computations on an Intel ®i7-7500U
CPU@2.70GHz.

Fig. 7: Start and end MP poses of the CDPR working in a
cluttered environment and boundary of its wrench feasible
workspace corresponding to γC = 0

TABLE I: Parameter values for AFG-RRT* algorithm

Parameter Value
DN 0.15 m
ε 0.15 m
δ π/16 rad
λ 0.05

Dmin 0.05 m
Pg 0.7

The AFG-RRT* was initialized using the parameter
values given in Tab. I and the task was formulated



by considering various obstacles, according to Fig. 7,
hindering motion of the cables as well as that of
moving-platform. The initial and final nodes are defined
by (pinitial = [1.8,0.4,0.1], Qinitial = [1,0]) and
(p f inal = [1.8,3.6,0.1], Q f inal = [1,0]), respectively. The
AFG setup is such that the directional exploration towards
the final goal point dominates over randomness.

(a) Rewinded Spline Path Result (b) MP rotation angle about z-
axis

Fig. 8: Simulated Environment Results

The obtained path, orientation about z-axis and the
rewinded path according to the post-processing algorithm is
given in Fig. 8a, Fig. 8b and Fig. 9 respectively. The overall
path is subjected to collision avoidance between the cables,
MP and the obstacles.

Fig. 9: Smooth path after post-processing

The algorithm was simulated for a number of times and
the performance index achieved was recorded along with the
number of iterations of AFG-RRT* and the analysis results
can be visualized in Tab. II. 215 iterations was required to
achieve a mean capacity margin equal to 0.55 and mean
dexterity margin of 0.69. The average computation time
required for simulating the complete AFG-RRT* simulation
was 13 minutes.

B. Experimental Demonstration

Cubical boxes of size 44.5 cm x 44.5 cm x 44.5 cm
are arranged in order to imitate the simulated environment
with cuboidal obstacles and the CDPR. The environment

TABLE II: Performance metrics obtained from 100 simula-
tions of AFG-RRT* algorithm

Metric Mean Value Max Value Standard Deviation
γC 0.5542 0.7122 0.1104
γD 0.6934 0.8237 0.0978
γ 1.0941 1.4277 0.1507

No. of Iterations 215 317 22
Computing time 13.78 min 15.38 min 1.70 min

Fig. 10: CDPR prototype and cluttered environment made
up of 18 boxes

depicted in Fig. 7 is constructed with 18 boxes as shown
in Fig. 10. The path generated by the algorithm is fed into
the experimental setup integrated with a PID controller on
the position error of the cable lengths and acts on the motor
torques with a joint position feedback. A spline trajectory is
generated by considering the total execution time based on
the bounds on the Cartesian velocity and acceleration of the
MP, which are a function of the bounds on cable velocity
and acceleration. The trajectory (demonstration video1) was
completed in 60 secs and the mean capacity and dexterity
margin along the path were 0.5396 (Simulated: 0.5232),
and 0.6355 (Simulated: 0.6345) respectively. The closest
proximity between cables and obstacles was obtained as
0.8 cm (Simulated: 1.2 cm), 5.7 cm (Simulated: 8 cm) for
two particular instants and that between moving-platform
and obstacles was found to be approximately 8 cm (Sim-
ulated: 10 cm). The differences being primarily due to the
pulleys that have not been considered here in the robot
model.

VI. CONCLUSIONS

A structural robustness based path planning was performed
based on a goal-biased AFG coupled random sampling RRT*
algorithm. The algorithm ensures directional exploration,
maximizes kinematic stability, maintains efficient manipu-
lability and achieves fast convergence. The algorithm was
simulated and demonstrated for a 6-DOF CDPR setup with
8 cables. An analysis of various performance metrics showed
the effectiveness of the proposed methodology in planning a
path for a suspended CDPR in a cluttered environment.

1https://www.umishra.live/redirects/icra2021.html
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