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Abstract—Interest in soft continuum arms has increased as
their inherent material elasticity enables safe and adaptive
interactions with the environment. However to achieve full
autonomy in these arms, accurate three-dimensional shape
sensing is needed. Vision-based solutions have been found to be
effective in estimating the shape of soft continuum arms. In this
paper, a vision-based shape estimator that utilizes a geometric
strain based representation for the soft continuum arm’s shape,
is proposed. This representation reduces the dimension of the
curved shape to a finite set of strain basis functions, thereby
allowing for efficient optimization for the shape that best
fits the observed image. Experimental results demonstrate the
effectiveness of the proposed approach in estimating the end
effector with accuracy less than the soft arm’s radius. Multiple
basis functions are also analyzed and compared for the specific
soft continuum arm in use.

I. INTRODUCTION

Bioinspired soft robots [1] use stretchable skins, muscles,
fluids, fibers and tendons to deform in a continuum fashion.
Soft Continuum Arms (SCAs) [2]–[4] are long and slender
soft robots inspired by octopus arms and elephant trunks, and
possess large spatial workspace and dexterity. The material
elasticity combined with inherent damping enables safe and
adaptable interaction with the surroundings. SCAs can be
useful for several applications such as surgery [2], agriculture
[5], search and rescue [6] etc.

Though useful, the curvilinear nature of deformation pre-
cludes traditional sensing methods such as encoders. Methods
that are specific to sense continuum deformation such as
Fiber Bragg Grating [7] and electromagnetic sensors are
effective, but interfere with the felxibility of the SCA or
are altered by environmental disturbances [8]. Alternatively,
vision-based sensing [9]–[24] has gained prominence as it
is noninvasive and easy to implement. Vision-based sensing
methods seek to reconstruct the 3D shape of the SCA from
images obtained from a camera placed in close proximity to
the arm.

Early efforts on shape reconstruction were limited to planar
deformations with the camera placed perpendicular to the
SCA’s bending plane [9], [10]. A two dimensional shape
was estimated by first extracting the visual markers on the

Fig. 1: (above) Images of the BR2 soft continuum arm [4]
from different angles showing a configuration that involves
simultaneous bending and twist. (bottom) The view from the
camera used for estimating the shape.

SCA from the image and then fitting a two-dimensional curve
with piece-wise constant curvatures to these points. Recently,
Fan et al. [25] proposed to replace the constant curvature
with a linearly varying curvature that was fitted through
image points of a SCA. The 3D shape of deformable objects
was reconstructed in [19] by applying Self-Organized Maps
(SOM) on point cloud data coming from a depth camera.
Methods relying on triangulation of multiple cameras were
also proposed using the shape-from-silhouette [14], modified
SOM [15], and learning-based methods [12], [13]. Although
these methods performed desirably, they require multiple
cameras or depth cameras, which is not always practical, such
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as in endoscopic surgery [23]. To solve this, several methods
have been proposed to estimate the shape of a flexible
endoscopic instrument through optimizing for the minimum
image reprojection error [21]–[24]. The model these methods
used was specifically for flexible tools in endoscopic surgery
and do not apply to other types of continuum manipulators.
The work presented in this paper generalizes these methods
to any SCA, as long as it is within the field of view of the
camera.

In this paper, we propose a geometric strain parameteri-
zation method to reconstruct the 3D shape of a fixed-length
SCA using a wide-angle monocular camera. The shape of the
soft arm is represented as a linear combination of a specified
set of strain basis functions. Though a similar representation
has been introduced in [26] to model soft arms, this paper
investigates it in the context of shape reconstruction. The
geometric strain parameterization allows for reconstructing
the orientations of the SCA’s cross sections along its length
as well as the full 3D shape. By adopting this representation,
the dimensionality of the problem is reduced, thereby easing
the estimation process, and making it possible to optimize
for the shape that best fits the camera’s observations. We
also provide a simple comparison of various basis functions
based on their respective accuracy in sensing shape. Although
not comprehensive, this comparison provides some insight on
what basis performs best for the SCA used in this study.

The proposed shape reconstruction method works as fol-
lows. Given initial curvatures along the SCA, the projection
of the shape onto the image space is first obtained. Section
II elaborates the forward model that gives us the image
projection of the SCA given its curvature. Then the error
between this estimated projection and the observed projection
in the camera output is measured. An optimization routine
then updates the strain coefficient estimates in a direction
that decreases this error. This is repeated until the desired
stopping criteria is reached. More details on the approach
are presented in Section III. The method is tested on a
fiber reinforced SCA known as the BR2 manipulator [4]
(shown in Fig. 1) that can undergo complex bending and
twisting configurations. Discussion of the results is presented
in Section IV.

II. MODEL OF THE SOFT CONTINUUM ARM PROJECTION

A. Forward Model

The shape of the SCA can be described by a position vector
p(s) ∈ R3 and a rotation frame R(s) ∈ SO(3) at each cross-
section s ∈ [0, L] along its length L. For convenience, the
position and orientation are expressed in a compact way by
joining them into a single matrix in the special Euclidean
group SE(3) [27]

X(s) =

[
R(s) p(s)

0 1

]
∈ SE(3).

The position and orientation of the center-points on the
SCA’s cross-sections evolve, with respect to its length pa-

Fig. 2: An illustration of the SCA and the corresponding
position p, orientation R, and tangent ∂p

∂s of a single cross-
section.

rameter s, according to

∂p(s)

∂s
= R(s)q(s) (1)

∂R(s)

∂s
= R(s)[κ(s)] (2)

where q ∈ R3 is a vector that contains the stretching/shearing
strains, κ ∈ R3 contains the bending/twisting strains, and
[ · ] is the usual mapping of a vector in R3 to a skew-
symmetric matrix in so(3), the real vector space of 3 by
3 skew-symmetric matrices.

This can also be written compactly as

∂X(s)

∂s
= X(s)Ω(s), (3)

Ω =

[
[κ] q
0 0

]
∈ se(3).

It is observed that knowing Ω(s) and the initial pose at the
base X0 is enough to reconstruct the full shape of the robot
by integrating (3).

Given Ω(s) and an initial base pose X0, we would like
to obtain the projection of the SCA onto the camera’s image
sphere. This is achieved in two steps: integrating equation
(3) to obtain the shape X(s) in 3D space, then projecting
the 3D positions to the camera’s image sphere.

Various methods could be applied to integrate (3), simplest
of which is to discretize the strains Ω(s) into a set of K
piecewise constant strains {Ω(sk)|sk ∈ ZD}, where ZD :=
{s1, · · · , sK}. After discretizing, it is possible to apply a
simple first order integrator

X(sk+1) = X(sk)e(sk+1−sk)Ω(sk). (4)

This approach might suffer from drifting, especially if not
enough discretization points are considered. More sophis-
ticated approaches for integrating on Lie groups are the
Crouch–Grossman method and Munthe–Kaas method [28].
Regardless of which method is used, the result of the inte-
gration is expressed as X (s; X0).



(a) (b) (c) (d) (e)

Fig. 3: Images of the soft robot with various configurations along with the projection of the estimated shape, in green, using
(above) 2-segment constant strain basis and (below) quadratic basis functions. The red circles are the detected marker points
on the image, and the blue circle is the projection of the magnetic sensor reading onto the image space.

B. Camera Model

We consider the case where the camera is fixed in proxim-
ity to the base of the SCA. To capture the entire workspace
of the SCA, a fisheye camera is used. We note here that
the shape reconstruction method presented in this paper does
not depend on the type of camera or model used and can be
applied to any calibrated camera that is placed such that the
SCA is in its field of view.

Without loss of generality, an image sphere is considered
rather than an image plane since a wide-angle camera is
considered [29]. The projection of a point x ∈ R3 onto the
image sphere centered at the origin is given by

P(x) =
x

‖x‖
. (5)

Given a point on an image [u, v]T , its corresponding image
sphere projection can be obtained through the following
equations [

ū
v̄

]
= A

[
u
v

]
+ c (6)

P(x) = λ−1

 ū
v̄

g(ū, v̄)

 (7)

where g(·) is a function that depends on the distance of an
image point from the image center ρ =

√
ū2 + v̄2,

g(ū, v̄) = a0 + a2ρ
2 + a3ρ

3 + a4ρ4, (8)

and λ =
√
ū2 + v̄2 + g(ū, v̄)2 is a normalizing scalar.

The coefficients {A, c, a0, a2, a3, a4} are dependent on the
fisheye lens that is used and can be estimated through a
calibration process [29].

C. SCA Projection onto the Camera

In this work, knowledge of the SCA’s geometry is utilized
by considering the envelope of its projection onto the image
(the green curves in Figure 3). The explicit equations for this
envelope are dependent on the geometry of the SCA being
used, thus explicit equations are not presented. However we
generally denote for the right and left boundaries of the
projected envelope as Pr(X(s)),Pl(X(s)), respectively.

III. VISION-BASED SHAPE SENSING

This section proposes a shape sensing method that utilizes
a curvature based parametrization of the SCA. First, the
parametrization is introduced (a similar parametrization was
introduced in [26]), then an optimization method that utilizes
this parametrization to estimate the robot’s shape is proposed.
For simplicity, an inextendable/unshearalble SCA is assumed,
thus q = [1, 0, 0]T .

A. Parameterizing κ

Although [κ(s)] lives, without further assumptions, in the
space of continuous function with values in so(3), for a
specific SCA we assume it lives in a finite dimensional
function space and cannot have any arbitrary shape. In other
words, the possible curvature profiles that the SCA adheres
to can be expressed as a linear combination of a set of basis
functions Φ := {Φi(s) ∈ R3|i = 1, · · · , N}

κ(s;A) =

N∑
i=1

aiΦi(s) (9)

where A := {ai ∈ R|i = 1, · · · , N} = RN is the set
of coefficients corresponding to the basis functions Φi(s).



Applying this to represent functions valued in the Lie algebra
se(3) of SE(3) results in

Ω(s;A) =

N∑
i=1

aiΦ̃i(s) (10)

Φ̃i(s) =

[
[Φi]× q

0 0

]
. (11)

Choosing specific bases, we can recover using this viewpoint
some of the representations used in the literature, for exam-
ple:
• Constant Curvature

Φ(s) :=


1

0
0

 ,
0

1
0

 ,
0

0
1

 ,

• N Piecewise Constant Curvatures

Φ(s) :=


hj0

0

 ,
 0
hj
0

 ,
 0

0
hj

 ∣∣∣j = 1, · · · , N

 ,

hj(s) =

{
1 sj ≤ s < sj+1

0 otherwise

• Linear Curvature

Φ(s) :=


1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
s0

0

 ,
0
s
0

 ,
0

0
s

 .

Other basis functions may also be used, such as higher order
polynomials or trigonometric functions. With this formula-
tion, it is possible to analyze the performance of various basis
functions in capturing the space of shapes that a specific SCA
can perform, or perhaps learn a basis that best describes the
shapes of a SCA. However this is out of the scope of this
study.

To reflect this parametrization, the integral of equation (3)
is written as X (s;A,X0). This formulation will be used in
Section III-B to find the coefficients that best optimize for a
specified cost function.

B. Optimization

Given an image I and a basis Φ that can accurately express
the possible curvature profiles of a SCA, the full shape of
the SCA can be reconstructed through finding the set of
coefficients A that minimize a suitable cost function f(·),

Â = arg min
A

f(A; I,X0). (12)

From the image I, we assume it is possible to extract
image coordinates of the right and left boundary edges of
the SCA’s projection, yr(sm; I) & yl(sm; I), for a set of
sample points ZI := {s1, · · · , sM} on the SCA. Such task is
possible using computer vision methods such as Mask RCNN
[30], applying such methods is out of the scope of this study.

To quantify the fit between the estimated shape and
observed shape, we take the square root error between
yr(sm; I) & yl(sm; I) and the boundary lines Pr & Pl of
the estimated shape for a given set of coefficients A,

f(A; I,X0) =
M∑

m=1

∑
k∈{r,l}

‖yk(sm; I)− Pk(X (sm;A,X0))‖2w, (13)

where ‖ · ‖2w is a weighted sum of squares with w being
a vector of (strictly positive) weights. Equation (12) can be
solved using a nonlinear least squares solver such as the Trust
Region Reflective Non-linear Algorithm [31].

IV. RESULTS AND DISCUSSIONS

In this section, results are provided for implementing
vision-based reconstruction for our specific SCA, which
is the BR2 manipulator [4]. The BR2 SCA consists of
three parallel combinations of fiber reinforced actuators [32]
that can bend, and twist (clockwise and counterclockwise)
respectively. A spiral deformation mode can be obtained with
this robot by pressurizing the bending and twisting tubes. For
these experiments, the length of the arm was confined to 287
mm and the diameter to 24 mm. Since our robot can twist
along its length and only bend in one direction, we have
κ = [κt, κb, 0]T , where κt and κb are associated with the
twisting and bending strains, respectively.

A fisheye camera with 160 degree angle of view was fixed
to the base of the SCA. The camera was calibrated using the
MATLAB toolbox OCamCalib [29]. As in [21]–[23], multi-
ple white visual markers are fixed on the SCA, as shown in
Figure 1. Although the proposed method can be implemented
without the markers, they allow for a consistent evaluation
for the method across the SCA’s workspace. The marker
positions on the image were manually identified. While this
can be automated, in this work we desire to evaluate the
accuracy of shape estimation without the influence of errors
coming from the computer vision system.

To evaluate the accuracy of the shape estimator, an electro-
magnetic tracking system (Patriot SEU, Polhemus) was used
to cross validate the pose measurements of the SCA’s end
tip, its position accuracy was found to be around 1mm. It is
important to note that equation (12) does not use the magnetic
sensor data and only minimizes the reprojection error, the
error between the projection of the estimated shape and the
observed projection. The data from the magnetic sensor was
only used to evaluate the accuracy of the tip pose estimate
obtained from equation (12).

A. Experimental Procedure

A series of experiments were conducted to evaluate the
accuracy of the proposed shape sensing method. In these
experiments, various configurations were tested by applying
different pressures for the bending and the twisting actuators.
The bending and twisting actuator were given 10 pressures
each ranging from 0 to 25 psi and 0 to 20 psi, respectively.
From the combinations of these pressures, 100 sample config-
urations were obtained for half of the robot’s workspace. At
each sample, an image was captured and readings from the
magnetic sensor were collected. These measurements were



Fig. 4: Estimated shape of the SCA using various basis
functions. The blue point is the SCA’s tip position obtained
from the magnetic sensor.

(a) (b)

(c) (d)

Fig. 5: 3D position samples from the SCA’s workspace with
the corresponding error in (a,b) the tip position and (c,d)
tip direction using a 2-segment constant strains basis and a
quadratic basis.

preprocessed to find unknown parameters such as the pose
of the SCA’s base and the relative transformation between
the camera frame and the magnetic source frame.

B. Pose of SCA’s Base

The SCA’s base with respect to the camera’s frame, X0, is
unknown. Here we present an approach that utilizes the same
optimization framework and provides an accurate estimate of
the transformation. The relative transformation between the
base of the SCA and the camera was obtained by finding
the pose that minimizes the error between the observed
projection of the base, yr(0; I) & yl(0; I), and the projection

of the estimated base throughout the whole set of images
{Ii|i = 1, . . . , N}

X̂0 = arg min
X0

∑
i

∑
k∈{r,l}

‖yk(0; Ii)− Pk(X0)‖2. (14)

Once the initial pose X̂0 was found, it was fixed and used
to solve (12).

C. Pose Data from the Magnetic Sensor

The pose obtained from the magnetic sensor, Xmag
sen ∈

SE(3), is with reference to a magnetic source inside the lab.
However the estimate obtained from equation (12) is with
respect to the camera frame. To be able to cross validate the
estimated poses with the magnetic sensor readings, we need
to find the relative transformation between the camera frame
and the magnetic source frame, Xcam

mag , in order to represent
the data with respect to the camera frame. Furthermore,
the magnetic sensor does not align exactly with the SCA’s
tip, therefore we need to obtain the relative transformation
between the magnetic sensor and the SCA’s tip, Xsen

tip .
An estimate of these relative transformations were obtained

by minimizing the error between the observed projection
of the tip, yr(L; I) & yl(L; I), and the projection of the
transformed sensor readings throughout the whole set of
images

X̂cam
mag, X̂

sen
tip = arg min

Xc
m,Xs

t∑
i

∑
k∈{r,l}

‖yk(L; Ii)− Pk(Xc
mXmag

seni
Xs

t ))‖2. (15)

The pose Xs
t was constrained to a subset of SE(3), transla-

tions along the x and z-axis and rotation around the x-axis.
We numerically verified that equation (15) always converges
locally to the same values. Once the transformations were
estimated, the magnetic sensor readings were transformed to
the corresponding tip position with respect to the camera
frame. This was then used to measure the error in the
estimated tip position and direction.

D. Results and Analysis

The proposed method has been tested with five different
basis functions for the curvature: constant, piecewise con-
stant, linear, quadratic, and cubic functions. The weights, in
equation (13), have been chosen to increase linearly with the
length of the arm (i.e. more weight is given to the end tip).
The mean, standard deviation, and maximum of the errors in
the estimated tip position and direction are summarized in
Table I. For the specific SCA being used in the experiment,
the basis with minimum error is a constant piecewise function
with two segments with an error of 13.0 mm and 12.2
degrees in the position and angle, respectively. Relative to the
diameter of the SCA, the estimated tip position is, on average,
within approximately half of the diameter. It is worthy to note
that, for the BR2, increasing the order of the polynomial to
the third order or more does not improve the results, as seen
in the last line of Table I.



TABLE I
COMPARISON IN THE SOFT ROBOT TIP POSITION AND DIRECTION ESTIMATION ERRORS FOR VARIOUS STRAIN BASIS FUNCTIONS

Order Segments Error in entire workspase Error in region A

(Parameters) µ(E1)± σ(E1) max(E1) µ(E2)± σ(E2) max(E2) µ(E1)± σ(E1) max(E1) µ(E2)± σ(E2) max(E2)
(mm) (mm) (degree) (degree) (mm) (mm) (degree) (degree)

0 1 (2) 29.3 ± 1.2 31.9 29.3 ± 6.6 39.8 29.8 ± 0.9 31.9 34.9 ± 3.0 39.8

0 2 (4) 13.0 ± 9.0 28.2 12.2 ± 4.7 21.3 6.1 ± 5.3 28.2 9.9 ± 3.1 16.5

1 1 (4) 14.9 ± 9.2 30.4 15.7 ± 5.3 33.2 7.7 ± 7.2 30.4 13.5 ± 6.4 33.2

2 1 (6) 15.1 ± 9.1 30.4 15.6 ± 5.3 33.2 8.2 ± 7.7 30.4 13.6 ± 6.4 33.2

3 1 (8) 15.1 ± 9.1 30.4 15.6 ± 5.3 33.2 8.2 ± 7.7 30.4 13.6 ± 6.4 33.2

Soft robot has a length 287 mm and diameter 24 mm.
Region A is the upper half region of the workspace shown in Figure 5.
E1: Error in the tip position.
E2: Error in the tip direction angle.

From the spatial distribution of the errors (see Figure 5) it
can be observed that the region with maximum error is when
the SCA is close to being fully extended. This could be due
to the difficulty of getting accurate marker coordinates when
the SCA is in this configuration. This region is also more
sensitive to errors in the image coordinates of the detected
markers, since small changes in the marker coordinates
contribute to large displacements in the tip position. Another
way to look at this is to observe that there is a certain
configuration (outside of the robots workspace) where all the
markers will get projected to the same point on the image,
and thus shape reconstruction becomes difficult when this
configuration is approached.

For some applications, the upper half of the work space
might be more important (i.e. when the SCA is bending
more). When considering only this region, an improvement
in the estimation accuracy is observed. A two-segment piece-
wise basis achieves an accuracy of 6.1 mm and 9.9 degrees.

One source of error includes inaccuracies in camera
calibration, especially since the fisheye lenses have high
distortions on the edges compared to narrow angle lenses.
This could be seen when the SCA’s tip is close to the
edges of the cameras view, as in Figure 3 (e). These regions
have higher errors due to the lens distortions. Fine tuning
the camera calibration parameters could resolve this issue.
Another source of error could be in the detection of the
marker positions in the image. Since the number of markers
is relatively low, small errors in their image coordinates will
lead to errors in the overall shape estimation. This can be
resolved by considering the entire projected curve rather than
only on the markers, thus improving the estimation accuracy.

V. CONCLUSION

Accurate 3D shape reconstruction of a soft continuum arm
is essential for applications that require accurate interactions
with the environment. The lack of accurate cost effective
solutions for this problem makes it difficult to deploy au-
tonomous SCAs in real world scenarios [5]. In this paper, a
vision based approach for estimating the SCA’s shape was
proposed. The method utilized a fish-eye camera attached to
the base of the SCA that is able to see its whole workspace.

A generic curvature based representation of the SCA’s shape
was used to efficiently optimize for the shape that reduces
the reprojection error. Results show the effectiveness of the
proposed method, which gave results of accuracy less then
the SCA’s diameter. This margin of error is acceptable for
most applications.

Out of the tested basis functions, the best performance for
the BR2 was achieved with two constant strain segments. The
performance of other types of basis functions can be analyzed
in the future for a more comprehensive comparison. Also, an
interesting direction would be to learn a basis that describes
the SCA’s shape the best.

The SCA used in this work bends only in one direction,
therefore one camera was enough to capture its workspace.
However for applications where a robot that bends in both
direction is needed, this approach can be extended by placing
multiple cameras around the base of the SCA. One drawback
of using a camera to estimate the robot’s shape is its
vulnerability when the SCA is occluded or partially occluded.
This drawback can be dealt with by extending the proposed
method to accept and fuse other sensor measurements that
can be helpful, such as the internal pressures or a curvature
sensor.

The work presented in this paper will be built upon to
develop autonomous capabilities for SCA’s that would be
useful in applications such as fruit harvesting [5], robotic
care-giving, and surgery. More specifically, it can be applied
as a feedback loop for controlling the SCA’s end-effector to a
desired position. Also, it can be used for applications where
the whole shape of the SCA is needed, such as detecting
obstacles or estimating the contact forces applied on the SCA.
To deploy the proposed system in real world application,
realtime performance is needed. It is possible to optimize the
proposed method for high-speed computation using realtime
programming language and by utilizing parallelization.
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