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Abstract— We present a planner for large-scale (un)labeled
object sorting tasks, which uses two types of manipulation
actions: overhead grasping and planar pushing. The grasping
action offers completeness guarantee under mild assumptions,
and planar pushing is an acceleration strategy that moves
multiple objects at once. Our main contribution is twofold:
(1) We propose a bilevel planning algorithm. Our high-level
planner makes efficient, near-optimal choices between pushing
and grasping actions based on a cost model. Our low-level
planner computes one-step greedy pushing or grasping actions.
(2) We propose a novel low-level push planner that can find
one-step greedy pushing actions in a semi-discrete search space.
The structure of the search space allows us to efficient We show
that, for sorting up to 200 objects, our planner can find near-
optimal actions with 10 seconds of computation on a desktop
machine.

I. INTRODUCTION

Countless object sorting machines have been designed
over the past century. The robustness of these machines are
high enough to be used as a part of manufacturing process.
Early systems use pure mechanical gadgets to force objects
into separate buckets according to their shapes [10], [15].
In addition to robustness, the efficacy of these mechanical
systems are rather high, allowing multiple objects to be
sorted in parallel. But warehouse automation and service
robotics require sorting objects according to visual features,
such as the printed address on a package or object color.
The vast majority of sorting robots [20], [21] solely rely on
grasping actions and treat multiple objects in a serial manner.
This design choice is largely due to the robustness of grasp-
ing to uncertainties in perception and execution. However,
serial object grasping does not even reach a fraction of the
throughput of purely mechanical gadgets.

Planar pushing is a promising direction to achieve more
efficient sorting, because many objects can be moved at
once [6], [17]. However, planning for pushing is far more
complex that that for grasping for three reasons. First, the
action space of planar pushing is continuous, involving the
pusher’s initial orientation and pushing direction, while the
action space of overhead grasping is (relatively) discrete.
Second, the dynamics of pushing are complex and uncertain,
even in the single-object case, since the continuous pressure
force distribution between the object and the ground is
unknown [7]. Third, although Akella and Mason [1] showed
that a single object can be pushed to an arbitrary pose, this
has not yet been proven for multi-object pushing. Recent
learning-based methods [6], [17], [22] reformulate an object
sorting problem as an optimization problem by defining a
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cost model and use stochastic search to reduce the cost. But
these methods are incomplete, and it is difficult to either
analyze or anticipate their failure cases.

(a) (b)
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Fig. 1: (a): An illustration of our problem setting. The goal
is for the same number of red and blue objects to fall into
the 1st and 2nd target region. (b): After 3 pushing actions
and 1 grasping action, the objects have been approximately
sorted.

Main Results: Our main contribution is a bilevel motion
planning algorithm that can efficiently make decisions in
joint push-grasp action space. The efficacy of our method is
due to two novel techniques. (1) We decompose the respon-
sibility between the high- and low-level planner, such that
low-level planner can efficiently determine one-step greedy
grasping or pushing actions and high-level planners make
binary choices between grasping and pushing actions over
multiple steps. Since the high-level planner only considers
greedy actions, the branching factor is significantly reduced
and search over multiple steps become practical. (2) We
take mild assumptions in the low-level push planner, so
that finding the optimal pushing action becomes a numerical
optimization with piecewise quadratic objective functions.
As a result, the optimal pushing action can be found via
quadratic-piece enumeration, and costly global optimization
is avoided.

Compared with learning-based methods [6], [17], [22], we
can provide completeness guarantee with the help of the
grasp action under mild assumptions that feasibility is not
violated by non-prehensile manipulations. (As indicated in
[19], non-prehensile manipulations can move objects into
unreachable regions of the robot arm, making problem
infeasible.) Our method is solely analytical and does not
require hyperparameter tuning. We evaluated our synergetic
planner on both labeled and unlabeled tasks of sorting 50-200
objects. The results show that our method can benefit from
pushing actions to achieve up to 10× speedup in terms of
execution time, as compared with our method using grasping
actions alone. And the computational time to solve for the
next action is within 10 seconds on a desktop machine.
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II. RELATED WORK

We review related work in multi-object manipulation, push
planning, and grasp planning.

Multi-object Manipulation allows the robot to move
multiple objects simultaneously in order to accomplish a
task. Typical tasks involve object sorting [6], [17], clutter
removal [19], [18], object placement [3], and object singu-
lation [22], [8]. We notice several common design choices
in these methods. First, all these methods are restricted
to 2D workspaces by assuming that the gripper always
reaches objects from overhead. Our method also uses this
simplification. Second, most of the proposed methods use
a single action, either grasping or pushing. An exception
is made in [22], where objects are singulated by pushing
actions and then grasped, which is similar to our planner.
But the pushing action in [22] is used as a grasping auxiliary,
and objects are always transferred using grasping actions,
while we allow objects to be transferred by both pushing
and grasping. Finally, our algorithm is designed to be analytic
and parameter-free, whereas prior learning-based works [19],
[18], [22] are sensitive to parameters. On the other hand, we
assume perfect perception of object positions, while learning-
based methods can deal-with sensing certainty by training a
visuomotor policy in an end-to-end manner.

Grasp Planning is relatively simple in our problem as
we assume the use of a sucker. Most prior works assume
more dexterous grippers such as the parallel jaw gripper
[11] and multi-fingered grippers [13]. Parallel jaw gripper
is available at a low cost and thus assumed in multi-object
manipulation planners, e.g. [22], [8], but gripper feasibility
can pose a major problem when objects are densely cluttered.
In their most recent work, Mahler [12] used both parallel
jaw gripper and sucker mounted on two arms. They argued
that the sucker might fail on certain materials such as
hairy deformable objects and objects made of porous media.
In applications like warehouse automation, however, this
problem can be avoided by packing objects into a boxes.

Push Planning is a well-studied problem if there is
one single object. Prior work [4] showed that the object
motion under-pushing can be approximated quasistatically
by modeling the limiting surface of contact wrenches. The
feasibility of posing a single object using pushing has been
proved in [1]. Another proof is presented in [23] by showing
that planar pushing is differential flat. However, the object
dynamics, motion planning algorithm, and feasibility when
pushing multiple objects are still open problems. We propose
an aggressively simplified multi-object prediction model. We
show that this model allows efficient computation of the one-
step greedy pushing action, while the approximation error
is acceptable for the purpose of accelerating object sorting
tasks.

III. OBJECT SORTING PROBLEM

In this section, we formulate large-scale (un)labeled object
sorting tasks. We assume there are N planar objects with
center-of-mass at o1,⋯,N . The planar assumption is used
by our low-level grasp planner to enable overhead grasping

using suckers. It is also used by the push planner to analyze
object configurations in the 2D projected workspace. These
objects are divided into C categories and each object is
assigned a category label li ∈ {1,⋯,C}. Our problem
definition unifies unlabeled object sorting when C = 1 and
fully labeled object sorting when C = N .

We further assume that there are T , pairwise disjoint
virtual target regions, where each region is also represented
as a convex polygon. These regions are virtual and not
marked by any physical objects, so that objects will not
be blocked when pushed. The convexity of regions is also
required by the push planner to predict the result of a
potential pushing action. In addition, the regions must be
disjoint for the completeness of one-step grasping actions.
We denote the closed convex set of the jth target region as
tj . Each tj has a capacity for each object category, denoted
as c1,⋯,C(tj). The goal of an object sorting task is to move
all oi such that the following two conditions hold:

T

∑
j=1

I[oi ∈ tj] = 1 ∀i = 1,⋯,N (1)

∑
li=k

I[oi ∈ tj] ≤ ck(tj) ∀j = 1,⋯, T k = 1,⋯,C, (2)

where I[●] is the indicator function. The first equation
implies that each object must fall inside one of the target
regions. The second equation implies that, in a certain region,
the number of objects of a certain category does not exceed
the capacity of that region.

A. 3D Workspace

We conduct experiments in the 3D workspace as shown in
Figure 1, but our planner performs all the computations in
the projected 2D workspace. The 2D-to-3D gap is closed by
using a reachability analysis of the gripper. We precompute
the inverse kinematics for each uniformly sampled planar
position, and approximate the inverse kinematics in between
samples using bilinear interpolation. The neighboring sam-
ples are connected such that a planar trajectory can be
globally resolved using the algorithm proposed in [5], which
is important for realizing a pushing action. Our planner will
use this reachability map in three ways:

● Function reach(x) checks whether x can be reached.
● Function traj(x,y) finds a trajectory from x to y.
● Function range(x,d) returns a pair of distances (a, b)

that defines the maximal resolvable push from x along
d, i.e. a push from x + ad to x + bd is the longest,
globally resolvable push (a, b can be negative).

B. Overview

Finding reasonable pushing or grasping actions is chal-
lenging due to a continuous decision space and a long
planning horizon. Although the decision space for grasping
actions is discrete, push planner must search over a contin-
uous space of the pusher’s position, orientation, and moving
distance. If the continuous space is exhaustively discretized,
then the branching factor can be prohibitively high. On the
other hand, our experiments show that solving a sorting task



can require up to 50 grasping or pushing actions. If a motion
plan is only accepted when it successfully accomplish a
sorting task, then full-horizon planning is required, which
is impractical considering the high branching factor.

We combine two ideas to design a practical bilevel plan-
ning algorithm. First, we introduce a cost function that
measures the closedness between an arbitrary configuration
and a final, sorted configuration. As a result, our high-
level planner can work in a receding-horizon mode guided
by the cost function. Second, we significantly reduce the
branching factor by only considering one-step greedy actions.
In other words, our high-level planner only chooses the type
of actions (grasping or pushing), while we use two low-level
planners to ensure that the chosen action leads to the highest
reduction in the cost function among all the actions of the
same type.

Intuitively, our cost function J sums over the distances
between objects and target regions. This cost is zero if and
only if sorting is successful. Among all possible object-to-
target-region pairings, we choose the one with lowest cost
value, which amounts to the following optimization:

J(oi) = min
bij∈{0,1}

N

∑
i=1

T

∑
j=1

bijdist(oi, tj)

s.t.
T

∑
j=1

bij = 1 ∑
li=k

bij = ck(tj),

(3)

where dist is the Euclidean distance between a point and a
convex polygon. Computing J amounts to solving an optimal
assignment problem, for which the Hungarian algorithm can
be used at a computational cost of O(N3), by introducing
dummy variables to absorb the capacity constraints. Ob-
viously, J(oi) = 0 if and only if the two conditions in
Equation 1,2 hold, but the function J allows us to monitor
progress and compare different planning algorithms.

In rest of the paper, we first introduce the low-level grasp
planner (Section IV) and the push (Section V) planner. We
then introduce a single high-level planner (Section VI) that
chooses greedy actions over multiple steps to minimize the
cost function in a receding-horizon manner as outlined in
Algorithm 1. The assumptions and completeness guarantees
are provided in Section X .

IV. LOW-LEVEL GRASP PLANNER

We show that the one-step greedy grasping action can
be found by solving a mixed-integer linear programming
(MILP). We first define the radius of an object. If we compute
a bounding circle for the ith object centered at oi with radius
ri, then we define R = max

i=1,⋯,N
ri. We sample a set of

potential positions pmn to put the grasped object, and we
assume uniform sampling with a spacing equals to

√
2R,

i.e. pmn ≜ (
√

2Rm,
√

2Rn). We define the set of reachable
√

2R-spaced samples that fall inside the jth target region as
follows:

Sj = {pmn∣B2R(pmn) ⊆ tj ∧ reach(pmn) = 1},

where BR(pmn) is a ball centered at pmn with radius R.

To find the one-step greedy grasping action that reduces
the cost as much as possible, we introduce binary variables
bij as in the cost model, where bij = 1 implies that oi is
not the object to be grasped and it is assigned to tj . We
further introduce another set of binary variables pmnj for
each pmn and j = 1, . . . , T , where pmnj = 1 implies that
an object will be grasped and put to the sampled location
pmn and this grasped object will be assigned to tj . After
solving for bij , pmnj , we can identify the object oi to be
grasped if ∑T

j=1 bij = 0 and we will move it to pmnj if
pmnj = 1. Finally, we compute the gripper trajectory by
calling traj(oi,pmn). We solve for bij , pmnj using the
following MILP:

argmin
bij ,pmnj∈{0,1}

O

s.t. Jpost ≤ J(oi)
N

∑
i=1

T

∑
j=1

bij = N − 1 ∑
mn

T

∑
j=1

pmnj = 1

T

∑
j=1

bij ≤ 1 ∑
li=k

bij = ck(tj)

Jpost ≜
N

∑
i=1

T

∑
j=1

bijdist(oi, tj) +∑
mn

T

∑
j=1

pmnjdist(pmn, tj),

(4)

where Jpost is the post-grasping cost. We have used three
types of constraints. First, we ensure that cost is mono-
tonically reduced. Second, we ensure that only one object
will be grasped and the object will be put to only one
sampled location. Finally, we have the assignment constraints
(each object can only be assigned to one target region)
and capacity constraints. The objective function O can take
multiple forms. If we want to reduce the total cost as much
as possible, then O = Jpost, and we denote the resulting
grasping action as G(oi,pmn). In this case, the function
grasp(STATE) in Algorithm 1 returns {G(oi,pmn)} and
contributes 1 to the branching factor. If we want to reduce
the cost related to a single target region, e.g. tj , then we can
define:

O =
N

∑
i=1
bijdist(oi, tj) +∑

mn

pmnjdist(pmn, tj),

and we denote the resulting grasping action as Gj(oi,pmn).
In this case, grasp(STATE) returns {G1,⋯,GT } and con-
tributes T to the branching factor. Finally, we show in
Section X that Jcost can be monotonically reduced to zero
under mild assumptions, thereby providing a completeness
guarantee.

V. LOW-LEVEL PUSH PLANNER

In this section, we propose a method to compute the
one-step greedy pushing action. This problem is challenging
as we are making decisions in a continuous action space
that involves the pusher’s location, pushing direction, and
pushing distance. Indeed, even predicting the single object
motion during pushing is non-trivial [7]. To analyze multi-
object motions, our method is based on the following two
assumptions similar to [18]:

● The pusher is rectangular and the pushing direction is
orthogonal to the pusher.



Algorithm 1 High-Level Planner

Input: Initial state STATE← {oi}, max horizon H
1: Initialize stack STACK← {STATE}

2: Best action ACTION∗
← None, J∗rate ←∞

3: while STACK not empty do
4: STATE← pop(STACK)

5: {ACTION}← grasp(STATE) ∪ push(STATE)

6: for ACTION ∈ {ACTION} do
7: STATE+ = simulate(STATE,ACTION)

8: if horizon(STATE+) <H then
9: STACK← STACK ∪ {STATE+}

10: else if Jrate(STATE+) < J∗rate then
11: ACTION∗

← backTrace(STATE+)
12: J∗rate ← Jrate(STATE+)
13: Return ACTION∗

● During pushing, objects will only translate along the
pushing direction, no rotation or perpendicular transla-
tion will happen.

We illustrate some key notions in Figure 2(a). We assume
that the pusher can only move in one of D directions. For
each pushing direction d, we define the affected region (gray)
as the region formed by sweeping the pusher along d. Any
object that falls entirely inside this region (blue) will be
considered affected. There are boundary cases when objects
fall partially in this region (red). We assume that objects of
boundary cases will not be affected by the pushing action.
Our push planner consists of two steps. First, we show that
there are only discrete number of possible pusher locations
that can be enumerated. Second, for each pusher’s location,
we compute the optimal pushing distance d.

A. Locating the Pusher

For a pushing direction d, its orthogonal direction is
denoted as d⊥. A pusher’s location is expressed as αd+βd⊥.
We compute the two coefficients α,β by sorting objects’
locations along d and d⊥. Since we assume that an object
oi is a convex polygon, we can define its vertices as
v1
i ,⋯,v

V (oi)
i , where V (oi) is the number of vertices in oi.

We then define the four supports of oi along d and d⊥ as:

dmin/max(i) = min
k=1,⋯,V (oi)

/ max
k=1,⋯,V (oi)

< d,vk
i >

d⊥min/max(i) = min
k=1,⋯,V (oi)

/ max
k=1,⋯,V (oi)

< d⊥,vk
i > .

Similarly, the pusher is rectangular so it has four supports
denoted as dmin/max(p) and d⊥min/max(p). We then record
all β values satisfying β + d⊥min/max(p) = d⊥min/max(i) for
some i and we sort these key β values in ascending order
denoted as β1 ≤ β2 ≤ ⋯ ≤ β4N , where there are at most 4N
cases. When the pusher moves between βn and βn+1 along
d⊥, the set of affected objects is invariant and denoted as:
A
⊥
n = {oi∣βn + d⊥min(p) ≤ d⊥min(i) ≤ d⊥max(i) ≤ βn+1 + d⊥max(p)}.

We repeat this procedure along d to define the 4N key
values α1 ≤ α2 ≤ ⋯ ≤ α4N , and the set of affected objects:

Am = {oi∣αm + dmax(p) ≤ dmin(i)}.

Note that the definition of Am is different from A⊥n in that
we only consider objects in front of the pusher, as illustrated
in In Figure 2 (a). Finally, we define an additional set of

objects overlapping the pusher as:
Im = {αm + dmin(p) ≤ dmin(i) ≤ dmax(i) ≤ αm+1 + dmax(p)}.

Given these notations, we summarize that a possible pusher
location αd + βd⊥ must satisfy the following conditions:

α ∈ [αm, αm+1] β ∈ [βn, βn+1]

Am ∩A
⊥
n ≠ ∅ Im ∩A

⊥
n = ∅,

where there are at most 16N2 choices. To further reduce the
computational cost, we can remove one of the case, if two
cases have the same set of affected objects, i.e. Am ∩A⊥n.

Algorithm 2 Computing the compression distance d̄i
1: d̄i ← dmin(i) − α − dmax(p)
2: for Each vertices vki , k = 1,⋯, V (oi) do
3: Shoot a ray from vki along −d, record first intersection.
4: if Ray intersects object oj after traveling d̄ki then
5: if oj ∈ Am ∩An then
6: d̄i ←min(d̄i, d̄

k
i + d̄j) ▷ Recursion

7: Return d̄i

B. Finding the Optimal Pushing Distance

For a given d, α ∈ Am, β ∈ A⊥n, we plan the optimal
pusher distance that reduces J(oi) the most. We first solve
Equation 3 to find bij = 1, i.e. an affected object oi is
assigned to the target region tj . If we move the pusher by
distance d, then we need to compute the following post-
pushing cost function:

J i
post(d) ≜ dist(oi(d), tj).

If J i
post(d) can be expressed analytically, then we can find

the optimal pushing distance by solving:
d∗ = argmin

d
O

s.t. ∑
oi∈Am∩A⊥n

J i
post(d) ≤ J(oi)

d ∈ range(αd + βd⊥,d),

(5)

where we have added a constraint to ensure monotonic cost
reduction. Similar to the case with grasping actions, the
objective function O can take multiple forms. Similar to the
grasp planner, the push planner can be used in two ways. If
we want to reduce the overall cost function, we can set O =

∑oi∈Am∩A⊥n J
i
post(d) and denote the resulting pushing action

as P(d, α, β, d∗). In this case push(STATE) in Algorithm 1
returns {P} and contributes to the 1 branching factor. If we
want to reduce the cost related to a single target region,
e.g. tj , we can set O = ∑oi∈Am∩A⊥n∧bij=1 J

i
post(d) and

denote the resulting pushing action as Pj(d, α, β, d
∗). In

this case push(STATE) in Algorithm 1 returns {P1,⋯,PT }

and contributes T to the branching factor.
To solve for the global minima of the above 1D optimiza-

tions analytically, we show that each J i
post(d) is piecewise

quadratic and so is their summation. As a result, the 1D
optimization can be solved by enumerating and finding the
global minima of each quadratic piece. The first quadratic
piece is denoted as the void piece with length d̄i, i.e.
J i
post(d) = J

i
post(0) if 0 ≤ d ≤ d̄i. The length d̄i is denoted



(a)

Pusher Boundary Case

Affected Region
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(b)

Target RegionVoronoi Region I

Voronoi Region II Voronoi Region III

d̄ia

d̄ib d̄ic

J ia
post

J ib
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J ic
post

2: Illustration of our simplified
kinematic model, which predicts
the change of J(oi) as a func-
tion of pushing distance. We ig-
nore the rotation of objects and
only consider their linear motions
along the pushing direction. Un-
der this assumption, the cost func-
tion of each object is piecewise
quadratic, where the quadratic
pieces are dictated by the Voronoi
regions of the target area.

Algorithm 3 Push planner

1: Solution < α∗, β∗, d∗ >← None, best O+
←∞

2: Compute all possible ranges {[αm, αm+1]} and {[βn, βn+1]}
3: for Each [αm, αm+1] ∈ {[αm, αm+1]} do
4: for Each [βn, βn+1] ∈ {[βn, βn+1]} do
5: O(d) = 0 ▷ Build objective
6: for i = 1,⋯,N do
7: ▷ Only consider objects in affected region
8: ▷ Only consider objects in front of pusher
9: if i ∈ affected([αm, αm+1], [βn, βn+1]) then

10: Compression distance d̄i (Algorithm 2)
11: O(d)← O(d) + J ipost(d)

12: Solve Equation 5 for O+, d+ ▷ Minimize objective
13: if O+

< O
∗ then

14: < α∗, β∗, d∗ >←< αm+αm+1
2

, βm,βm+1
2

, d+ >
15: O

∗
← O

+

16: Return < α∗, β∗, d∗ >

as the compression distance, i.e. the minimal distance that
we have to move the pusher in order to touch the object. In
the illustrative example of Figure 2(b), we have d̄i = d̄ia +
d̄ib + d̄ic. d̄i can be computed analytically by the recursive
raycasting Algorithm 2. If the pushing distance is larger than
d̄i, then the distance dist(oi(d), tj) will change according
to the Voronoi region of tj that oi belongs [14]. Within
each Voronoi region, dist(oi(d), tj) is a quadratic function
of d. In the planar case, there are only two types of Voronoi
regions, corresponding to vertex and edge, respectively. In
the example of Figure 2(b), we illustrate three quadratic
pieces with J1a

post, J
1c
post corresponding to edge regions and

J1b
post to a vertex region. The dividing points between regions

can be determined by computing the intersections between
Voronoi region boundaries and the object’s moving path.

We summarize our push planner Algorithm 3 by estimat-
ing the computational complexity. For each pushing direc-
tion, our planner first enumerates possible pusher locations,
where there are at most 16N2 cases. For each case, there
are at most N objects in the affected set. Each object
contributes a piecewise quadratic cost model, with at most
1 + 2 max

j=1,⋯,T
V (tj) pieces, where V (tj) is the number of

vertices of tj . After summing up J i
post to get Jpost, it

has at most N(1 + 2 max
j=1,⋯,T

V (tj)) pieces. If we assume

solving for each quadratic piece takes constant time, then
our algorithm has the following complexity: O(16DN3(1+
2 max
j=1,⋯,T

V (tj))). Note that the complexity in practice is

much lower than this upper bound because many pusher
locations are intersecting objects and thus pruned.

VI. HIGH-LEVEL RECEDING-HORIZON PLANNER

We can perform synergetic planning using low-level plan-
ners alone, by first computing the one-step greedy actions,
G,P , and then picking the action with larger cost reduction.
But this strategy has two drawbacks. First, our push planner
is based on a simplified kinematic model, which might
suffer from a high approximate error. Second, our cost
model in low-level planner does not take transit cost into
consideration, which can slow down the overall efficacy [9].

Our high-level planning Algorithm 1 mitigates these two
drawbacks. First, we use Box2D [2] to simulate P and
compute a more accurate cost reduction by solving Equa-
tion 3 before and after each simulation. Second, our high-
level planner considers the transit cost Jtransit and seeks to
maximize the following modified cost function:

Jrate = (J(oi) − Jpost)/Jtransit, (6)

i.e. the rate of cost reduction per unit end-effector movement
of the gripper. To effectively reduce Jrate, we have to expand
the decision space. We observe that, when using low-level
planners alone, the gripper will suffer from unnecessary
transits by jumping between target regions (i.e. grasping an
object to ti, pushing another object to tj , and then grasping a
third object to ti again). To avoid this artifact, we choose to
not use the overall greedy actions G,P , but use the actions
focused on a single target region, i.e. Gj ,Pj . In other words,
we allow the gripper to reduce the cost of one target region as
much as possible, before transiting to another target region.
In addition, our high-level planner seeks to reduce Equation 6
over multiple steps via an action-tree search. Whenever a
push action is used in a tree node, then the state after the
push is predicted using Box2D [2] (Line 7 of Algorithm 1).
The branching factor of this search is 2T , as we choose
one action from the set G1,⋯,T , P1,⋯,T . We can further
reduce the branching factor by half if we choose between
grasping or pushing actions greedily for each target region.
This greediness does not degradate the overall performance
empirically.

VII. EVALUATIONS

We implement our method using mixed Python/C++,
where we use C++ to perform multi-threaded distance com-
putations as in Figure 2. All the experiments are conducted
on a desktop machine with a 10 core Intel(R) Xeon(R)
W-2155 CPU. We evaluate our method in a simulated
environment with a STAUBLI 6-axis Industrial robotic Arm



Fig. 3: From left to right: initial configuration, pushing action, grasping action, final configuration.
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Fig. 4: We show the speedup/number-of-actions/transit-cost
with/without pushing actions, plotted against the number of
objects. Top Row: T = 2, C = 1, c0(tj) = N/2; Bottom Row:
T = 2, C = N .

TX90 as well as the bimanual hardware platform in Figure 3
equipped with a 8cm-long pushing bar and Robotiq’s vacuum
grippers. The simulation is performed using ODE [16] where
the control signals are provided by a PID controller. Our goal
is to push N = 50 − 200 cubical bricks (5 × 5 × 5cm3) to
T = 1 − 4 target regions (100 × 50cm2).

Speedup Using Pushing Actions: In Figure 4, we show
the speedup using grasping+pushing actions, as compared
with grasping actions alone. We use two settings: unlabeled
(C = 1) and labeled categories (C = N ). When C = 1,
the robot are mostly using pushing actions, and the pushing
action could provide 6−15× speedup in terms of number of
actions and 3−10× speedup in terms of the transit cost. When
C = N , the robot is forced to use more grasping actions
due to fixed assignment, and the pushing actions could only
provide 1.4 − 3.1× speedup in terms number of actions and
1.6 − 4.2× speedup in terms of the transit cost. In each test
case, the initial object poses are sampled randomly. Some
of these objects are out of the reach for the gripper, so the
number of grasps is not a perfect linear function of N .

Speedup Using The High-Level Planner: In Figure 5, we
show the speedup with/without using the high-level planner.
We randomly generate 10 sorting tasks with parameters
sampled uniformly in range: 50 ≤ N ≤ 200, 2 ≤ T ≤ 4,
C = 2, c0(tj) = 0.8N/2, c1(tj) = 0.2N/2. We observe that
the high-level planner does not help reducing the number of
actions except in one task. However, the high-level planner
does reduce the transit cost in most cases, achieving at most
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Fig. 5: On 10 randomly generated sorting tasks, we show the
speedup/number-of-actions/transit-cost with/without high-
level planner (H is the high-level planning horizon, H = 1
means no high-level planner used).

2× speedup. Using H = 3 increases the computational time
of each decision making by 8s as compared with H = 1. We
observe that further increasing H does not worth the extra
computational time.

VIII. CONCLUSION & LIMITATIONS

We propose a synergetic push-grasp planner for large-scale
object sorting tasks. Our planner uses the grasping action to
ensure feasibility of the task, and we use pushing actions
to accelerate the execution. We show that one-step greedy
grasping actions can be found by solving MILP, and with
the help of a simplified kinematic model, one-step greedy
pushing actions can be found by analyzing and enumerating
pusher configurations. Finally, we take the transit cost into
consideration using a high-level planner to perform multi-
step action selection. As a major advantage, our method is
fully analytic and does not require any parameter tuning, as
compared with prior learning-based methods [17], [22].

Our method can be further improved in three ways. First,
our method assumes perfect sensing and requires the exact
knowledge of object configurations. In practice, objects can
be occluded and thus cannot be localized exactly, in which
case the two low-level planner should be modified to account
for uncertainties. Second, our simplified kinematic model is
similar to [18], which assumes that characteristic length of
each object is much smaller than that of the pusher or the tar-
get region size. If larger objects are sorted, our assumptions
on object motions during pushing will be violated. Third,
although we have shown that grasping actions are feasible for
object sorting, the pushing actions can violate this guarantee.
This is because objects might be pushed too far away to leave
the reachable set of the gripper. In practice, a hardware-side
or software-side safety mechanism can be implemented to
bound the objects to the reachable set.
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6: We have 4 target regions
each occupied with an ob-
ject, but these objects have
to be moved to a neighbor-
ing region (black arrow). If
a buffer location is available
(dashed red), then one-step
greedy grasping action is still
feasible, because moving any
object to the buffer location
(red arrow) strictly reduce J .

X. APPENDIX: FEASIBILITY GUARANTEE

We call a sampled location pmn a buffer location if the
following condition holds:

pmn ∉ tj ∧ dist(pmn, tj) <min
i≠j

dist(ti, tj) ∀j.

The buffer location could be understood as a generalized
center point of all the target regions, with a smaller distance
to any region than any other region (dashed red region in
Figure 6). Note that if dist is the Euclidean distance, then
buffer locations might not always be available depending on
the positions of target regions. In these cases, we can simply
pick any reachable and collision-free position and pretend
it is a buffer location by setting all dist(pmn, tj) = 0 in
Equation 4. With available buffer locations, it is unsurprising
that grasping is feasible in solving most object sorting
problems, as many prior works using only grasping actions.
We formalize this result in the following lemma:

Lemma 10.1: If all objects are reachable, i.e.
reach(oi) = 1, enough sampled locations exist in
each target region, i.e. ∣Sj ∣ > 9∑

C
k=1 ck(tj) for all j,

and a buffer location p̄mn can always be found such
that reach(p̄mn) = 1 and BR(p̄mn) does not overlap
any objects, then the object sorting task is feasible using
one-step greedy grasping actions.

Proof: We prove by induction on the monotonic re-
duction of J(oi). Base Case: If J(oi) = 0, then the task is
feasible. Otherwise, we must have bij = 1 for some oi ∉ tj .
We analyze this situation case-by-case. Induction Case I:
If bij = 1 for all oi ∈ tj , then all the assignments are correct
and oi ∉ tj implies that oi ∉ ∪

T
j=1tj . Notice that the

√
2R-

spacing ensures that, for each oi, BR(oi) will overlap at
most 9 sampled locations. Therefore, ∣Sj ∣ > 9∑

C
k=1 ck(tj)

implies that there must be an sampled location pmn ∈ Sj

such that BR(pmn) does not overlap any object. We can
then move oi to pmn and strictly reduce J(oi). Induction
Case II: If bij = 1 for some oi ∈ tk and k ≠ j, then we
have a mis-assignment. We can strictly reduce J(oi) by
moving oi to some pmn ∈ Sj . If there are some sampled
location in Sj without overlaps, then this is feasible and we
can strictly reduce J(oi). Induction Case III: If bij = 1
for some oi ∈ tk, k ≠ j, and no sampled locations can be
found in Sj without overlaps, then we mark the situation
as a k → j dependency. We can build a dependency chain
j1 → j2 → ⋯ → jQ until one of two cases happens.
Induction Case III-A: If jQ ≠ j1, then we have finally
found a region tjQ with some empty sampled location, we

http://arxiv.org/abs/1912.07024


can move some object from tjQ−1 to tjQ and strictly reduce
J(oi). Induction Case III-B: If jQ = j1, then we have
found a loopy dependency. To resolve this loop, we need
the buffer location p̄mn. By the definition of a buffer, it is
obvious that moving any object in the loop to this buffer
location will strictly reduce J(oi) (one-step greediness).
Indeed, we can move objects cyclically along the augmented
loop j1 → j2 →,⋯, jQ−1 → p̄mn → j1 to clear the buffer
location while strictly reduce strictly reduce J(oi).
This result guarantees the feasibility of grasping actions
under mild assumptions on the size of target regions and the
dispersion of oi. Lemma 10.1 also suggests a way to form
the set of pmn used when solving Equation 4, i.e. pmn is
a subset of ∪T

j=1Sj without overlapping any BR(oi) plus a
buffer location. In practice, the problem can always be solved
and we never observed the need of buffer locations.
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