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Abstract— Multi-robot task allocation is a ubiquitous prob-
lem in robotics due to its applicability in a variety of scenar-
ios. Adaptive task-allocation algorithms account for unknown
disturbances and unpredicted phenomena in the environment
where robots are deployed to execute tasks. However, this
adaptivity typically comes at the cost of requiring precise
knowledge of robot models in order to evaluate the allocation
effectiveness and to adjust the task assignment online. As such,
environmental disturbances can significantly degrade the accu-
racy of the models which in turn negatively affects the quality
of the task allocation. In this paper, we leverage Gaussian
processes, differential inclusions, and robust control barrier
functions to learn environmental disturbances in order to
guarantee robust task execution. We show the implementation
and the effectiveness of the proposed framework on a real multi-
robot system.

I. INTRODUCTION

Multi-Robot Task Allocation (MRTA) is typically required
in a number of applications such as search and rescue and
precision agriculture [1]. Many of those applications involve
a variety of concurrent tasks, which in turn requires the
robots to have varying capabilities. One such example is
disaster relief, where the team of robots must both seek and
rescue the victims [2]. In such scenarios, where the team is
heterogeneous, it is crucial to consider the specialization of
each robot with respect to the different available tasks [3] to
perform an effective task allocation.

There exists a large body of work on heterogeneous MRTA
such as [3], [4], [5]. In a broad sense, heterogeneous MRTA
can be seen as an extension of MRTA with the additional
complexity that assigning the same task to different robots
may result in different costs [1]. Therefore, the underlying
approaches are similar to homogeneous MRTA and can
be classified as market-based, centralized, or decentralized
approaches as highlighted in [6]. Moreover, to differentiate
between the various capabilities of the different robots, a
common trend in existing frameworks is to assign each agent
a specialization towards each task (e.g., [7], [8], [9], [10]).
That is, the discrepancy in the utility gained from assigning
a task to one robot versus another is encoded via these
specializations. Consequently, using inaccurate specialization
values when planning can degrade the quality of allocations,
and in the worst case, can assign robots to tasks which they
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are not capable of accomplishing. This possibility motivates
the need for a framework that learns these specializations
on-the-fly in the case they are unknown a priori.

Toward this goal, in [11], the authors propose an adaptive
task allocation and execution scheme based on [12] that
dynamically updates these specializations. As opposed to
the conventional approach of sequentially allocating tasks
then executing them, the framework in [12] simultaneously
allocates the tasks and computes the control input for the
robots to execute them. Consequently, this approach has the
benefit of explicitly accounting for the control input in the
cost function when allocating tasks. Moreover, as presented
and discussed in [11], the task execution is performed as
the minimization of energy-like functions, which by nature
encode a measure of progress and, as such, are readily used
in specialization adaptation. The specialization is learned
by comparing the expected versus actual progress made by
the robots towards minimizing the energy functions. For
example, if the robot performed worse than expected, then
its specialization toward that task is decreased. In [11], the
authors consider tasks that can be encoded as positive definite
functions of the state. We note that although not all tasks
can be encoded as energy functions, this formulation is
applicable to a wide variety of coordinated control tasks such
as formation control and coverage [13].

The approach in [11], however, requires the knowledge
of a predefined, precise dynamical model of the robots to
evaluate the expected task progresses. These models do
not account for environmental disturbances or unknown
phenomena; therefore, the quality of both the allocation and
the execution of tasks by the robots may be affected by these
disturbances. More importantly, even small environmental
disturbances may result in the deterioration of the estimated
specialization of the robots. In other words, the framework
cannot distinguish between disturbances that the robots can
and cannot overcome. This negatively affects the ability to
allocate tasks based on specialization in an effective fashion.

Motivated by these limitations, in this paper, we propose
a novel framework that leverages Gaussian Processes (GPs)
and Robust Control Barrier Functions (RCBFs) as introduced
in [14] to learn and model the disturbed system as well as
to ensure the execution of tasks under these disturbances.
We also introduce a new update law for the specializations
based on the learned disturbed dynamic models. This allows
the framework to distinguish between disturbances that the
robots can and cannot overcome—the former being due
to model errors, while the latter is caused by the actual
incapability of the robots at performing the task.
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II. BACKGROUND MATERIAL

In this section, we introduce CBFs and RCBFs for dis-
turbed dynamical systems, which are leveraged in the task
allocation component of the proposed MRTA framework.

A. Control Barrier Functions

Control Barrier Functions (CBFs) are formulated with
respect to control systems [15], [16], [17], [18], and this
work considers control-affine systems

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), x(0) = x0, (1)

where f : Rn → Rn, g : Rn → Rn×m, and u : Rn →
Rm are continuous. A set C is called forward invariant with
respect to (1) if given a solution (potentially nonunique) to
(1) x : [0, t1]→ Rn, x0 ∈ C =⇒ x(t) ∈ C,∀t ∈ [0, t1].

Barrier functions guarantee forward invariance of a par-
ticular set that typically represents a constraint in a robotic
system, such as collision avoidance or connectivity main-
tenance. Specifically, a barrier function is a continuously
differentiable function h : Rn → R (sometimes referred
to as a candidate barrier function), and the so-called safe
set C ⊂ Rn is defined as the super-zero level set of h
C = {x ∈ R : h(x) ≥ 0}. Now, the goal becomes to
ensure the forward set invariance of C, which can be done
equivalently by guaranteeing positivity of h along trajectories
to (1).

Positivity can be shown if there exists a locally Lipschitz
extended class-K function γ : R → R and a continuous
function u : Rn → Rm such that

Lfh(x) + Lgh(x)u(x) ≥ −γ(h(x)),∀x ∈ Rn, (2)

where Lfh(x) = ∇h(x)>f(x) and Lgh(x) = ∇h(x)>g(x)
denote the Lie derivatives of h in the directions f and g
respectively. A function is class-K if it is continuous, strictly
increasing, and γ(0) = 0. If the above conditions hold, then
h is called a valid CBF for (1) [19].

B. Robust CBFs

As introduced in [14], RCBFs guarantee the safety of dis-
turbed dynamical systems obeying the following differential
inclusion

ẋ(t) ∈ f(x(t))+g(x(t))u(x(t))+D(x(t)), x(0) = x0, (3)

where f , g, u are as in (1) and D : Rn → 2R
n

(the
disturbance) is an upper semi-continuous set-valued map that
takes nonempty, convex, and compact values. Note that 2R

n

refers to the power set of Rn, and that the assumptions made
on the disturbance are conditions to guarantee the existence
of solutions [20].

We refer the reader to [21] for more details on the use
of differential inclusions with barrier functions. Moreover, it
was shown that for a specific form of D, we can recover a
similar formulation of regular CBFs as in (2) with almost
no additional computational cost as stated in the following
theorem. An important aspect of this theorem is that forward
invariance is guaranteed for all trajectories of (3).

Theorem 1. [14] Let h : Rn → R be a continuously
differentiable function. Let ψi : Rn → Rn, i ∈ {1, . . . , p}
be a set of p > 0 continuous functions, and define the
disturbance D : Rn → 2R

n

as

D(x′) = co Ψ(x′) = co{ψ1(x′) . . . ψp(x
′)},∀x′ ∈ Rn.

If there exists a continuous function u : Rn → Rm and a
locally Lipschitz extended class-K function γ : R→ R such
that

Lfh(x′) + Lgh(x′)u(x′) ≥
− γ(h(x′))−min∇h(x′)>Ψ(x′),∀x′ ∈ Rn,

then h is a valid RCBF for (3).

Note that similarly to [22], in this paper, we prove the
asymptotic stability of the safe set of RCBFs. Moreover,
since the main contribution of this paper is a MRTA frame-
work that accounts for environmental disturbances using
differential inclusions and RCBFs, in the next section, we
present the MRTA framework from [11] which we build
upon.

III. ADAPTIVE TASK ALLOCATION AND EXECUTION FOR
HETEROGENEOUS ROBOT TEAMS

This section briefly presents the adaptive task alloca-
tion and execution framework for heterogeneous multi-robot
teams introduced in [11], [12] and discusses its shortcomings.
For the remainder of this section, we consider a multi-
robot team consisting of N robots which are to execute
M tasks, denoted by Tj for j ∈ {1, . . . ,M} ∆

= M. For
the sake of generality, we assume that each robot i, where
i ∈ {1, . . . , N} ∆

= N , in the multi-robot system can be
modeled as the following control-affine dynamical system
ẋi = f(xi) + g(xi)ui, where xi ∈ Rn is the state, ui ∈ Rm
is the input, and f and g are as in (1). Note that here, and
for the remainder of the section, we omit the dependence of
the different variables on time for brevity.

A. Single-Robot Multi-Task Execution

In [23], a formulation for the execution of tasks was
developed, which encoded the completion of each task j by
robot i as the safe-set of a CBF hij . Thus, the control signal
ui(t) needed to execute the task can be obtained by solving
the following optimization problem at all time

minimize
ui,δij

‖ui‖2 + δ2
ij

subject to Lfhij(xi) + Lghij(xi)ui ≥ −γ(hij(xi))− δij ,
(4)

where δij is a slack variable which represents the extent to
which the constraint corresponding to the task execution of
task Tj can be violated and γ is an extended class-K function
[24]. Note here that the control input ui is computed with
respect to a pre-defined model of the dynamics. As such,
in the case where environmental disturbances are present,
the resulting control input may yield poor performance. This
constitutes the first motivation for learning a real-time model
of the disturbances.



To extend the framework above to the multi-task case,
the authors in [23] introduce constraints on the slack vari-
ables δij to allow the robots to prioritize some tasks over
others. To achieve this, they introduce the variable αi =
[αi1, . . . , αiM ]T ∈ {0, 1}M , whose entries indicate the pri-
orities of the tasks for robot i (i.e. αim = 1⇐⇒ task Tm has
the highest priority for robot i). Therefore, the prioritization
is achieved by ensuring that the following implication holds

αim = 1 ⇒ δim ≤
1

κ
δin ∀n ∈M, n 6= m, (5)

where κ > 1 allows us to encode how the task priorities
impact the relative effectiveness with which robots perform
different tasks.

B. Multi-Robot Multi-Task Allocation and Execution

Finally, to extend the single-robot multi-task execution to
multiple robots, the authors in [12] combine the optimization
problems (4) for each robot and add a task allocation term
in the cost that allows the team to reach a desired global
specification, resulting in the following optimization problem

minimize
u,δ,α

C‖π∗ − πh(α)‖2T +

N∑
i=1

(
‖ui‖2 + l‖δi‖2Si

)
(6a)

subject to Lfhm(x) + Lghm(x)ui ≥ −γ(hm(x))− δim
(6b)

Pδi ≤ Ω(αi) (6c)
|ui| ≤ umax (6d)

∀i ∈ N , ∀n,m ∈M.

where xi and ui denote the state and input of robot i
respectively, and x = [xT1 x

T
2 . . . x

T
N ] denotes the ensemble

state. The term ‖π∗−πh(α)‖2T serves to steer the distribution
of the robots over the tasks, encoded by πh : RN×M →
RM , towards a desired distribution π∗. In (6a), C and l
are scaling constants allowing for a trade-off between the
global specifications term and allowing individual robots
to expend the least amount of energy possible. The term
‖δi‖2Si

accounts for the heterogeneity of the robot team
by not penalizing robots’ slack variables corresponding to
tasks for which they are not suitable. This is achieved by
leveraging the specialization sij ∈ [0, 1] of robot i towards
task j as described in [11]. The constraint (6c), where
P ∈ Rq×m, Ω: Rm → Rq and q denotes the number of
desired constraints, encodes the relation described in (5).
Finally, (6d) encodes the control limits of the robots. We refer
the reader to [12] for more details. It is important to note that,
since the allocation and execution of tasks are intertwined,
environmental disturbances can not only inhibit the ability of
a robot to accomplish a task but can also negatively affect
its allocation.

C. Adaptive Specialization for Dynamic Environments

The specialization parameters sij which encode the effec-
tiveness of robot i at performing task j, are updated at fixed
intervals dt through the following update law

sij [k+ 1] = min(max(sij [k] + β1α
∗
ij [k]∆hij [k], 0), 1), (7)

where β1 ∈ R>0 is a constant controlling the update rate
and α∗ij [k] is obtained from the solution of the optimization
program (6) at time step k. Note that the update only occurs
for tasks to which the robots are assigned since αij [k] = 1 if
and only if robot i is assigned to task j at time step k. Lastly,
the difference between the modeled and actual progresses
is given by ∆hij [k] = hij(x

act
i [k]) − hij(x

sim
i [k]), where

hij(x
sim
i [k]) and hij(xact

i [k]) are the simulated and actual cost
function values of agent i for task j at step k. The simulated
state is obtained as follows

xsim
i [k] = xact

i [k − 1] (8)
+ (f(xact

i [k − 1]) + g(xact
i [k − 1])u∗i [k − 1])dt,

where xact
i [k] denote the actual state of robot i and xsim

i [k]
denote the simulated state which assumes that the robot
obeyed its nominal dynamics. Here, again, the update law
relies on the simulated progress which in turns leverages
the pre-defined dynamics models. Since the update law is
applied at each time step, any disturbance will thus cause
drastic changes in the specializations over long duration. As
such, the framework is incapable of distinguishing between
disturbances with different severeties.

Overall, as discussed in this section, the adaptive task
allocation and execution framework relies heavily on a pre-
defined dynamics model of the robots. This model is used
for task execution, affects the allocation of tasks amongst
the robots, and is also leveraged in the adaptive specialization
update law. Consequently, it is clear that disturbances causing
non-negligible changes in the dynamics can severely affect
the performance of the framework. As such, in the next
section, we propose a new version of the framework, that
leverages GPs, differential inclusions, and RCBFs to learn
and incorporate the disturbances.

IV. DATA-DRIVEN ADAPTIVE MRTA
This section contains the main contribution of the paper: a

data-driven adaptive task allocation and execution framework
that explicitly accounts for the environmental disturbances in
the dynamics models. As mentioned in the previous section,
in the original framework proposed in [11], unmodeled
disturbances affecting the robots can degrade the quality
of the allocation and execution of tasks as well as the
update of the specializations. This drawback can be alleviated
by explicitly accounting for the disturbances in the robot
dynamics model, and in turn using the new model for task
execution and updating the specializations, which is what we
accomplish in this section.

A. Modelling and Learning the disturbance
In this subsection, we demonstrate how we can leverage

GPs and differential inclusions to learn the environmental
disturbances and model the disturbed dynamics. We assume
that each robot can be modelled by the differential inclusion
as in (3): ẋi(t) ∈ f(xi(t)) + g(xi(t))ui(xi(t)) +Di(xi(t)),
where the disturbance set Di is a convex hull of p continuous
functions as in Theorem 1

Di(x) = co Ψi(x) = co{ψi1(x) . . . ψip(x)},∀x ∈ Rn.



Note that the choice of modelling the disturbance as additive
(i.e. does not multiply the control input) is not necessary.
A multiplicative disturbance can be used with only minor
changes to the proposed approach.

Moreover, as mentioned above, the environmental dis-
turbances acting on the robots may be unknown apriori.
Therefore, it is necessary to learn Di ∀i. Towards this goal,
we propose learning the disturbance using GPs similarly to
[25]. This is achieved by collecting data points to construct a
dataset for each robot Di = {x(k)

i , y
(k)
i }nd

k=1 where the labels
y

(k)
i are given by

y
(k)
i = ˆ̇x

(k)
i − f(x

(k)
i ) + g(x

(k)
i )u

(k)
i , ∀k,

and ˆ̇x
(k)
i is the measured velocity of the state of robot i for

data-point k. Note that k here is the index of a data-point in
the dataset, and does not encode any relation to time. Since
y

(k)
i ∈ Rn, we train one GP per dimension for a total of n

GP models, and the disturbance estimate for a query point
x is obtained as

[D̄i(x)]d = µi,d(x) + [−kcσi,d(x), kcσi,d(x)],

where µi,d(x) and σi,d(x) are robot i’s dth dimension mean
and standard-deviation predictions for query point x and kc
is a confidence parameter (e.g. kc = 2 indicates a confidence
of 95.45%). Note that the disturbance estimate D̄i(x) is a
vector where each entry is a convex-hull. To recover the
representation needed for Theorem 1, we define Ψi(x) as
the 2n extrema of D̄i(x).

B. Execution of Tasks under Environmental Disturbances
Given that the disturbed dynamics are modelled using

differential inclusions, regular CBFs can no longer be utilized
for task execution as in the original framework. Therefore,
we leverage RCBFs to ensure the execution of the tasks with
respect to the disturbed dynamics. Note, however, that The-
orem 1 states conditions for a function to be a valid RCBF
(i.e., to render its super-zero level set forward invariant), but
does not claim stability of the safe-set. Therefore, since this
property is critical to the execution of tasks using CBFs,
in order to guarantee the execution of tasks, we first prove
that the super-zero level set of RCBFs is asymptotically
stable similarly to the work in [22]. More specifically, since
differential inclusions consider sets of trajectories, we prove
that all possible trajectories are asymptotically stable.

Proposition 1. Let the function h and the disturbance D
be as in Theorem 1. If there exists a continuous function
u : Rn → Rm and a locally Lipschitz extended class-K
function γ : R→ R such that

Lfh(x′) + Lgh(x′)u(x′) ≥
− γ(h(x′))−min∇h(x′)>Ψ(x′),∀x′ ∈ Rn,

(9)

then C is asymptotically stable.

Proof. Define the Lyapunov function

V (x) = 0, ∀x ∈ C,
= −h(w) o.w..

Then, from (9), we obtain that ∀x ∈ Rn \ C
∇h(x)>(f(x) + g(x)u(x)) + min∇h(x)>Ψ(x) ≥
− γ(h(x)),

which is equivalent to

∇h(x)>ẋ ≥ −γ(h(x)),

∀ẋ ∈ f(x) + g(x)u(x) +D(x),

hence V̇ (x) ≤ γ(−V (x)), since V (x) > 0 ∀x ∈ Rn\C, then
we get V̇ (x) < 0. Combining the latter with the forward
invariance of C from Theorem 1 and the result of Theorem
2.8 from [26] we obtain that C is globally asymptotically
stable for all trajectories. Note that although Theorem 2.8
from [26] requires the function V to be smooth, the function
can be smoothed using Proposition 4.2 in [26].

The result in Proposition 1 allows us to encode the
execution of tasks as a constraint, similarly to the undisturbed
system as

Lfhij(xi)+Lghij(xi)ui ≥ (10)

− γ(hij(xi))−min∇hij(xi)>Ψ(xi).

Note that accounting for the disturbance shrinks the size
of the set of control inputs that can satisfy the inequality.
Moreover, in cases where the disturbance is large, it may
be the case that the robots cannot satisfy the inequality
while respecting their control limits. This indicates that the
disturbance is too large for the robot to handle and as such
the robot is incapable of executing the task. To encode this,
we limit the magnitude of the learned disturbance. Specif-
ically, we enforce ||ψij(x)||∞ ≤ dmax, ∀j ∈ {1, . . . , p},
where dmax is a user-defined threshold. The latter allows the
robots to only execute tasks for which they can overcome
the disturbance, while also accounting for disturbances that
the robots cannot overcome through the adaptive special-
ization law as discussed in the next subsection. Regard-
ing the incurred computational complexity, since the term
min∇hm(x)>Ψ(x) does not depend on the control input u,
the additional cost is O(Np), where N is the number of
robots, and p is the number of points forming the convex
hull of the disturbance.

C. Adaptive Specialization using Differential Inclusions

The adaptive specialization law (7) depends on a model
of the robots’ dynamics that does not account for environ-
mental disturbances. Hence, as reflected in (8), if the robot
consistently performs worse than expected with respect to
achieving a certain task, its specialization towards that task
would diminish to zero. In other words, the update law is un-
able to differentiate between environmental disturbances that
the robot can and cannot overcome. Therefore, to account
for the environmental disturbances when computing the
modelled progress, we propose to update the specializations
by leveraging the differential inclusions learned using the
procedure described in Section IV-A.

Since each robot is modelled through a differential in-
clusion, there are several possible trajectories which the
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Fig. 1. High-level diagram of the proposed framework. The main optimiza-
tion program solved is denoted by the blue box, where the task execution
is encoded using the RCBFs obtained from the data-driven models (in our
case GPs), and specializations from the adaptive specialization update. The
specialization update is computed using the disturbance from the last step to
approximate the nominal progress, along with the current state to estimate
the actual progress.

robot can take, allowing for numerous modelling options. For
example, the modelled progress in [11] is with respect to the
undisturbed trajectory; however, another valid choice would
be to compute the trajectory with respect to the expected
disturbance. We make the conservative choice of focusing
on the worst-case trajectory (i.e. the trajectory that results in
the least progress), yielding an update law given by

sij [k + 1] = min(max(sij [k] + β1α
∗
ij [k]∆hrob

ij [k], 0), 1),
(11)

where the difference in progress is given by

∆hrob
ij [k] = hij(x

act
i [k])−minhij(x

sim
i [k]), (12)

such that
minhij(x

sim
i [k]) = hij(xi) (13)

+ dt [Lfhij(xi) + Lghij(xi)ui]

+ dtmin∇hij(xi)>Ψ(xi),

and xi and ui denote xact
i [k − 1] and ui[k − 1] respectively.

Equation (13) is an approximation of the worst case trajec-
tory using Euler integration. The latter can be shown through
the following derivation

minh(x(t+ dt)) ≈ min

[
h(x(t)) + dt

dh

dt
(x(t))

]
= min

[
h(x(t)) + dt∇h(x(t))>ẋ(t)

]
= h(x(t)) + dt

(Lfh(x(t)) + Lgh(x(t))u(t))

+ dtmin[∇h(x(t))>Ψ(x(t))].

Here, as reflected above, we again account for a continuum
of trajectories while benefiting from the negligible compu-
tational complexity incurred by taking the minimum over a
convex hull of a set of points since the minimum must occur
at one of the corner points.

As discussed in the previous subsection, since the mag-
nitude of the learned disturbance is thresholded, large dis-
turbances which the robots cannot overcome would be ac-
counted for using the proposed update law. Essentially, this

process allows us to differentiate between disturbances that
the robots can and cannot overcome.

Figure 1 and Algorithm 1 illustrate the proposed data-
driven adaptive task allocation and execution framework.
As we empirically showcase in the next section, integrating
the learned disturbance models enables the framework to be
robust to environmental disturbances during task execution
and to update the specializations in an environment-resilient
fashion.

Algorithm 1 Data-Driven Adaptive MRTA
1: while true do
2: Get robot states xi,∀i
3: Compute inputs ui,∀i . (6) with (10) in lieu of (6b)
4: Execute inputs ui,∀i
5: for all i ∈ {1, . . . , nr} do
6: for all j ∈ {1, . . . , nt} do
7: Evaluate ∆hrob

ij [k] . (12)
8: Evaluate sij [k + 1] . (11)
9: end for

10: end for
11: end while

V. EXPERIMENTS

We showcase the significant improvement obtained from
the proposed framework as compared to the baseline from
[11] in two experiments on the Robotarium [27]. In each ex-
periment, we consider a team of differential-drive robots each
with a state xi :=

[
xi,1 xi,2 θi

]>
, output pi :=

[
pi,1 pi,2

]>
and input ui :=

[
vi ωi

]>
. Each robot nominally obeys the

following dynamics

ẋi =

cos θi 0
sin θi 0

0 1

ui, ṗi =

[
cos θi − sin θi
sin θi cos θi

] [
1 0
0 lp

]
ui,

where lp is the look-ahead projection distance. The dis-
turbances are then simulated by altering the control input
as explained in each experiment. We note that the CBFs
are formulated with respect to the output. Moreover, for
the RCBFs, the GP models are learned a priori and the
magnitude of the disturbance is limited by dmax = 0.10. We
note that learning the disturbance online is left for future
work.

The setup of the first experiment is shown on the left-hand
side of Figure 2. Four robots are to execute four go-to-goal
tasks depicted by the circles. A simulated disturbance is in-
duced in the brown section of the arena, where the disturbed
control input applied is given by ud = u+0.02cos(θ)

[
1 0
]>

.
This disturbance aims to simulate a sloped surface, which
the robots must climb to reach the tasks. The experiment is
then ran using both the proposed and baseline frameworks.
Shown in the middle of Figure 2 is the sum of squares of the
energy functions between the robots and their assigned tasks
over time. As the robots progress towards accomplishing
the tasks, this sum should approach zero, which is the case
for the proposed framework but not the baseline framework.
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Fig. 2. The setup of experiment 1 is shown on the left-hand side of the figure. A team of 4 ground robots executes 4 go-to-goal tasks (circles). The black
arrows indicate the trajectories of the robots. The brown section of the arena induces a simulated disturbance on the robots by affecting the control inputs
unknowingly to the framework. The sum of squares of the energy functions of the robots with respect to their assigned tasks is plotted over time (middle)
for both regular and robust CBFs. Moreover, the specializations of robot 1 towards its assigned task is plotted over time for each framework (right). As
shown, the proposed framework significantly outperforms the baseline in both task execution and adapting the specialization. A video of the experiments
is available at https://youtu.be/imeC-Eri nM.
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Fig. 3. The setup of experiment 2 is shown on the left-hand side of the figure. A team of 3 robots, 1 ground robot and 2 simulated quadcopters, is to
execute 2 go-to-goal tasks (circles). Similarly to the first experiment, a simulated disturbance, which only affects the ground robot is induced in the brown
region. However, in this experiment, the disturbance is very strong to the point where the ground robot cannot overcome it and reach its task. The sum of
squares of the energy functions of the robots with respect to their assigned tasks is plotted over time (middle) for both regular and robust CBFs, as well
as the specialization of the ground robot towards its first assigned task (right). As expected, the proposed framework is slower to adapt in this case.

Moreover, to the right-hand side of Figure 2 showcases the
specialization of robot 1 towards its assigned task at each
time step for each framework. As opposed to the proposed
framework, not accounting for the disturbance in the update
law of the baseline framework causes the specialization
to reach zero for all tasks, although the robot is indeed
executing the task. This is in turn causes a cycle, where the
baseline framework assigns the robot another task, for which
its specialization again decreases to zero as demonstrated by
the periodicity of the plot.

The second experiment aims to demonstrate that if a
disturbance is large enough the robots cannot overcome it,
the proposed framework will indeed adapt and generate a
different allocation of tasks. The setup of the experiment is
shown on the left-hand side of Figure 3. A team composed
of 1 ground robots and 2 simulated quadcopters is to execute
2 go-to-goal tasks. Similarly to the first experiment, a dis-
turbance is induced in the brown area of the arena resulting
in the disturbed control input ud = u + 0.2cos(θ)

[
1 0
]>

.
This disturbance only affects the ground robot. Note that,
as opposed to the first experiment, the ground robot cannot
overcome this disturbance due to its control limits.

Shown in the middle of Figure 2 is the sum of squares
of the energy functions between the robots and their as-
signed tasks over time. Initially, the ground robot and the
bottom quadcopter are assigned the orange and blue tasks
respectively. However, when the ground robot faces the dis-
turbance (slope), it cannot overcome it and its specialization

decreases towards its task (as shown in the right-hand plot
of Figure 3). This causes a new allocation of tasks where the
top quadcopter is assigned the orange task which is depicted
by the spike in the energy as shown in the middle plot of
Figure 3. Comparing the performance of both frameworks,
as shown in the energy plot of Figure 3, the proposed
framework is slightly delayed compared to the baseline. This
is because the proposed framework accounts for a portion
of the disturbance, limited by the magnitude dmax. As such,
the difference between modelled and actual progresses in
the proposed framework is smaller in the baseline resulting
a slower change in the specializations. This phenomena
represents a trade-off between robustness and adaptivity,
where the robots either attempt to accomplish the task to
the best of their ability, or re-configure so that a more suited
robot can execute the task.

VI. CONCLUSION

In this paper, we introduce a task allocation and execution
framework for heterogeneous robot teams that explicitly
accounts for environmental disturbances by augmenting the
pre-defined dynamics models with a learned component. As
shown empirically, the integration of the learned dynamics
using robust control barrier functions and a novel adaptive
specialization law renders the framework robust to distur-
bances regarding task execution and permits the framework
to differentiate between disturbances that the robots can and
cannot overcome.

https://youtu.be/imeC-Eri_nM
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