
Implicit Integration for Articulated Bodies with Contact
via the Nonconvex Maximal Dissipation Principle

Zherong Pan and Kris Hauser†

Abstract— We present non-convex maximal dissipation prin-
ciple (NMDP), a time integration scheme for articulated bodies
with simultaneous contacts. Our scheme resolves contact forces
via the maximal dissipation principle (MDP). Prior MDP solvers
compute contact forces via convex programming by assuming
linearized dynamics integrated using the forward multistep
scheme. Instead, we consider the coupled system of nonlinear
Newton-Euler dynamics and MDP, which is time-integrated
using the backward integration scheme. We show that the
coupled system of equations can be solved efficiently using
the projected gradient method with guaranteed convergence.
We evaluate our method by predicting several locomotion
trajectories for a quadruped robot. The results show that our
NMDP scheme has several desirable properties including: (1)
generalization to novel contact models; (2) superior stability
under large timestep sizes; (3) consistent trajectory generation
under varying timestep sizes.

I. INTRODUCTION

Articulated body simulation is an indispensable compo-
nent of robot motion planning, optimal control, and rein-
forcement learning (RL). Their governing dynamic equa-
tions, i.e. the recursive Newton-Euler’s equation [9], and dis-
cretization schemes have been studied for decades. However,
efficient and accurate contact handling is still a challenging
problem studied extensively by recent works [28], [35]. To
predict robot motions under simultaneous Coulomb frictional
contacts, the two most widely-used formulations are the
linear-complementary problem (LCP) [30] and the maxi-
mal dissipation principle (MDP) [7]. From a computational
perspective, LCP incurs an NP-hard problem while MDP
identifies contact forces with the solution of a cheap-to-
compute convex program. As reported by [8], MDP-based
contact handler achieves the best stability and computational
efficiency. Moreover, MDP can encode novel contact models
as arbitrary convex wrench spaces, which enables learning
contact models from data [34], [35].

The stability region of MDP is shown to be up to ∼10 ms
according to [32]. Beyond the stability region, the predicted
trajectory can either blow-up or drift significantly from the
ground truth. Such small stability region not only increases
computational cost but also induces problems of vanishing
or exploding gradients [18]. In contact-implicit trajectory
optimization [23], [29], for example, the problem sizes grow
linearly with the number of timesteps and the cost of a
Newton-type method grows superlinearly as a result.

We present a non-convex MDP (NMDP) integrator that:
(1) is stable under large timestep sizes; (2) generates con-
sistent contact forces under the MDP formulation; and (3)

† Zherong Pan and Kris Hauser are with the Department of
Computer Science, University of Illinois at Urbana-Champaign.
{zherong,kkhauser}@illinois.edu

Update Wrench Space Update Wrench Space

Pose i Pose i+1

Time Integrate

Time Integrate

Fig. 1: We consider the three components (robot pose θ update,
convex wrench space vx(θ) update, and contact force w update) as
a coupled system of nonlinear equations, which is solved using a
novel projected gradient method with guaranteed convergence.

generalizes to position-dependent contact models. Prior MDP
solvers rely on linearized dynamic systems, so that the
kinetic energy becomes a quadratic function of the contact
forces which can be solved as a convex QP. However, the
truncation error of linearization can grow arbitrarily with
larger timestep sizes. Our NMDP solver eliminates the trun-
cation error by formulating the nonlinear recursive Newton-
Euler’s equation and the wrench space as a function of the
robot pose as a coupled system of nonlinear equations time-
integrated using the backward-Euler scheme (Figure 1). The
method can inherently account for novel contact models by
using the convex shapes as feasible constraints in MDP, with
nonlinear dependence on robot pose. To solve this coupled
system we propose using the projected gradient method
(PGM). We prove that PGM converges under sufficiently
small timesteps and show that it empirically converges under
large timesteps. An adaptive inner time-integration scheme
guarantees that NMDP solves any (primary) timestep size in
finite time.

We evaluate our method by predicting walking and
jumping trajectories for the JPL Robosimian and Spider
quadruped robot. The results show that NMDP has su-
perior stability under larger timesteps as compared with
conventional MDP solvers. In addition, the predicted walking
speed and jumping height are more consistent under various
timesteps.

II. RELATED WORK

We review related work on articulated body dynamics,
contact handling, and generalized contact models.

Articulated Body Dynamics: Three classes of time
discretization schemes have been independently developed
for articulated bodies’ equation-of-motion. First, variational
integrators (VI) [17], [20] discretize the Lagrangian function
and then derive the discrete Euler-Lagrange equation. VI pre-
serves momentum and energy symmetry under large timestep
sizes. Second, linear multi-step integrators [6] discretize
the equivalent Newton-Euler’s equation in the configuration
space. These integrators are very efficient to evaluate using

ar
X

iv
:2

01
0.

14
69

1v
1

 [
cs

.R
O

]
 2

8
O

ct
 2

02
0

the Articulated Body Algorithm (ABA) [9]. Third, high-
order collocated, position-based integrators use an equivalent
form of the Newton-Euler’s equation known as position-
based dynamics (PBD) [4], [26], where the main difference
is that the discretization is performed in the Euclidean space.
Position-based integrators are stable under large timestep
sizes but they do not preserve symmetry.

Contact Handling: Sequential contact models [12], [22]
have a significantly limited stability region due to the
stiffness of contact forces. Models allowing simultaneous
collisions and contacts have larger stability region, especially
using implicit time stepper [1], [30]. LCP [2], [30] and
MDP [7], [16] are the most popular implicit formulations
for simultaneous frictional contacts. Solving complementary
conditions due to LCP is NP-hard and can sometimes be
infeasible [24]. The MDP relaxes the complementary con-
straints by allowing any contact forces in the frictional cone
to be feasible. However, the stability region of time-stepper
is still limited by the linearization of dynamic systems
using either LCP or MDP. In [1], [26], dynamics with
frictionless contacts are reformulated as an optimization and
linearization can be avoided, but these results cannot be
extended to frictional cases. In [25], the frictional force
is modified and then reformulated as an optimization, but
the modified variant cannot handle static-sliding frictional
mode switches. In [5], a modified BDF2 scheme is proposed
to achieve second-order accuracy in time-integration under
frictional contacts, but linearization is still needed. Unlike
these methods, we analyze the feasibility of contact handling
without linearization for both normal and frictional forces.

Generalized Contact Models: Although the Coulomb
frictional model is sufficient for most scenarios involving
only rigid objects, other contact models are needed for
several reasons. To model the unknown continuous force
distribution between a planar object and a flat ground, a
general convex wrench space is learned from real-world
data in [34]. In other works [15], [19], [33], [35], artic-
ulated robots are walking on or swimming in deformable
environments with granular or compliant materials. Hu [15]
simulated both the granular material and the robot using fine-
grained finite element method, which is more than 1000×
slower than a standalone articulated body simulation. In
[19], [33], the Coulomb frictional model is replaced with
analytic and empirical force models. Although these models
are cheap to compute, they cannot capture the static-sliding
frictional mode switches. Zhu [35] used a similar approach
as [34] and learned a robot-pose-dependent contact wrench
space. Static-sliding frictional mode switches can thereby be
modeled using MDP solver with the learned wrench space
as constraints. By extending MDP, our NMDP solver can
handle any generalized force models [34], [35] in the form
of robot-pose-dependent contact wrench spaces.

III. ARTICULATED BODY DYNAMICS

In this section, we briefly review two prior formulations
of articulated body dynamics and their corresponding dis-
cretization schemes: the recursive Newton-Euler’s equation

and position-based dynamics. Both schemes can be extended
to derive NMDP solvers.

A. Recursive Newton-Euler’s Equation

The continuous Newton-Euler’s equation under general-
ized coordinates takes the following form:

0 =H(θ)θ̈ +C(θ, θ̇) − ∑
x∈C

∇θX(x, θ)T fx − τ. (1)

Here H is the generalized mass matrix, θ is the robot’s
configuration vector, C(θ, θ̇) is the Coriolis and Centrifugal
force, X(x, θ) is the forward kinematic function bringing a
point x from the robot’s local coordinates to the global coor-
dinates, C is a set of points in contact with the environment,
fx is the external force on x in world coordinates, and finally
τ is the joint torque.

Remark 1: We assume contacts are realized by external
forces fx ∈ R3. More general contact models such as [35]
require external wrenches fx ∈ R6. In this case, we can
replace ∇θX(x, θ) with the Jacobian matrix in R6×∣θ∣ and
all the following analysis applies.

To discretize a dynamic system, the linear multistep
method uses finite difference approximations for all vari-
ables. We illustrate this method with first-order finite dif-
ference schemes and higher-order schemes can be applied
following a similar reasoning. We introduce two variables
θ− and θ−−. We assume that θ− is the robot configuration
at current time instance, θ−− is the robot configuration ∆t
seconds before (∆t is the timestep size), and θ is the to-
be-predicted robot configuration after α∆t seconds. Here
α ∈ (0,1] is an additional parameter for timestep size control
and we use subscripts to denote functions that are dependent
on α. Since NMDP solver requires sufficiently small timestep
sizes to converge, we use α to ensure this condition holds.
Under these definitions, we can approximate:

θ̇ ≜
θ − θ−
α∆t

θ̇− ≜
θ− − θ−−

∆t
θ̈ ≜

θ̇ − θ̇−
∆t

. (2)

Plugging these approximations into the Newton-Euler’s
equation, the forward-Euler integrator takes the following
form:

0 =H(θ−)θ̈ −C(θ−, θ̇−) − ∑
x∈C

∇θX(x, θ−)
T fx − τ, (3)

which is a linearized dynamic system in θ, fx, τ . Instead,
the backward-Euler integrator evaluates H,C at time-level
α∆t instead of current time instance, resulting in a nonlinear
system of (1) and (2). This system is not guaranteed to have
a solution, unless a small enough timestep size is used.

B. Position-Based Dynamics

PBD reformulates the governing equation-of-motion as:
0 = ∇θEα(θ, fx), (4)

where we define:
Eα(θ, f) ≜ Iα(θ) − ∑

x∈C

X(x, θ)T fx − θT τ

Iα(θ) ≜ ∫
x∈R

ρ∥X(x, θ) − (1 + α)X(x, θ−) + αX(x, θ−−)∥2

2α∆t2
dx,

and the integral in Iα is taken over the entire robot R. If
we assume that θ is a continuous trajectory θ(t) and θ =

θ(t+α∆t), θ− = θ(t), θ−− = θ(t−∆t), it has been shown in
[26] that (4) will converge to (1) as ∆t → 0. This integral
can be evaluated analytically in a similar way as deriving the
generalized mass matrix. By comparison with (1)+(2), (4) is
always solvable under arbitrarily large timestep sizes because
it is integrable. In other words, solving for θ is equivalent to
the following optimization:

argmin
θ

Eα(θ, fx).

Note that we assume fx is a constant in our derivation for
the integrability of Eα (i.e. PBD dynamics can be written
as 0 = ∇θEα(θ, fx) for some Eα). More generally, PBD
can still take an integrable form when the external forces
are conservative. In scenarios with dissipative force models
such as Coulomb frictional forces, both integrability and
PBD’s feasibility guarantee are lost, just like Newton-Euler’s
equation. In this work, we propose an algorithm that solves
the system of nonlinearity equations with dissipative force
models with guaranteed solvability.

IV. NONCONVEX MDP

Our main idea is to combine backward time-integration
and frictional contact force computation. In an MDP solver,
the force at each contact point fx belongs to a convex feasible
space. We assume that the feasible space is a polytope with
a set of vertices denoted as vjx with j = 1,⋯, Vx. Here Vx is
the number of vertices used to model the polytope at contact
point x. We assume that all the vertices vjx are assembled
into a matrix vx = (v1

x,⋯, v
Vx
x) so feasible fx is:

fx ∈ {vxwx∣wx ⪰ 0,1Twx ≤ 1} , (5)
where wx is the weights of convex combination and 1 is an
all-one vector.

Remark 2: The assumption of feasible contact force being
a polytope is essential for our convergence proof. Under this
assumption, we will extensively use the property that fx has
a bilinear form of vxwx, where wx is bounded and vx is
sufficiently smooth.

A. NMDP Formulation

When modeling an inelastic rigid contact, vx is set to
the vertices of the linearized frictional cone if X(x, θ) is in
contact or penetrating the environment, and vx is set to zero
otherwise. However, the switch between the in-contact and
off-contact state is non-differentiable which is undesirable in
applications such as differential dynamic programming [32]
and trajectory optimization [23]. Therefore, we assume that
vx is a robot-pose-dependent, differentiable function vx(θ).
This formulation is compatible with the recently proposed
learning-based granular wrench space model [35] and can
potentially generalize to other contact models. To determine
the weights wx, MDP solves an optimization that minimizes
the kinetic energy at time instance α∆t. Conventional MDP
solver uses the linearized dynamic system Equation 3 and
discretizes vx at θ−, resulting in a QP problem. Instead,
our NMDP scheme uses the backward-Euler integrator Equa-
tion 1 and discretizes vx at θ. As a result, we need to solve

the following nonlinear constrained optimization:
argmin

θ,w
K(θ) s.t. 0 = Gα(θ,w)

K(θ) ≜
1

2
θ̇TH(θ)θ̇

Gα(θ,w) ≜H(θ)θ̈ +C(θ, θ̇)−

∑
x∈C

∇θX(x, θ)T vx(θ)wx − τ,

(6)

where we assume the use of recursive Newton-Euler’s equa-
tion and w is a concatenation of all wx. In the rest of the
paper, we propose two algorithms to solve (6) and analyze
their convergence.

B. NMDP Solver

Since (6) is a general nonlinear constrained optimization,
it can be solved using general-purpose optimizers such as
the interior point method [21]. However, these methods are
not guaranteed to converge to a first-order stationary point
due to infeasibility. Instead, we consider two variants of
the projected gradient method (PGM), which we prove to
converge to a first order stationary point. PGM starts from a
feasible initial guess and updates a search direction of w by
solving:
argmin

∆θ,∆w
K(θ +∆θ) s.t. Gα(θ +∆θ,w +∆w) = 0 (7)

K(θ +∆θ) ≜K(θ) + ∇θK
T∆θ +

1

2
∆θ∇2

θK∆θ

Gα(θ +∆θ,w +∆w) ≜ ∇θGα∆θ +∇wG∆w.

If ∇θGα is non-singular, then (7) is equivalent to the
following QP:

argmin
∆w

−∇θK
T
∇θGα

−1
∇wG∆w + ∥w∥

2
/γ (8)

1

2
∆wT∇wG

T
∇θGα

−T
∇

2
θK∇θGα

−1
∇wG∆w

s.t. (w +∆w) ⪰ 0,1T (w +∆w) ≤ 1,

where we use γ to facilitate line search. The matrix 1 is a
concatenation of constraints that wx sums to less than one on
each contact point x. After solving for a new w ← w +∆w,
we update θ by projecting it to the Gα(θ,w) = 0 manifold
using the following recursion:

θ ← θ −∇θGα
−1Gα(θ,w). (9)

Note that we have only used the first-order derivatives of
Gα in (8) so the PGM has linear convergence speed at best.
Our second version of PGM differs in that we ignore all
gradients of the function vx, i.e. zeroth-order update for vx.
This requirement is inspired by the recent work [35] where
the contact wrench space is learned from real-world data. In
this case, computing derivatives of vx involves costly back-
propagation through a learning model, e.g. neural networks,
sublevel sets of high-order polynomials [34], or radial basis
functions [35]. Mathematically, the derivatives of vx only
occurs in ∇θGα and we denote its zeroth-order, inexact
variant as:
∇θḠα(θ,w) ≜ ∇θGα(θ,w) + ∑

x∈C

∇θX(x, θ)T∇θvx(θ)wx.

Using ∇θḠα, we derive the following, inexact counterpart
of QP (Equation 8):

argmin
∆w

−∇θK
T
∇θḠ

−1
α ∇wG∆w + ∥w∥

2
/γ (10)

1

2
∆wT∇wG

T
∇θḠ

−T
α ∇

2
θK∇θḠ

−1
α ∇wḠα∆w

s.t. (w +∆w) ⪰ 0,1T (w +∆w) ≤ 1,

and the following, inexact counterpart of manifold projection
(Equation 9):

θ ← θ −∇θḠ
−1
α Gα(θ,w). (11)

The pipeline of both first- and zeroth-order PGM is outlined
in Algorithm 1.

Algorithm 1: (First- / Zeroth-) Order PGM(α,∆t, θ−, θ−−)

1: w0 ← 0, θ0 ← θ−, γ
0 ← 1, η > 1

2: while ∥Gα(θ0,w0)∥ ≠ 0 do
3: Compute (9) or (11) (θ = θ0,w = w0)
4: for k = 1,⋯ do
5: Solve (8) or (10) (θ = θk−1,w = wk−1) for wk

6: θk ← θk−1

7: while ∥Gα(θk,wk)∥ ≠ 0 do
8: Compute (9) or (11) (θ = θk,w = wk)
9: if K(θk) >K(θk−1) then

10: γ ← ηγ, θk ← θk−1,wk ← wk−1

11: else
12: γ ← γ/η
13: if ∥θk − θk−1∥∞ < ε then
14: Return θk,wk

V. CONVERGENCE ANALYSIS

We analyze the convergence of Algorithm 1 in both first-
and zeroth-order cases. PGM cannot proceed if ∇θGα is
rank-deficient and does not have an inverse. In addition, the
manifold projection substeps in PGM can diverge without
using line-search strategies. Finally, the outer-loop of the
zeroth-order PGM can fail to converge by using an inexact
gradient. We take the following three assumptions to show
that first-order PGM and zeroth-order manifold projection
are well-defined and convergent:

A 5.1: X ∈ C∞.
A 5.2: σmin [∫x∈R

ρ
∆t2

∇θX
T∇θXdx] (θ−) ≥ σX > 0.

A 5.3: ∂3vx
∂θ3

∈ C0.
To show that zeroth-order PGM is also convergent, we need
an additional assumption:

A 5.4: ∇wG has full row rank.
Remark 3: A 5.1 and A 5.2 can be satisfied by choosing

appropriate parameterizations of robot joints. When all the
hinge joints are parameterized using Euler angles, then A 5.1
is satsified. A 5.2 requires that the kinetic energy K(θ)
is strictly convex at θ−. In other words, for any infinites-
imal perturbation δθ, there must be some points x ∈ R

undergoing infinitesimal movements δx with non-vanishing
limδθ→0 δx/δθ. This assumption can only be violated when
the robot is suffering from Gimbal lock of Euler angles,
which can be easily resolved by moving the singular point
away from the current configuration.

Remark 4: A 5.3 indicates that NMDP can only han-
dle smooth contact force models. Stiff and penetration-free

contacts between two rigid objects cannot be handled by
our method. However, smooth force models are essential
for gradient-based motion planning and control [23], [27],
[32]. In addition, stiff contacts can be approximated by
smooth contacts. For example, a linearized frictional cone
is a polytope with vertices being vix = n+t

iµ, where n is the
contact normal and ti is a direction on the tangential plane.
We modify this definition to satisfy A 5.3 by setting vix =

d(X(x, θ))3(n + tiµ), where d(X(x, θ)) is the penetration
depth of the contact point x. This force model can be made
arbitrarily stiff by scaling vix with a big constant.

Remark 5: A 5.4 is a major limitation of the zeroth-order
PGM. Note that vx = 0 and thus ∇wG has a zero rank
when a contact point x does not penetrate the environment.
However, once the penetration depth becomes non-zero, then
vx ≠ 0 and ∇wG can have a full row rank. A 5.4 disallows
such jumps in the rank of ∇wG. A simple workaround is
to slightly modify the contact model by allowing small,
non-zero contact forces even when robot is not in contact
with the environment. One method to satisfy A 5.4 is to set
vix = (d(X(x, θ))3 + ζ)(n+ tiµ), where ζ is a small positive
constant. In our implementation, we ignore A 5.4 and have
never observed divergence behavior due to the violation of
this assumption.

Under the above assumptions, our main results are:

Theorem 5.5 (First-Order PGM Convergence):
Assuming A 5.1, A 5.2, A 5.3, there exists α4 > 0,
such that for all α ≤ α4, the first order Algorithm 1 will
generate a monotonically decreasing sequence of {K(θk)}
where each θk satisfies G(θk,wk) = 0.

Theorem 5.6 (Zeroth-Order PGM Convergence):
Assuming A 5.1, A 5.2, A 5.3, A 5.4, there exists α5 > 0,
such that for all α ≤ α5, the zeroth-order Algorithm 1 will
generate a monotonically decreasing sequence of {K(θk)}
where each θk satisfies G(θk,wk) = 0.

The proofs of these results are deferred to Section IX.
Both results imply that timestep sizes cannot be arbitrarily
large, otherwise PGM can fail to converge. In addition, the
divergence behavior of PGM can only happen in the manifold
projection substep when the norm ∥Gα∥, ∥Ḡα∥ does not
decrease after apply Equation 9 or Equation 11, which is an
indicator of the use of smaller timestep sizes. As a result, we
can design a robust articulated body simulator using adaptive
timestep control as illustrated in Algorithm 2.

Algorithm 2 starts by time-integrating using α = 1. If PGM
diverges, we cut the timestep size by half, i.e. setting α = 0.5
and recurse. Note that simulate(α,∆t, θ−, θ−−) implies 1) the
last timestep size is ∆t and 2) the desired next time instance
is α∆t ahead. If PGM diverges, we slice timestep size by
half and call simulate(α/2,∆t/2, θ−, θ−−) for the first half.
However, further subdivision might happen for the first half
due to recursion, so we return the last timestep size, say
∆t∗. Next, we time integrate the second half. Given that last
timestep size is ∆t∗ and our desired α∗∆t∗ = α∆t/2, we
must have α∗ = (α∆t)/(2∆t∗).

Fig. 2: The robots’ walking (top) and jumping (bottom) trajectories tracked using the stable PD controller and simulated using our
NMDP solver, where we use ∆t = 0.05s.

Algorithm 2: simulate(α,∆t, θ−, θ−−)

1: θ,w ←PGM(α,∆t, θ−, θ−−)
2: if Converged then
3: Return α∆t, θ, θ−
4: else
5: ∆t∗, θ∗, θ∗− ← simulate(α/2,∆t, θ−, θ−−)
6: α∗ ← (α∆t)/(2∆t∗)
7: ∆t∗∗, θ∗∗, θ∗∗− ← simulate(α∗,∆t∗, θ∗, θ∗−)
8: Return ∆t∗∗, θ∗∗, θ∗∗−

A. NMDP Working with PBD

Our analysis and formulation assumes the use of Newton-
Euler’s equation. An equivalent form of NMDP can be for-
mulated for the position-based dynamics via a new definition
of K(θ) and Gα as follows:

argmin
θ,w

K(θ) s.t. 0 = Gα(θ,w)

K(θ) ≜∫
x∈R

ρ∥X(x, θ) −X(x, θ−)∥
2

2∆t2
dx

Gα ≜∇θIα(θ) − ∑
x∈C

∇θX(x, θ)T vx(θ)wx − τ,

(12)

and all the convergence analysis applies to Equation 6 and
Equation 12 alike. We refer readers to Section IX for all the
proof.

VI. EVALUATIONS

We evaluate the performance of NMDP in various sce-
narios. We implement both versions of NMDP (Equation 6
and Equation 12) using C++ and Eigen [13], where the
optimizations can be solved using both first- and zeroth-
order PGM. All the matrix inversions in manifold projection
are solved by a rank-revealing LU factorization. As long
as the factorization detects that the matrix is near singular
(i.e. A 5.2 is violated) or the norm ∥Gα∥, ∥Ḡα∥ does not
decrease, we restart PGM with smaller timestep sizes. In each
outer loop of PGM, a QP is solved and the problem data of
these QP are quite similar. We use the parametric QP solver
[10] that can make use of these similarities to accelerate
computation. Finally, we set ε = 10−6, η = 1.5, ζ = 10−3.

As illustrated in Figure 2, we conduct experiments on the
Robosimian by having different simulators to track a pre-
scribed robot walking or jumping trajectory using the stable
PD controller [31]. The stable PD controller is consistent
with the backward-Euler integrator, which uses θ, θ̇ instead
of θ−, θ̇− as the target state to be tracked. We compare the
performance of the following simulators:

● NE-NMDP-PGM/NE-NMDP-ZOPGM: Equation 6
solved using first-/zeroth-order PGM.

● PBD-NMDP-PGM/PBD-NMDP-ZOPGM: Equation 12
solved using first-/zeroth-order PGM.

● NE-MDP: linearized Newton-Euler’s equation with con-
tact forces solved using MDP.

Stability Under Large Timestep Sizes: We track a robot
jumping trajectory that uses symmetric poses. Since the
Robosimian’s body shape is also symmetric, the torso in
the tracked trajectory should have zero tilt angles from the
vertical axis, which is our groundtruth. In Figure 3 (ab), we
plot the torso’s tile angle predicted by NE-MDP and NE-
NMDP-PGM under different timestep sizes. NE-MDP is only
stable when ∆t ≤ 7ms and the simulator explodes under
larger ∆t. Even when ∆t ≤ 7ms, the tile angle suffers from
severe oscillation. In comparison, NE-NMDP-PGM is stable
when ∆t increases from 5ms to 50ms and the predicted
tile angle oscillation is relatively small. We further plot the
tile angle sequence predicted by the other three variants
of PGM in Figure 3 (cde), the oscillations are consistently
small. When using PGM with ∆t ≤ 50ms, we have never
experienced any divergence behaviors so Algorithm 2 is
never needed. But divergence happens in ZOPGM and we
observe larger tile angle oscillation in Figure 3 (ce).

Consistent Prediction: The tracked robot jumping trajec-
tory lasts for 10 seconds with 5 repeated jumping behaviors.
As a result, the expected torso height should be a periodic
function. In Figure 4, we plot the torso height trajectory pre-
dicted using the five methods. With ∆t ≤ 7ms, the trajectories
generated by NE-MDP are suffering from relatively large
variations. While all four PGM variants can consistently
predict a periodic function when ∆t increases from 5ms to
50ms. A similar result is observed in the walking trajectory.
As shown in Figure 5, the groundtruth walking distance is a
linear function of time. The trajectories predicted using NE-
MDP exhibit a large variations with different timestep sizes.
The consistency of NE-NMDP-(ZO)PGM are much better
and that of PBD-NMDP-(ZO)PGM are the best. Compared
with NE-NMDP-(ZO)PGM, the additional stability and con-
sistency of PBD-NMDP-(ZO)PGM are presumably due to
the fact that Euclidean space discretization is more accurate
than that in the configuration space [26].

Computational Cost: We summarize the computational
performance by collecting and analyzing all the timesteps in
the four trajectories of Figure 2 simulated at ∆t = 50ms.
Figure 6 (a) profiles the instantaneous framerate, of which
MDP is the most efficient involving a single QP solve.

0 2 4 6 8 10
Physical Time (s)

−0.2

−0.1

0.0

0.1

0.2
To

rs
o

Ti
lt

(ra
d)

Δt=0.001
Δt=0.002
Δt=0.003
Δt=0.004
Δt=0.005

(a)

0 2 4 6 8 10
Physical Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o
Ti

lt
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(b)

0 2 4 6 8 10
Physical Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o
Ti

lt
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(c)

0 2 4 6 8 10
Physical Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o
Ti

lt
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(d)

0 2 4 6 8 10
Physical Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o
Ti

lt
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(e)

Fig. 3: The torso tilt of the tracked jumping trajectory. (a): NE-MDP (b): NE-NMDP-PGM (c): NE-NMDP-ZOPGM (d): PBD-NMDP-
PGM (e): PBD-NMDP-ZOPGM

0 2 4 6 8 10
Physical Time (s)

−0.4

−0.2

0.0

0.2

0.4

To
rs

o
He

ig
ht

 (m
)

Δt=0.001
Δt=0.002
Δt=0.003
Δt=0.004
Δt=0.005

(a)

0 2 4 6 8 10
Physical Time (s)

−0.4

−0.2

0.0

0.2

0.4

To
rs

o
He

ig
ht

 (m
)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(b)

0 2 4 6 8 10
Physical Time (s)

−0.4

−0.2

0.0

0.2

0.4

To
rs

o
He

ig
ht

 (m
)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(c)

0 2 4 6 8 10
Physical Time (s)

−0.4

−0.2

0.0

0.2

0.4

To
rs

o
He

ig
ht

 (m
)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(d)

0 2 4 6 8 10
Physical Time (s)

−0.4

−0.2

0.0

0.2

0.4

To
rs

o
He

ig
ht

 (m
)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(e)

Fig. 4: The torso height of the tracked jumping trajectory. (a): NE-MDP (b): NE-NMDP-PGM (c): NE-NMDP-ZOPGM (d): PBD-
NMDP-PGM (e): PBD-NMDP-ZOPGM

0.0 2.5 5.0 7.5 10.0
Physical Time (s)

0.0

2.5

5.0

7.5

10.0

W
al

ki
ng

 D
ist

an
ce

 (m
) Δt=0.001

Δt=0.002
Δt=0.003
Δt=0.004
Δt=0.005

(a)
0.0 2.5 5.0 7.5 10.0

Physical Time (s)
0.0

2.5

5.0

7.5

10.0

W
al

ki
ng

 D
ist

an
ce

 (m
) Δt=0.030

Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(b)
0.0 2.5 5.0 7.5 10.0

Physical Time (s)
0.0

2.5

5.0

7.5

10.0

W
al

ki
ng

 D
ist

an
ce

 (m
) Δt=0.030

Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(c)
0.0 2.5 5.0 7.5 10.0

Physical Time (s)
0.0

2.5

5.0

7.5

10.0

W
al

ki
ng

 D
ist

an
ce

 (m
) Δt=0.030

Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(d)
0.0 2.5 5.0 7.5 10.0

Physical Time (s)
0.0

2.5

5.0

7.5

10.0

W
al

ki
ng

 D
ist

an
ce

 (m
) Δt=0.030

Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(e)

Fig. 5: The distance of the tracked walking trajectory. (a): NE-MDP (b): NE-NMDP-PGM (c): NE-NMDP-ZOPGM (d): PBD-NMDP-
PGM (e): PBD-NMDP-ZOPGM

0 50 100 150 200 250
Frames Per Second (Hz)

0

200

400

600

800

1000

#F
ra

m
e

NE-NMDP-ZOPGM
NE-NMDP-PGM
NE-MDP

(a)
0 20 40 60 80

#Iteration
0

200

400

600

800

1000

#F
ra
m
e

NE-NMDP-ZOPGM
NE-NMDP-PGM

(b)
0.005 0.010 0.015 0.020 0.025

Δt (s)
0

10

20

30

40

#I
te

ra
tio

n

NE-NMDP-ZOPGM
NE-NMDP-PGM

(c)
0 2 4 6 8 10

Physical Time (s)

0.02

0.03

0.04

0.05

Δt
 (s

)

NE-NMDP-ZOPGM
NE-NMDP-PGM

(d)

Fig. 6: A performance comparison of different methods. (a): Histogram of framerates (b): Histogram of number of outer iterations per
frame (c): Number of outer iterations against ∆t (d): Adaptive timestep size

PGM does not incur a significant sacrifice in framerate while
ZOPGM is significantly slower. Figure 6 (b) profiles the
number of outer iterations of Algorithm 1 until convergence
and Figure 6 (c) plots the average number of outer itera-
tions against ∆t. These figures show that ZOPGM is an
approximately one order of magnitude slower than PGM,
but ZOPGM provides the extra convenience that analytic
derivatives of vx(θ) is not needed. Finally, Figure 6 (d)
shows the smallest timestep size chosen by Algorithm 2
for PGM and ZOPGM. At ∆t = 50ms, PGM is always
convergent. ZOPGM is convergent for most timesteps, but
∆t needs to get down to 25ms during some critical time
instances (e.g. when robot changes contact state).

VII. CONCLUSION & DISCUSSION

We present NMDP, a backward-Euler time integration
scheme for articulated bodies under generalized contact
models. The key to our formulation is the representation of
contact forces as a convex combination of vertices of the
feasible contact wrench space. To model generalized contact
models, we assume that these vertices are dependent on
the robot pose. Following the idea of backward-Euler time
integrator, we discretize both the articulated body dynamics
and the vertices of contact wrench spaces at the next time

instance instead of the current one. We solve the constrained
optimization using a projected gradient method. Our analysis
proves that NMDP has guaranteed convergence under small
timestep sizes and a robust simulator can be built using
an adaptive timestep size control algorithm. Empirically,
we show that this scheme has better stability under large
timestep sizes and consistency over varying timestep sizes.

We plan to address several limitations in our future work.
First, the main idea of NMDP is not limited to articulated
bodies and can be extended to high-dimensional dynammic
systems such as deformable objects. However, it requires
exact inversion of the constraint Jacobian, which is imprac-
tical in high-dimensional scenarios. Second, we assume a
small set of known contact points. When new contacts are
detected, we do not handle them in our implementation.
Third, the generalized contact model needs to be smooth
and cannot provide collision-free guarantees. Finally, we plan
to evaluate the performance of optimization-based motion
planners and controllers using NMDP as the underlying
integration model.

VIII. ACKNOWLEDGEMENT

This work is partially funded by NSF Grant #1911087 and
authors thank Mengchao Zhang for proofreading the paper.

REFERENCES

[1] M. Anitescu, “A fixed time-step approach for multibody dynamics with contact
and friction,” in Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 4, 2003,
pp. 3725–3731 vol.3.

[2] M. Anitescu, “Optimization-based simulation of nonsmooth rigid multibody
dynamics,” Mathematical Programming, vol. 105, no. 1, pp. 113–143, 2006.

[3] J.-P. Aubin, Viability Theorems for Ordinary and Stochastic Differential Equa-
tions. Boston, MA: Birkhäuser Boston, 2009, pp. 19–52.

[4] J. Bender, M. Müller, and M. Macklin, “A Survey on Position Based Dynamics,”
in EG 2017 - Tutorials, A. Bousseau and D. Gutierrez, Eds. The Eurographics
Association, 2017.

[5] G. E. Brown, M. Overby, Z. Forootaninia, and R. Narain, “Accurate dissipative
forces in optimization integrators,” ACM Trans. Graph., vol. 37, no. 6, Dec.
2018. [Online]. Available: https://doi.org/10.1145/3272127.3275011

[6] J. C. Butcher and N. Goodwin, Numerical methods for ordinary differential
equations. Wiley Online Library, 2008, vol. 2.

[7] E. Drumwright and D. A. Shell, “Modeling contact friction and joint friction
in dynamic robotic simulation using the principle of maximum dissipation,” in
Algorithmic foundations of robotics IX. Springer, 2010, pp. 249–266.

[8] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based robotics:
Comparison of bullet, havok, mujoco, ode and physx,” in 2015 IEEE inter-
national conference on robotics and automation (ICRA). IEEE, 2015, pp.
4397–4404.

[9] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[10] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpoases:

A parametric active-set algorithm for quadratic programming,” Mathematical
Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The Johns
Hopkins University Press, 1996.

[12] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid bodies with
stacking,” ACM transactions on graphics (TOG), vol. 22, no. 3, pp. 871–878,
2003.

[13] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.
[14] R. A. Horn, R. A. Horn, and C. R. Johnson, Topics in matrix analysis.

Cambridge university press, 1994.
[15] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang, “A moving

least squares material point method with displacement discontinuity and two-
way rigid body coupling,” ACM Transactions on Graphics (TOG), vol. 37, no. 4,
pp. 1–14, 2018.

[16] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai, “Staggered projections
for frictional contact in multibody systems,” in ACM SIGGRAPH Asia 2008
papers, 2008, pp. 1–11.

[17] J. Lee, C. K. Liu, F. C. Park, and S. S. Srinivasa, “A linear-time variational
integrator for multibody systems,” in Algorithmic Foundations of Robotics XII.
Springer, 2020, pp. 352–367.

[18] G.-H. Liu, T. Chen, and E. A. Theodorou, “Differential dynamic programming
neural optimizer,” arXiv preprint arXiv:2002.08809, 2020.

[19] R. D. Maladen, Y. Ding, P. B. Umbanhowar, A. Kamor, and D. I. Goldman,
“Biophysically inspired development of a sand-swimming robot,” in Robotics:
Science and Systems. Georgia Institute of Technology, 2011.

[20] J. Marsden and M. West, “Discrete mechanics and variational integrators,” Act
Numerica, vol. 10, no. 5, pp. 357–514, 2001.

[21] S. Mehrotra, “On the implementation of a primal-dual interior point method,”
SIAM Journal on optimization, vol. 2, no. 4, pp. 575–601, 1992.

[22] B. V. Mirtich, Impulse-based dynamic simulation of rigid body systems. Uni-
versity of California, Berkeley, 1996.

[23] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex behaviors
through contact-invariant optimization,” ACM Transactions on Graphics (TOG),
vol. 31, no. 4, pp. 1–8, 2012.

[24] P. Painlevé, “Sur les lois du frottement de glissement,” Nonlinear Dynamics,
vol. 8, no. 5, pp. 977–979, 2012.

[25] Z. Pan and D. Manocha, “Position-based time-integrator for frictional articulated
body dynamics,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–8.

[26] Z. Pan and D. Manocha, “Time Integrating Articulated Body Dynamics Using
Position-Based Collocation Methods,” in Algorithmic Foundations of Robotics
XIII, M. Morales, L. Tapia, G. Sánchez-Ante, and S. Hutchinson, Eds. Cham:
Springer International Publishing, 2020, pp. 673–688.

[27] Z. Pan, B. Ren, and D. Manocha, “Gpu-based contact-aware trajectory
optimization using a smooth force model,” in Proceedings of the 18th Annual
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’19. New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3309486.3340246

[28] T. Preclik, S. Eibl, and U. Rüde, “The maximum dissipation principle in rigid-
body dynamics with inelastic impacts,” Computational Mechanics, vol. 62, no. 1,
pp. 81–96, 2018.

[29] J. Sleiman, J. Carius, R. Grandia, M. Wermelinger, and M. Hutter, “Contact-
implicit trajectory optimization for dynamic object manipulation,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 6814–6821.

[30] D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM review,
vol. 42, no. 1, pp. 3–39, 2000.

[31] J. Tan, K. Liu, and G. Turk, “Stable proportional-derivative controllers,” IEEE
Computer Graphics and Applications, vol. 31, no. 4, pp. 34–44, 2011.

[32] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex be-
haviors through online trajectory optimization,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 4906–4913.

[33] V. Vasilopoulos, I. S. Paraskevas, and E. G. Papadopoulos, “Compliant terrain
legged locomotion using a viscoplastic approach,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2014, pp. 4849–4854.

[34] J. Zhou, M. T. Mason, R. Paolini, and D. Bagnell, “A convex polynomial model
for planar sliding mechanics: theory, application, and experimental validation,”
International Journal of Robotics Research, 2018.

[35] Y. Zhu, L. Abdulmajeid, and K. Hauser, “A data-driven approach for fast
simulation of robot locomotion on granular media,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 7653–7659.

IX. APPENDIX: PROOF

We define some convenient shorthand notations.

Gα(θ,w) =
1

α
A(θ) +B(θ,w)

A(θ) =∫
x∈R

ρ

∆t2
∇θX

T
(X(x, θ) −X(x, θ−))dx

B(θ,w) =∫
x∈R

ρ

∆t2
∇θX

T
(X(x, θ−−) −X(x, θ−))dx−

∑
x∈C

∇θX(x, θ)T vx(θ)wx − τ.

Note that all variables or functions that depend on α will be
labeled using a subscript, and vice versa.

A. Continuous Manifold Projection

We begin our analysis by showing that θ satisfying
Gα(θ,w) = 0 can be arbitrarily close to θ− by using
sufficiently small α. This can be proved by analyzing the
following Lyapunov candidate:

Vα(θ,w) = ∥Gα(θ,w)∥
2
=

1

α2
ATA +

2

α
ATB +BTB.

We prove basic properties of boundedness and convexity:
Lemma 9.1: Assuming A 5.1,A 5.2,A 5.3, there exists an

r > 0, such that for all feasible w, the following properties
hold within B(θ−, r):

1) σmin(∇θGα) ≥
σX

2α
− σB .

2) σmin(∇
2
θVα) ≥

σ2
X

2α2 −
2
α
σAB − σBB .

3) ∥∇θGα∥ ≤
1
α
M1
A +M

1
B .

4) ∥∇2
θGα∥ ≤

1
α
M2
A +M

2
B .

5) ∥∇θVα∥ ≤
1
α2M

1
AA +

1
α
M1
AB +M1

BB .
6) ∥∇2

θVα∥ ≤
1
α2M

2
AA +

1
α
M2
AB +M2

BB .
7) ∥∇3

θVα∥ ≤
1
α2M

3
AA +

1
α
M3
AB +M3

BB .
8) ∥∇θVα(θ−,w)∥ ≤ 1

α
MAG +MBG.

9) ∥Gα(θ−,w)∥ ≤MG.
10) ∥B(θ,w) −B(θ′,w′)∥ ≤M∆B .

Proof: These are immediate results of continuity of
functions and singular values of matrices. 1):
σmin(∇θGα)

=σmin(
1

α
∇θA +∇θB)

≥σmin(
1

α
∇θA) − σmax(∇θB) ([14, Equation 3.3.17])

≥σmin(
1

2α
∇θA(θ−)) − σmax(∇θB) ([11, Corollary 8.6.2],A 5.1)

≥σX
2α

− σmax(∇θB) (A 5.2)

≥σX
2α

− σB . ([11, Corollary 8.6.2],A 5.1,A 5.3)

2):
σmin(∇2

θVα)

=σmin(
1

α2
∇2
θ[ATA] + 2

α
∇2
θ[ATB] + ∇2

θ[BTB])

≥ 1

α2
σmin(∇2

θ[ATA]) − σmax(
2

α
∇2
θ[ATB])−

σmax(∇2
θ[BTB])) ([14, Equation 3.3.17])

https://doi.org/10.1145/3272127.3275011
https://doi.org/10.1145/3309486.3340246

≥ 1

2α2
σmin(∇2

θ[ATA](θ−)) − σmax(
2

α
∇2
θ[ATB])−

σmax(∇2
θ[BTB])) ([11, Corollary 8.6.2],A 5.1)

≥ σ
2
X

2α2
− σmax(

2

α
∇2
θ[ATB]) − σmax(∇2

θ[BTB]) (A 5.2)

≥ σ
2
X

2α2
− 2

α
σAB − σBB . ([11, Corollary 8.6.2],A 5.1,A 5.3)

3),4):

∥∇
∗
θGα∥ = ∥

1

α
∇
∗
θA +∇

∗
θB∥

≤
1

α
∥∇

∗
θA∥ + ∥∇

∗
θB∥ (triangle)

≤
1

α
M∗
A +M

∗
B . (A 5.1,A 5.3)

5),6),7):

∥∇
∗
θVα∥ = ∥

1

α2
∇
∗
θ[A

TA] +
2

α
∇
∗
θ[A

TB] + ∇
∗
θ[B

TB]∥

≤
1

α2
∥∇

∗
θ[A

TA]∥ +
2

α
∥∇

∗
θ[A

TB]∥ + ∥∇
∗
θ[B

TB]∥

(triangle)

≤
1

α2
M∗
AA +

2

α
M∗
AB +M∗

BB . (A 5.1,A 5.3)

8):
∥∇θVα(θ−,w)∥ = ∥∇θGα(θ−)

TGα(θ−,w)∥

=∥(
1

α
∇θA(θ−) + ∇θB(θ−))

TB(θ−,w)∥

≤
1

α
∥∇θA(θ−)

TB(θ−,w)∥ + ∥∇θB(θ−)
TB(θ−,w)∥

(triangle)

≤
1

α
MAG +MBG. (A 5.1,A 5.3)

9):

∥Gα(θ−,w)∥ ≤ 1

α
∥A(θ−)∥ + ∥B(θ−,w)∥ = ∥B(θ−,w)∥ ≤MG.

10): by A 5.1,A 5.3 and boundedness of feasible w.
Also in the region B(θ−, r), we have that Equation 9, Equa-
tion 7, and Algorithm 1 are well-defined because Lemma 9.1
implies that ∇θGα is invertible:

Corollary 9.2: Assuming A 5.1,A 5.2,A 5.3, for r chosen
as in Lemma 9.1, Algorithm 1 is well-defined as long as
{θk} ⊂ B(θ−, r).

We can easily show that in a small vicinity of θ−, manifold
projection always has a solution:

Theorem 9.3 (Continuous Convergence): Assuming
A 5.1,A 5.2,A 5.3, for r chosen as in Lemma 9.1, there
exists α1 > 0, such that for any α ≤ α1 and feasible w,
the solution to Gα(θ,w) = 0 computed using the negative
gradient flow θ̇ = −∇θVα from initial guess θ− is within
B(θ−, r).

Proof: Solution Boundedness: Consider Vα(θ,w) −
Vα(θ−,w), with θ ∈ ∂B(θ−, r). We have strong convexity
along line-segment connecting θ, θ+ and by Lemma 9.1:

Vα(θ,w) − Vα(θ−,w)

≥∇θVα(θ−,w)T (θ − θ−) + (σ
2
X

2α2
− 2

α
σAB − σBB)∥θ − θ−∥2

≥r2(σ
2
X

2α2
− 2

α
σAB − σBB) − r(1

α
MAG +MBG) = O(1

α2
).

If we choose small enough α1 such that the last equation is
larger than zero for all α ≤ α1, then Vα becomes a Lyapunov
function of the gradient flow, restricting the solution to
B(θ−, r) due to Nagumo’s Theorem [3]. Convergence: We
still need to show the gradient flow converges to a solution
of Gα(θ,w) = 0, which is trivial due to the following
inequality:

V̇α = − ∥∇θVα∥
2
= −∥GTα∇θGα∇θGα

TGα∥

≤ − (
σX
2α

− σB)
2
∥Gα∥

2
= −(

σX
2α

− σB)
2Vα.

We can again choose small enough α1 such that the coeffi-
cient of Vα in the last inequality is smaller than zero.
Lemma 9.3 implies that, with sufficiently small α, PGM
will always generate a sequence that is within B(θ−, r) if
manifold projection is solved by exactly time-integrating the
negative gradient flow.

B. Discrete First-Order Manifold Projection

In this section, we go beyond Lemma 9.3 and analyze
the practical discrete manifold projection algorithm, i.e.
Equation 9. Let’s define the shorthand notation:

θ+ = θ −∇θGα
−1Gα(θ,w).

We first analyze the property of θ+, i.e. one iteration of
manifold projection. We show that the relative change θ+−θ
is bounded:

Lemma 9.4: Assuming A 5.1,A 5.2,A 5.3, Vα(θ,w) ≤

MV where MV is some α-independent constant. For r
chosen as in Lemma 9.1, there exists α2 > 0, such that for
any α ≤ α2 and feasible w, ∥θ+−θ∥ ≤ r/2 if θ+, θ ∈ B(θ−, r).

Proof: If we choose α2 ≤ α1:
∥θ+ − θ∥ = ∥∇θGα

−1Gα∥

≤∥Gα∥(
σX
2α

− σB)
−1

≤
√
MV (

σX
2α

− σB)
−1

≤ r/2.

The last inequality above holds by choosing small enough
α2 and the proof is complete.
We then show that it is possible to choose sufficiently small
α such that the absolute norm of θ+ is bounded:

Lemma 9.5: Assuming A 5.1,A 5.2,A 5.3, Vα(θ,w) ≤

MV where MV is some α-independent constant. For any
β ∈ (0,1] and r chosen as in Lemma 9.1, there exists
α3(β) > 0, such that for any α ≤ α3(β) and feasible w,
the following properties hold:

1) If θ ∈ B(θ−, rβ/2), then θ+ ∈ B(θ−, rβ/2).
2) Vα(θ

+,w) ≤ 3Vα(θ,w)/4.
Proof: Monotonic Reduction: As long as α ≤ α3(β) ≤

α2, we have strong convexity over the line-segment connect-
ing θ, θ+. This is because θ ∈ B(θ−, r), θ+ ∈ B(θ−, r(1 +
β)/2) ⊂ B(θ−, r), and Lemma 9.1 implies strong convexity.
By the Taylor’s expansion theorem, we have:
Vα(θ+,w)

=Vα(θ,w) + ∇θVαT (θ+ − θ)+
1

2
(θ+ − θ)T∇2

θVα(θ+ − θ) +RV

=1

2
(θ+ − θ)T∇2

θVα(θ+ − θ) +RV

=1

2
(θ+ − θ)T∑

i

∇2
θ[Gα]i[Gα]i(θ+ − θ) +RV + 1

2
Vα(θ,w)

≤1

2
(1

α
M2
A +M2

B)∥θ+ − θ∥2∥Gα∥ +
1

2
Vα(θ,w)+

1

6
(1

α2
M3
AA +

1

α
M3
AB +M3

BB)∥θ+ − θ∥3

≤1

2
(1

α
M2
A +M2

B)(σX
2α

− σB)−2Vα(θ,w)1.5 + 1

2
Vα(θ,w)+

1

6
(1

α2
M3
AA +

1

α
M3
AB +M3

BB)(σX
2α

− σB)−3Vα(θ,w)1.5

≤1

2
(1

α
M2
A +M2

B)(σX
2α

− σB)−2
√
MV Vα(θ,w) + 1

2
Vα(θ,w)+

1

6
(1

α2
M3
AA +

1

α
M3
AB +M3

BB)(σX
2α

− σB)−3
√
MV Vα(θ,w)

=(1

2
+O(α))Vα(θ,w),

where RV is the residual term of the Taylor’s expansion.
We can choose α3(β) small enough so that the coefficient of
Vα(θ,w) in the last inequality is smaller than 3/4 for all α ≤
α3(β). Sequence Boundedness: We prove θ+ ∈ B(θ−, rβ/2)
by contradiction. If we pick α3(β) to ensure monotonic
reduction, then θ+ ∈ B(θ−, r(β + 1)/2) (Lemma 9.4). If
θ+ ∉ B(θ−, rβ/2) then θ+ ∈ B(θ−, r(β +1)/2)−B(θ−, rβ/2).
Since strong convexity holds along line segment connecting
θ+, θ−, we have:
Vα(θ+,w) − Vα(θ−,w)

≥∇θVα(θ−,w)T (θ+ − θ−) + (σ
2
X

2α2
− 2

α
σAB − σBB)∥θ+ − θ−∥2

≥r
2β2

4
(σ

2
X

2α2
− 2

α
σAB − σBB) − r(β + 1)

2
(1

α
MAG +MBG)

≥MV .

Similarly, we can choose α3(β) small enough so that the
last inequality holds for all α ≤ α3(β). This violates the fact
that Vα(θ+,w) ≤ 3Vα(θ−,w)/4 ≤ 3MV /4.
Now we have the desired convergence result as long as
Vα(θ,w) is upper bounded by some MV , which is proved
and the following theorem:

Theorem 9.6 (Discrete Convergence): Assuming
A 5.1,A 5.2,A 5.3, there exists some α-independent
constant MV , such that for r chosen as in Lemma 9.1,
α3(β) chosen as in Lemma 9.5, Algorithm 1 will generate
a sequence {θk,wk} with the following properties for all
α ≤ α3(β):

1) {Vα(θ
k,wk)} is upper bounded by MV .

2) {θk} is within B(θ−, rβ/2).
3) Each manifold projection is convergent at a rate of at

least 3/4.
Proof: We can proceed the proof by setting MV =

M2
G+2MGM∆B+M

2
∆B . Induction: We prove by induction.

The initial guess Vα(θ0,w0) ≤ MV and θ0 ∈ B(θ−, rβ/2).
If Vα(θ

k−1,wk−1) ≤ MV and θk−1 ∈ B(θ−, rβ/2), then
Algorithm 1 will first update wk−1 to wk and then update
θk−1 to θk via manifold projection. We use triangle inequality
to bound the change of Vα due to the update of w as follows:
Vα(θk−1,wk) − Vα(θk−1,wk−1)

=(Gα(θk−1,wk) +Gα(θk−1,wk−1))T

(Gα(θk−1,wk) −Gα(θk−1,wk−1))

≤∥(2

α
A(θk−1) +B(θk−1,wk−1) +B(θk−1,wk))∥

∥(B(θk−1,wk−1) −B(θk−1,wk))∥ (triangle)

=∥ 2

α
A(θk−1) + 2B(θk−1,wk−1) −B(θk−1,wk−1) +B(θk−1,wk)∥

∥(B(θk−1,wk−1) −B(θk−1,wk))∥
≤2∥Gα(θk−1,wk−1)∥∥B(θk−1,wk−1) −B(θk−1,wk)∥+
∥(B(θk−1,wk−1) −B(θk−1,wk))∥2 (triangle)

≤2MGM∆B +M2
∆B ,

so we have:
Vα(θk−1,wk) ≤Vα(θk−1,wk−1) + 2MGM∆B +M2

∆B

≤Vα(θ−,wk−1) + 2MGM∆B +M2
∆B

≤M2
G + 2MGM∆B +M2

∆B =MV ,

where in the last inequality we have used the fact that
∥Gα(θ

k−1,wk−1)∥ ≤ ∥Gα(θ−,w
k−1)∥. Next, we enter the

phase of manifold projection. By Lemma 9.5, each step
of manifold projection is reducing Vα at a rate of at least
3/4 and staying inside B(θ−, rβ/2). The proof is complete.
Solution Uniqueness: In the above proof we have used the
fact that ∥Gα(θ

k−1,wk−1)∥ ≤ ∥Gα(θ−,w
k−1)∥. If we always

start manifold projection from initial guess θ−, then this is
true due to Lemma 9.5. But if we start from any where in
B(θ−, rβ/2), this is also true because (1) Lemma 9.5 guar-
antees convergence; (2) Due to strong convexity Lemma 9.1,
there is a unique solution to Vα = 0 inside B(θ−, rβ/2).
This result shows that all variables in Algorithm 1 are
bounded and the manifold project substep is convergence.

C. Discrete Zeroth-Order Manifold Projection

The zeroth-order manifold projection can be proved to
be convergent in an almost identical manner as that of
Theorem 9.6 except for Lemma 9.5. We use the following
shorthand notations:

θ+ =θ −∇θḠ
−1
α Gα(θ,w)

∆G =∇θGα −∇θḠα

∆G−1
α =∇θGα

−1
−∇θḠ

−1
α

∇θḠ
−1
α =∇θGα

−1
−∆G−1

α

∇θGα∆G−1
α =I −∇θGα∇θḠ

−1
α = −∆G∇θḠ

−1
α .

The key to our proof is the fact that ∇θGα and ∇θḠα differs
by an α-independent term. To proceed, we need to add the
following results to Lemma 9.1:

Lemma 9.7: Assuming A 5.1,A 5.2,A 5.3,A 5.4, there
exists an r > 0, such that for all feasible w, both Lemma 9.1
and the following properties hold within B(θ−, r):

1) σmin(∇wG∇wG
T) ≥ σw > 0. (A 5.4)

2) ∥∇wG∇wG
T ∥ ≤Mw.

3) σmin(∇θḠα) ≥
σX

2α
− σ̄B .

4) σmax(∇θGα∆G−1
α) ≤M∆G(σX

2α
− σ̄B)−1.

5) σmax(∆G
−1
α) ≤ σmax(∇θGα

−1
)σmax(∇θGα∆G−1

α) ≤

M∆G(σX

2α
− σ̄B)−1(σX

2α
− σB)−1.

We omit the proof which is similar to Lemma 9.1. Next, we
prove the zeroth-order variant of Lemma 9.5 below:

Lemma 9.8: Assuming A 5.1,A 5.2,A 5.3, Vα(θ,w) ≤

MV where MV is some α-independent constant. For any
β ∈ (0,1] and r chosen as in Lemma 9.1, there exists
α3(β) > 0, such that for any α ≤ α3(β) and feasible w,
the following properties hold:

1) If θ ∈ B(θ−, rβ/2), then θ+ ∈ B(θ−, rβ/2).

2) Vα(θ
+,w) ≤ 3Vα(θ,w)/4.

Proof: Monotonic Reduction: As long as α ≤ α3(β) ≤
α2, we have strong convexity over the line-segment connect-
ing θ, θ+. By the Taylor’s expansion theorem, we have:

Vα(θ+,w)
=Vα(θ,w) + ∇θVαT (θ+ − θ)+

1

2
(θ+ − θ)T∇2

θVα(θ+ − θ) +RV

=Vα(θ,w) − ∇θVαT∇θḠ−1
α Gα+

1

2
(θ+ − θ)T∇2

θVα(θ+ − θ) +RV

=Vα(θ,w) − ∇θVαT (∇θGα−1 −∆G−1
α)Gα+

1

2
(θ+ − θ)T∇2

θVα(θ+ − θ) +RV

=∇θVαT∆G−1
α Gα +

1

2
(θ+ − θ)T∇2

θVα(θ+ − θ) +RV

=∇θVαT∆G−1
α Gα +

1

2
GTα∇θḠ−T

α ∇2
θVα∇θḠ−1

α Gα +RV

=∇θVαT∆G−1
α Gα +

1

2
GTα(∇θGα−1 −∆G−1

α)T

∇2
θVα(∇θGα−1 −∆G−1

α)Gα +RV

=∇θVαT∆G−1
α Gα +

1

2
GTα∇θGα−T∇2

θVα∇θGα−1Gα +RV +
1

2
GTα∆G−T

α ∇2
θVα∆G−1

α Gα −GTα∆G−T
α ∇2

θVα∇θGα−1Gα

=∇θVαT∆G−1
α Gα +

1

2
Vα(θ,w) +RV +

1

2
GTα∇θGα−1∑

i

∇2
θ[Gα]i[Gα]i∇θGα−1Gα+

1

2
GTα∆G−T

α ∇2
θVα∆G−1

α Gα −GTα∆G−T
α ∇2

θVα∇θGα−1Gα.

The above equation contains 5 terms other than Vα(θ,w)/2,
we show that these terms are all O(α)Vα(θ,w). The first
term is:

∥∇θVα
T∆G−1

α Gα∥ ≤ ∥GTα∇θGα∆G−1
α Gα∥

≤∥Gα∥
2M∆G(

σX
2α

− σ̄B)
−1

= O(α)Vα(θ,w).

The second term is:

∥RV ∥ ≤
1

6
(

1

α2
M3
AA +

1

α
M3
AB +M3

BB)

(
σX
2α

− σ̄B)
−3

√
MV Vα(θ,w) = O(α)Vα(θ,w).

The third term is:
∥1

2
(θ+ − θ)T∑

i

∇2
θ[Gα]i[Gα]i(θ+ − θ)∥

≤1

2
(1

α
M2
A +M2

B)∥θ+ − θ∥2∥Gα∥

=1

2
(1

α
M2
A +M2

B)(σX
2α

− σ̄B)−2
√
MV Vα(θ,w) = O(α)Vα(θ,w).

The forth term is:

∥
1

2
GTα∆G−T

α ∇
2
θVα∆G−1

α Gα∥

≤∥
1

2
GTα∆G−T

α ∇θGα
T
∇θGα∆G−1

α Gα∥+

∥
1

2
GTα∆G−T

α ∑
i

∇
2
θ[Gα]i[Gα]i∆G

−1
α Gα∥

≤
1

2
M2

∆G(
σX
2α

− σ̄B)
−2Vα(θ,w)+

1

2
(

1

α
M2
A +M

2
B)M2

∆G(
σX
2α

− σ̄B)
−2

(
σX
2α

− σB)
−2

√
MV Vα(θ,w) = O(α)Vα(θ,w).

The fifth term is:
∥GTα∆G−T

α ∇
2
θVα∇θGα

−1Gα∥

≤∥GTα∆G−T
α ∇θGα

TGα∥+

∥GTα∆G−T
α ∑

i

∇
2
θ[Gα]i[Gα]i∇θGα

−1Gα∥

≤M∆G(
σX
2α

− σ̄B)
−1Vα(θ,w)+

1

2
(

1

α
M2
A +M

2
B)M∆G(

σX
2α

− σ̄B)
−1

(
σX
2α

− σB)
−2

√
MV Vα(θ,w) = O(α)Vα(θ,w).

The rest of the proof is the same as Lemma 9.5. Note that
Theorem 9.6 holds in the zeroth-order case without A 5.4 be-
cause we have not used the condition σmin(∇wG∇wGT) ≥
σw > 0.

D. First-Order PGM Convergence

The convergence of the first-order PGM is a trivial result
of Theorem 9.6 and Taylor’s expansion theorem.

Proof: [Theorem 5.5] If we set α4 as in Theorem 9.6,
then each θk satisfies G(θk,wk) = 0 and K(θ) can be
expressed as a function of w, denoted as K(w). Due to
A 5.1 and A 5.3, K(w) is differentiable and with gradient
being:

∇wK ≜ −∇wG
T
∇θGα

−T
∇θK.

From the optimality condition of Equation 8, we know that
∠(∇wK,∆w) → π and ∆w → 0 as γ → 0, so {K(θk)} is
monotonically decreasing convergence is guaranteed.

E. Zeroth-Order PGM Convergence

The convergence proof of the zeroth-order PGM is a slight
variant of the first-order Theorem 5.5. The key is to show
that a descendent direction is always achieved with small
enough α.

Proof: [Theorem 5.6] If we set α5 ≤ α4 as in Theo-
rem 9.6, then each θk satisfies G(θk,wk) = 0 and K(θ) can
be expressed as a function of w, denoted as K(w). Now we
define the modified gradient:

∇wK̄ ≜ −∇wG
T
∇θḠ

−T
α ∇θK.

From the optimality condition of Equation 10, we know that
∠(∇wK̄,∆w) → π and ∆w → 0 as γ → 0. Next, we check
whether ∇wK̄ is also a descendent direction of K(θk):

∥∇wK̄T∇wK∥
=∥∇θKT∇θḠ−1

α ∇wG∇wGT∇θGα−T∇θK∥
=∥∇θKT∇θGα−1∇wG∇wGT∇θGα−T∇θK∥−
∥∇θKT∆G−1

α ∇wG∇wGT∇θGα−T∇θK∥

≥∥∇θK∥2σw(
1

α
M1
A +M1

B)−2 −Mw∥∇θK∥2(1

α
M1
A +M1

B)−1

M∆G(σX
2α

− σ̄B)−1(σX
2α

− σB)−1 (Lemma 9.7,A 5.4)

=O(α2)∥∇θK∥2 −O(α3)∥∇θK∥2 ≥ O(α2)1

2
∥∇θK∥2.

The last inequality must hold by choosing small enough
α5 ≤ α4. The proof is complete.

	I Introduction
	II Related Work
	III Articulated Body Dynamics
	III-A Recursive Newton-Euler's Equation
	III-B Position-Based Dynamics

	IV Nonconvex MDP
	IV-A NMDP Formulation
	IV-B NMDP Solver

	V Convergence Analysis
	V-A NMDP Working with PBD

	VI Evaluations
	VII Conclusion & Discussion
	VIII Acknowledgement
	References
	IX Appendix: Proof
	IX-A Continuous Manifold Projection
	IX-B Discrete First-Order Manifold Projection
	IX-C Discrete Zeroth-Order Manifold Projection
	IX-D First-Order PGM Convergence
	IX-E Zeroth-Order PGM Convergence

