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Abstract— Accurate visual re-localization is very critical to
many artificial intelligence applications, such as augmented
reality, virtual reality, robotics and autonomous driving. To
accomplish this task, we propose an integrated visual re-
localization method called RLOCS by combining image re-
trieval, semantic consistency and geometry verification to
achieve accurate estimations. The localization pipeline is de-
signed as a coarse-to-fine paradigm. In the retrieval part,
we cascade the architecture of ResNet101-GeM-ArcFace and
employ DBSCAN followed by spatial verification to obtain
a better initial coarse pose. We design a module called
observation constraints, which combines geometry information
and semantic consistency for filtering outliers. Comprehen-
sive experiments are conducted on open datasets, including
retrieval on R-Oxford5k and R-Paris6k, semantic segmentation
on Cityscapes, localization on Aachen Day-Night and InLoc.
By creatively modifying separate modules in the total pipeline,
our method achieves many performance improvements on the
challenging localization benchmarks.

I. INTRODUCTION

Visual Localization serves as the fundamental capability
of numerous vision applications, including augmented real-
ity, intelligent robotics and autonomous driving navigation
[1, 2]. This approach’s core task is to estimate the 6-
degrees of freedom (DoF), i.e., the position and orientation
of a query RGB image in a known 3-Dimensional (3D)
coordinate environment.

The presentation of the environment can be a map re-
constructed by Structure From Motion (SFM) [3]–[5], a
database of images [6, 7], or even regression Convolutional
Neural Network (CNN) [8]. In detail, the SFM based map is
typically used to describe the position of landmarks [9, 10],
i.e., 3D points and structures in the environments, which
are pre-collected and extracted from the database images.
During localization, correspondences between 2D keypoints
and 3D landmarks are established to recover the query
image’s 6-DoF pose using Perspective-n-Point (PnP) [11]
within a RANSAC loop [12, 13]. To avoid costly timing on
searching and matching in irrelevant mapping areas, image
retrieval is used to select the most relevant database images
[7, 14]. Local feature matching is then established between
the query image and the area defined by retrieved database
images.

Since the correspondences between query and database
images need to be established in visual localization tasks,
environment changes, such as weather, illumination, or
seasonal changes, present critical challenges for local feature
descriptors.
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The traditional local features and descriptors, e.g., SIFT
[15], BRIEF [16], or ORB [17], which have been carefully
designed for uniform intensity changes and slight variations
of viewpoints, were shown to be highly sensitive to massive
changes in lighting and seasonal conditions. An attempt at
overcoming conditions-changing is training convolutional
neural networks (CNNs) to produce more robust feature
descriptors [18]–[21], instead of using handcraft features.
Although CNNs are shown to have great improvements
compared to SIFT and other handcrafted features, they
were not designed to handle all the types of variations
described above. As feature detectors and descriptors are
less repeatable and reliable, localization pipelines then
struggle to find enough query-to-database correspondings
to recover successful pose estimation. Therefore, developing
more robust localization pipelines that work well across a
wider range of environmental conditions is desirable.

In this paper, we present a localization pipeline, Retrieval
and Localization with Observation ConstraintS (RLOCS),
which utilizes image retrieval to acquire coarse initial
localization poses and combines geometric and semantic
information to refine the localization results.

The core idea of RLOCS is to employ a natural coarse-
to-fine strategy for recovering 6-DoF poses of query images
in the related pre-built SFM model. In detail, RLOCS
leverages both global descriptors for image-retrievals and
local features for semantic-matching to establish a local-
ization pipeline. We show that RLOCS, using CNN-based
image retrieval method and hybrid local descriptors, enables
robustness and reliable results under many challenging con-
ditions. Our global descriptors outperform most previous
results in the retrieval task, and the learning-based local
features improve the accuracy of pose estimation.

Meanwhile, inspired by previous work on pose verifi-
cation via observation [7, 22], we propose a 6-DoF pose
optimization method based on observation constraints of the
query image. The pose optimization starts with a standard
PnP within a RANSAC loop and obtains an initial pose
estimation. The 3D points with locations and descriptors
are then collected using the initial pose and observation
constraints. Consequently, matches between 2D points from
the query image and 3D points from the SFM model
are established to refine the initial pose. More details of
pose optimization methods are discussed in the following
sections.

In summary, our contributions include the following
key enhancements on the retrieval-based visual localization
pipeline:

1. A better retrieval CNN is proposed, followed by a
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clustering and a spatial verification method known as re-
rank. We regress the coarse localization initial pose by a
2D-2D matching module.

2. A coarse-to-fine two-stage localization pipeline using
observation constraints as the back-end fine-tuning opti-
mization method is utilized, which contains geometry at-
tributes and semantic information.

3. An efficient and accurate semantic segmentation CNN
structure is adopted and optimized to achieve better semantic
precision, which finally benefits the localization accuracy.

II. RELATED WORK

In this section, we will discuss recent approaches related
to different components of our works: large-scale image re-
trieval tasks, semantic segmentation and visual localization.

Large-scale Image Retrieval. As a classical problem in
computer vision, large-scale image retrieval has been widely
analyzed in the past decades. For statistically quantifying the
performance of different methods, several standard datasets
have been published and widely used, e.g., R-Oxford5k, R-
Paris6k [23], and Google Landmarks dataset v1, v2 [24, 25].
The diversity of environments and challenges of illumination
changes are presented in these large datasets. In the retrieval
tasks, approaches can be divided into two categories, local
features and global features. As to the local features, some
methods aggregate local features into global descriptors,
such as VLAD [26] and FV [27], while others form a
feature model for searching and query, like BOW [28] and
other related methods [29, 30]. For the global features,
with the rapid development of deep learning, CNN-based
methods outperform most of the hand-crafted methods with
higher recall and accuracy. Using these CNN-based global
descriptors, [31] makes use of deep local features as a drop-
in replacement for hand-crafted features in conventional
aggregation such as VLAD. [24] relies on CNN to produce
attentive local features and regresses them into global in-
dexes. [32] unifies local and global descriptors into a single
CNN with generalized mean pooling and attention selection
modules.

Semantic Segmentation. Plenty of researchers have an-
alyzed many strategies and structures on semantic segmen-
tation CNNs in recent years. [33] adopts dilation convo-
lutional layers to achieve larger receptive area, while [34]
utilizes large kernel convolutional layers. [35] relies on the
spatial attention module to enlarge the structure information,
while [36] adaptively integrates local and global features
by spatial-wise and channel-wise attention modules. [37]
exploits shortcuts between multiple layers to avoid degra-
dation problems, and [38] proves the better performance
with the help of shortcut connections between layers in a
feed-forward fashion. Unlike previous works, we integrated
several modules to lift the semantic segmentation precision
and analyzed the positive inference on visual localization
brought by the semantic information.

Visual Localization. Among all the image-based local-
ization approaches, structure-based ones are one of the most
extensively discussed methods, which extract 2D key-points

of a query image and find matching relationships between
3D points constructed by SFM [39]. [40] expands from
original 2D-to-3D matches to 3D-to-2D matches to realize
a better localization performance. [22] adds semantic infor-
mation to help filter some outliers of key-points matching.
[14] merges local features extractor and global one into a
single CNN to realize higher efficiency and robustness. [41]
relies on renderings of a 3D model to produce better local
features matching and seeks a better final estimated pose
iteratively.

III. VISUAL RE-LOCALIZATION PIPELINE

Our Re-localization method, named RLOCS, consists of
four parts: mapping with observation constraints, image
retrieval, initial pose estimation and iterative pose opti-
mization. Fig.1 illustrates the pipeline based on a standard
retrieval-based framework in [42].

Observation constraints mapping. We run COLMAP
[4], a superior SFM algorithm to reconstruct a 3D model and
camera poses of the database images captured at the target
scene. After triangulation, 3D map points will be produced
based on epipolar geometry theory. More semantic and geo-
metric information, regarded as observation measurements,
can be calculated and tagged on every 3D point for checking
and filtering in the visual localization process.

Image retrieval. The landmark image search is per-
formed by matching the query with the database images
using the global descriptor calculated by CNN described
detailedly in III-A. Through this retrieval scheme, a fixed
number of similar database images are collected. DBSCAN
[43] and a re-rank [32] procedure are adopted to fine-tune
the retrieval results.

Initial pose estimation. For every candidate, the semantic
consistency check is applied to filter out inaccurate key-
points matches. The filtered 2D-3D matches will determine
the 6-DoF camera pose by solving a PnP geometric con-
sistency check inside a RANSAC loop. This algorithm is
called Feature Match(FM)-PnP module in our method.

Pose iterative optimization. Given the coarse 6-DoF
pose, more geometric and semantic observation constraints
are applied to select the 3D points. After selection, K-
Nearest Neighbor (KNN) matching enables us to get the
2D-3D matches. Such process is conducted iteratively to
make the final estimated pose closer to the ground truth.

In the total localization pipeline, our contributions can
be concluded into three main parts, i.e., image retrieval,
semantic segmentation, and observation constraints.

A. Image Retrieval

In RLOCS, a coarse retrieval task is first performed by
matching the query with the database images using global
descriptors in both SFM mapping and localization pipeline.
We leverage recent improvements in global feature designs,
such as a Generalized Mean pooling (GeM) [44] layer and
ArcFace [45] loss to generate effectively aggregated global
descriptors. The strategy of global retrieval is illustrated in
Fig. 2.



Fig. 1. Visual Re-localization Pipeline. The input data contains both the database images set for mapping and a query image for Re-localization.
Module I is the construction of observation constraints map, including SuperPoint and R2D2 local feature extraction and matching, semantic segmentation,
triangulation of matched image pairs, BA optimization and calculation of observation constraints. The output of Module I is a semantic 3D map with
observation constraints. Module II is the image retrieval part, returning K images from database images set, which are most similar to the query image.
Module III is to obtain a rough pose. The process includes the 2D-2D matching between query and candidate images, semantic consistency verification,
pose clustering and solving PnP using 2D-3D inlier matches. Module IV is the iterative optimization.

Fig. 2. Illustration of retrieval strategy in RLOCS. Firstly, global
features are extracted from the cascaded architecture of ResNet101-GeM-
ArcFace. These features are then fed into NN search in database images.
For every retrieved candidate from the database, an FM-PnP pipeline
is performed for solving coarse 6-DoF poses of the query image. And
DBSCAN clustering method, followed by the re-rank procedure, is applied
for seeking more accurate retrievals results.

Given a query image, a basic backbone CNN is first
adopted to obtain the feature map, representing deep ac-
tivations. GeM pooling is applied to weigh each feature
map’s contributions and aggregate the activations into a
fixed-length global descriptor. In the work of [44], GeM
is shown superior performance than other pooling methods,
such as regional max-pooling (R-Mac) [46] and sum-pooled
convolutional features (SPoC) [47]. The defination of GeM
can be described as

fgc = (
1

|Xc|
∑
x∈Xc

xp)
1
p , (1)

where x is the feature at each location of Xc, which is
extracted from the backbone and p denotes the generalized
mean power parameter. Note that the p of GeM pooling is set
to 3.0 and fixed during our training process [44]. Dimension
reduction is then adopted behind the GeM pooling, adding a
fully connected layer cascaded with one-dimensional Batch

Normalization, which is crucial to alleviate the risk of over-
fitting and reduce the dimensional noise.

For better performance on global feature learning, we
utilize the ArcFace [45] margin-based loss as the training
components, which has achieved impressive results by in-
cluding smaller intra-class variance in face recognition. The
ArcFace is defined as

L = − 1

N

N∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j xi+bj

, (2)

where xi ∈ <d denotes the deep features of the i-th sample
in d dimensions, belonging to the yi-th class. Wyi

denotes
the weights term of yi-th class. Wj ∈ <d and bj ∈ <d

are the j-th column of the weights and the bias term,
respectively. In this work, we follow [45] and train our
retrieval model with image-level annotations on the Google
Landmarks dataset v2 [25]. For evaluation components, we
adopt the learned fixed-length global descriptor following
by an L2-normalization and Principal Component Analysis
(PCA) process for all the query and database images.

Secondly, a KNN search is performed by matching query
images with the candidates using our global descriptors.
However, each landmark category in the database may
contain diverse samples, such as variation of viewpoints and
illumination. These query images are tough to identify only
using context-level global features. Therefore we employ a
back-end discriminative clustering method to exploit the 6-
DoF poses from the database. In detail, an FM-PnP strategy
is firstly performed for initial 6-DoF poses between query
images and the retrieved top-k images from the database.
These poses are then clustered based on the inliers and
distances using DBSCAN [43], following by a PnP spatial
verification algorithm [32].



Fig. 3. Illustration of proposed semantic segmentation architecture.
Feature maps are separated into semantic and detail branches. DCN, ISA
and ASPP are applied to acquire a larger receptive area, gaining more
global and shape information in the semantic branch. And ESPCN is used
to recover stable and uniform semantic masks.

B. Semantic Segmentation

Considering that semantic segmentation is relatively sta-
ble under illuminational changes, we take advantage of
semantic segmentation algorithms as one of the observation
constraints during the mapping and localization process, to
improve the pose estimations’ accuracy.

For pixel-level semantic segmentation tasks, efficiency
and accuracy are both significant. In the work of [48], a
state-of-the-art network, BiSeNet-V2, meets both the high-
speed and accuracy demands in our localization pipeline.

Two branches, i.e., detail branch and semantic branch,
are inherited from [48]. Detail branch is meant to produce
low-level features with shallow CNN layers. To enhance
the receptive field and capture rich contextual information
in the semantic branch, we adopt the Interlaced Sparse
Self-Attention (ISA) [49] spatial attention mechanism in
the semantic branch to enhance the receptive field. And
the additional Atrous Spatial Pyramid Pooling (ASPP) [50]
module together with ISA helps to solve the multi-scale
problems for objects. We use Deformable Convolutional
Networks (DCN) [51] module to modify the semantic
branch backbone to make the branch paying more attention
to the shapes of different objects. Afterward, the aggregation
layer manages to merge both detail and semantic branch into
a feature map.

With the help of Efficient Sub-Pixel Convolutional Neural
Network (ESPCN), the feature map can be upsampled by
a factor of 4. Ending with an additional 3x3 convolution
layer, which is cascaded with a bilinear upsampling layer
of factor 2, ensures us to get a stable and uniform semantic
mask.

C. Observation Constraints and Pose Iterative Optimization

The original 3D point clouds reconstructed by COLMAP
[4] only contain the primary attributes, such as position
coordinates and color. In this paper, we add more attributes
named observation constraints based on the idea of semantic

Fig. 4. Illustration of Observation Constraints. The left figure is the
schematic diagram and N is the number of images associated with the 3D
point P . Li is the distance between point P and the optical center of the
camera Ii. The middle figure shows a 3D point visual field which is a cone
area in the map. The right one shows how the reprojection error and the
semantic label function as observation constraints. d is the error threshold
and points’ color represents the semantic labels.

consistency [22], including semantic and geometric con-
straints. The additional attributes of every 3D point will
guarantee the filtering process before 2D-3D matching in
the localization part. As to local features, we inherit both
Super-Point [19] and R2D2 [20] to extract 2D points and
descriptors.

The additional information on each point consists of max-
imum visible distance, mean visible direction, maximum
visible angle, semantic label and reprojection error. During
the SFM process, we backtrace each 3D point to find the 2D
feature points and the corresponding images that participate
in the triangulation. Supposing the 3D point P has N
track elements, the corresponding images are denoted as
I1, I2, ..., IN . As the schematic diagram illustrated in Fig.4,
the visible field of a 3D point is the cone area. Whether a
query image can see the 3D point depends on whether its
pose is in the visible field.

The maximum visible distance L, the mean visible direc-
tion ~n and the maximum visible angle θ can be formulated
as follows:

L = max
i
‖X − Ci‖2 i ∈ [1...N ], (3)

~n =
1

N

N∑
i=1

−→
Ci −

−→
X√

‖Ci −X‖2
, (4)

θ = 2max
i

(arccos(~n·
−→
Ci −

−→
X√

‖Ci −X‖2
)) i ∈ [1...N ], (5)

where X denotes position coordinates of point P , and Ci

denotes the camera optical center position of image Ii.−→
X and

−→
Ci are the vector representations of X and Ci

respectively. The visible field of point P is a cone area
that is determined by L, ~n and θ. The L is the cone bus,
which means the farthest distance where the point P can
be seen. The ~n represents the average value of the direction
from point P to the corresponding camera optical center Ci

as the normal of P . The θ equals two times the maximum
angle between the normal ~n and all of the

−→
PIi. We adopt



a voting strategy and determine the 3D semantic label with
the largest occurrence frequency of correlated 2D points.

Each initial pose is obtained by 2D-3D inliers and PnP
process described as Module III in Fig.1. Then the pose
iterative optimization is performed by using observation
constraints. The specific steps are listed as follows:

1) Select 3D points with initial pose and the visible field
determined by L, ~n, θ.

2) Produce global 2D-3D matches by KNN and semantic
consistency check.

3) Filter outliers of 2D-3D matches within a certain
threshold of re-projection error.

4) Compute the 6-DoF camera pose by solving a PnP
algorithm inside a RANSAC loop.

5) Update the pose of the query if the convergence
condition is fulfilled.

The convergence condition is determined by the uncer-
tainty quantification of the iterative pose. Based on the
Monte Carlo Sampling [52], we first randomly sample k%
(e.g., k = 30, 50, 70) sub-matches from all the global 2D-
3D matches. The sub-poses are then calculated from sub-
matches using the PnP algorithm. The standard deviation
between all the sub-poses and current pose is defined as the
sampling uncertainty. It is supposed to get smaller during
the iteration loops. Otherwise, the optimization stops and
the final prediction is produced.

IV. EXPERIMENTAL EVALUATION

The performance of whole visual re-localization is dis-
cussed in the following part. Experiments are executed on
one NVIDIA Tesla V100 with the CUDA 10.0 and Intel(R)
Xeon(R) Gold 6142 CPU @ 2.60GHz. On average, RLOCS
consumes 198ms per frame.

A. Ablation Study

Image Retrieval. For large-scale image retrieval tasks,
we conduct our evaluation of the proposed ResNet101-
GeM-ArcFace pipeline on R-Oxford5k and R-Paris6k
datasets. The Google Landmarks dataset v2 [25] is the
training set. Table I shows that our method outperforms
some of the state-of-art retrieval methods statistically.

TABLE I
RETRIEVAL RESULT(mAP ) ON R-Oxford5k AND R-Paris6k WITH BOTH

MEDIUM AND HARD EVALUATION PROTOCOLS.

Methods
R-Oxford5k R-Paris6k

Medium Hard Medium Hard

NetVLAD [31] 63.5 - 73.5 -

ResNet101-RMAC [53] 60.9 32.4 78.9 59.4

ResNet101-GeM-AP [54] 67.5 42.8 80.1 60.5

DELG [32] 69.7 45.1 81.6 63.4

Ours 72.5 55.9 85.8 71.8

While DELG utilizes ResNet50 to extract low-level fea-
ture maps, ours relies on larger ResNet101 to acquire more
features to get better retrieval accuracy. As GeM pooling
layers are meant to maintain more information than original
max-pooling layers during the CNN inference, RLOCS
using GeM as a pooling layer outperforms the ResNet101-
RMAC whose pooling layers are derived from the max-
pooling layers. Evidence [45] also indicates that margin-
based loss will efficiently escalate the discriminative power
between different classes. Thus RLOCS outperforms both
[53] and [54] on these test datasets.

Semantic Segmentation. Cityscapes dataset [55] is a
widely used semantic segmentation benchmark that contains
urban street scenes. The final results on its test sets show
that the combination of ASPP, DCN, ESPCN, and ISA
modules can a achieve better mean Intersection of Union
(mIoU) with reasonable speed. Statistics show that progres-
sively adding these modules results in gradually increasing
accuracy. Simultaneously, due to the additional calculation
introduced by these modules in the feature extraction parts,
the inference time increases as shown in table II. Compared
with the state-of-the-art real-time semantic segmentation
model on Cityscapes test dataset, we achieve better accuracy
and faster speed, demonstrated in Table III.

TABLE II
ABLATION STUDY OF PROPOSED MODULES ON Cityscapes DATASET

ASPP DCN ESPCN ISA val mIoU(%) test mIoU(%) Time(ms)

X - - - 74.0 71.2 10.4

X X - - 75.0 72.4 11.0

X X X - 77.2 75.9 12.8

X X X X 78.5 76.5 14.1

TABLE III
SEMANTIC SEGMENTATION RESULTS ON Cityscapes TESTSET

Methods val mIoU(%) test mIoU(%) Time(ms)

BiSeNet V2-Large [48] 75.8 75.3 21.1

SwiftNetRN-18 [56] - 75.5 25.0

U-HarDNet-70 [57] 75.4 75.9 18.8

Ours 78.5 76.5 14.1

B. Localization Performance

We evaluate our Re-localization method using the online
benchmark, which calculates the percentage of query images
within three different thresholds of rotation and translation
error. Two types of datasets, Aachen Day-Night [58] and
InLoc [7], including indoor and outdoor scenes, are used
for validation.

The improvement in localization accuracy brought by
our image retrieval method proves the effectiveness of our



scheme. We conduct the experiments by changing different
retrieval schemes followed by the same Re-localization
pipeline on Aachen Day-Night dataset. Compared with
DELG, one of the state-of-the-art retrieval methods illus-
trated in Table I, after applying the same DBSCAN cluster-
ing scheme, our method still performs better. The results are
shown in Table IV. Our method has an absolute advantage
on the night dataset, while on day datasets, ours is also the
best one under the largest threshold. As retrieval gives a
coarse initial pose, a more accurate and robust method will
relieve much pressure on backend localization procedures
and has more significant benefits on the larger accuracy
threshold.

TABLE IV
RE-LOCALIZATION ACCURACY ON Aachen Day-Night v1.1 USING

DIFFERENT RETRIEVAL SCHEMES

Methods
Accuracy(0.25m, 2°)/(0.5m, 5°)/(5m, 10°)

Day Night

DELG 88.8 / 95.9 / 98.8 69.6 / 84.8 / 94.8

DELG + DBSCAN 89.2 / 95.5 / 98.5 72.3 / 88.0 / 98.4

Ours 88.8 / 95.4 / 99.0 74.3 / 90.1 / 98.4

Considering semantic segmentation is a part of the ob-
servation constraints for the pose optimization, we validate
their inference to the localization accuracy and other ge-
ometric attributes. We adopt the retrieval results in Table
IV as the initial poses to be optimized by using observation
constraints on the Aachen dataset. On the InLoc dataset, we
validate the influence introduced by observation constraints
with and without semantic segmentation, as shown in Table
V. We found that almost all the accuracy is improved
under the observation constraints optimization, and further
improved under the one with semantic information.

TABLE V
RE-LOCALIZATION ACCURACY ON InLoc WITH OBSERVATION

CONSTRAINTS

Methods
Accuracy(0.25m, 2°)/(0.5m, 5°)/(5m, 10°)

duc1 duc2

BaseLine 41.9 / 68.2 / 84.3 50.4 / 76.3 / 80.2

+OC(w/o semantic) 47.0 / 68.7 / 84.8 57.3 / 76.3 / 80.9

+OC(w/ semantic) 47.0 / 71.2 / 84.8 58.8 / 77.9 / 80.9

Totally, we compare our proposed pipeline with some
existing state-of-the-art approaches at the Long-Term
Visual Localization benchmark 2020 [1]. We capture
the latest results of various typical approaches from
visuallocalization.net/benchmark/ and show
in Table VI. Statistically, our methods show better accuracy
compared to some of the localization methods on Aachen
Day-Night and InLoc datasets, especially on harder night

subsets and indoor datasets, including many occlusions. Al-
abtion study on observation constraints has been conducted
in VI to show the improvements brought by our proposed
method.

TABLE VI
EVALUATION OF STATE-OF-THE-ART APPROACHES ON Aachen

Day-Night v1.0, v1.1 AND InLoc

Aachen Day-Night v1.0
day night

(0.25m, 2°)/(0.5m, 5°)/(5m, 10°)

Active Search v1.1 [40] 57.3 / 83.7 / 96.6 19.4 / 30.6 / 43.9

NetVLAD + D2-Net [21] 84.8 / 92.6 / 97.5 84.7 / 90.8 / 96.9

DenseVLAD + D2-Net [21] 83.1 / 90.9 / 95.5 74.5 / 85.7 / 90.8

KAPTURE-R2D2-APGeM [59] 88.7 / 95.8 / 98.8 81.6 / 88.8 / 96.9

SuperPoint + SuperGlue [60] 89.6 / 95.4 /98.8 86.7 / 93.9 / 100.0
Ours(w/o OC) 85.7 / 93.7 / 98.9 81.6 / 91.8 / 100.0

Ours(w/ OC) 88.8 / 95.4 / 99.0 85.7 / 93.9 / 100.0

Aachen Day-Night v1.1
day night

(0.25m, 2°)/(0.5m, 5°)/(5m, 10°)

Isrf-5k-o2s [61] 87.1 / 94.7 / 98.3 74.3 / 86.9 / 97.4

LISRD+SuperPoint [62] - / - / - 72.3 / 86.4 / 97.4

KAPTURE-R2D2-APGeM [59] 90.0 / 96.2 / 99.5 72.3 / 86.4 / 97.9

SuperPoint + SuperGlue [60] 89.8 / 68.7 / 80.8 77.0 / 90.6 / 100.0
Ours(w/o OC) 85.7 / 93.7 / 98.9 74.3 / 90.1 / 98.4

Ours(w/ OC) 88.8 / 95.4 / 99.0 74.3 / 90.6 / 98.4

InLoc
duc1 duc2

(0.25m, 10°)/(0.5m, 10°)/(5m, 10°)

HF-Net [14] 39.9 / 55.6 / 67.2 37.4 / 57.3 / 70.2

Isrf-5k-o2s [61] 39.4 / 58.1 / 70.2 41.2 / 61.1 / 69.5

Sparse-NCNet [63] 47.0 / 67.2 / 79.8 43.5 / 64.9 / 80.2

D2-Net [21] 42.9 / 63.1 / 75.3 40.5 / 61.8 / 77.9

KAPTURE-R2D2-FUSION [59] 41.4 / 60.1 / 73.7 47.3 / 67.2 / 73.3

SuperPoint + SuperGlue [60] 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4
Ours(w/o OC) 41.9 / 68.2 / 84.3 50.4 / 76.3 / 80.2

Ours(w/ OC) 47.0 / 71.2 / 84.8 58.8 / 77.9 / 80.9

V. CONCLUSIONS

In conclusion, an integrated visual re-localization method
named RLOCS is proposed. A more accurate and robust re-
trieval CNN is designed, and coarse initial localization poses
are produced by DBSCAN clustering, spatial verification
and 2D-2D matching. Furthermore, an optimization scheme
called observation constraints containing semantic segmen-
tation and other geometry attributes is adopted to iteratively
fine-tune the poses. Abundant experiments are conducted
on Aachen Day-Night and InLoc datasets to prove our
method’s effectiveness, with comparisons to some state-of-
the-art visual localization methods. The entire pipeline has
great expansibility and potential, such as further improving
the image retrieval CNN or semantic CNN and including
more geometric hints as additional constraints, like depths
or normals of every 3D point.

visuallocalization.net/benchmark/
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[23] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revis-
iting oxford and paris: Large-scale image retrieval benchmarking,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5706–5715, 2018.

[24] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-scale
image retrieval with attentive deep local features,” in Proceedings
of the IEEE international conference on computer vision, pp. 3456–
3465, 2017.

[25] T. Weyand, A. Araujo, B. Cao, and J. Sim, “Google landmarks
dataset v2-a large-scale benchmark for instance-level recognition and
retrieval,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2575–2584, 2020.

[26] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
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