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Abstract— Finite element methods have been successfully
used to develop physics-based models of soft robots that
capture the nonlinear dynamic behavior induced by continuous
deformation. These high-fidelity models are therefore ideal
for designing controllers for complex dynamic tasks such as
trajectory optimization and trajectory tracking. However, finite
element models are also typically very high-dimensional, which
makes real-time control challenging. In this work we propose
an approach for finite element model-based control of soft
robots that leverages model order reduction techniques to
significantly increase computational efficiency. In particular,
a constrained optimal control problem is formulated based
on a nonlinear reduced order finite element model and is
solved via sequential convex programming. This approach is
demonstrated through simulation of a cable-driven soft robot
for a constrained trajectory tracking task, where a 9768-
dimensional finite element model is used for controller design.

I. INTRODUCTION

Soft robots are an emerging class of robots that leverage
natural compliance through continuous deformation to sim-
plify tasks such as object manipulation, moving in complex
environments, safely interacting with humans, and even
assisting in surgical procedures [1], [2]. However, signifi-
cant challenges in modeling, simulation, and control have
limited their practical use. One fundamental challenge is that
continuously deforming soft robots are infinite-dimensional
systems that exhibit significant nonlinear behavior during
structural deformation. Another is that diversity among soft
robot designs makes it challenging to develop modeling
techniques that are generalizable.

One approach to soft robot modeling and control is to
hand-engineer simplified models of the robot’s motion by
making approximations. For example piecewise constant
curvature models [3], [4], beam models [5], and Cosserat
models [6] have been used. However, these low-fidelity
approximations are typically tailored to specific robot geome-
tries and often model only the robot’s kinematics, making it
challenging to design controllers for dynamic tasks.

Data-driven methods have also been developed to generate
models directly from input-output data. This approach has
been used to develop both kinematic and dynamic con-
trollers. For example, [7] learns a differentiable kinematics
model for solving inverse kinematics problems, and [8], [9]
learn neural network dynamics models to develop closed-
loop controllers. Another data-driven approach is proposed
in [10], which uses Koopman operator theory to build a
dynamics model that is used for model predictive control.
While data-driven methods are generalizable to different
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Fig. 1: Finite element mesh for a “Diamond” soft silicone robot with N = 1628
mesh nodes. This robot is fixed at the base and is actuated by controlling the tension
in four cables (black) attached to the robot’s “elbows”. Finite element methods offer
a systematic approach to generating high-fidelity dynamics models of soft robots.

types of soft robots, they fail to leverage physics-based prin-
ciples and there is no systematic procedure for developing
them. Additionally, reliance on experimental data for model
identification and controller validation precludes the use of
data-driven modeling approaches in the design process.

Alternatively, finite element methods (FEMs) provide a
systematic, physics-based approach to soft robot model-
ing. These approaches can be used to develop high-fidelity
models for a wide variety of soft robots and can be di-
rectly incorporated into the design process. While some
techniques directly use FEM models for inverse kinematics
based control [11] or trajectory optimization [12], the high-
dimensionality of FEM models (e.g. thousands to tens of
thousands of degrees of freedom) makes the design of real-
time dynamic controllers challenging.

In this work, we propose an approach that leverages
high-fidelity finite element models to control cable-actuated
soft robots. The challenge of computational efficiency is
addressed by using model order reduction techniques to
compress the high-dimensional FEM models without signif-
icant loss in modeling accuracy. The resulting reduced order
models (ROMs) are then used to efficiently solve optimal
control problems, such as trajectory tracking tasks.

Related Work: A variety of principled model order re-
duction techniques have been developed for compressing
high-dimensional dynamics models [13]. In the context of
soft robotics, these methods can be useful for reducing
the dimensionality of FEM models by orders of magnitude
without significant loss in accuracy.

Specifically, linearized reduced order FEM models have
been used to design regulating output-feedback controllers
for cable-actuated [14] and pneumatically-actuated [15] soft
robots, as well as trajectory tracking controllers [16]. Linear
ROMs have also been used in contexts beyond soft robotics
for solving constrained optimal control problems [17], [18].
However, using a linearized FEM model is not sufficient
for many dynamic control problems due to the significant
nonlinearities arising from the soft robot’s deformation.
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While nonlinear FEM model reduction techniques exist, they
have generally been developed for simulation applications
and are difficult to use for controller synthesis. In fact, in the
context of soft robotics, nonlinear FEM model reduction has
only been used to design inverse kinematics-based controllers
[19], which are not sufficient for dynamic control tasks such
as trajectory tracking. In summary, due to the use of either
linearized models or kinematics-based controllers, existing
approaches that leverage reduced order FEM models cannot
adequately address dynamic soft robot control tasks.

Statement of Contributions: This work proposes an ap-
proach for constrained optimal control of soft robots that
leverages high-fidelity nonlinear finite element models. We
handle the computational challenges induced by the high-
dimensionality of the FEM models by exploiting existing
model order reduction techniques in the design of our control
scheme. In particular, we approximate the FEM model with
a low-dimensional piecewise affine model that is amenable
to optimal control. We design an output feedback receding
horizon control scheme based on sequential convex pro-
gramming, which can be used for a variety of dynamic
control tasks including setpoint and trajectory tracking. We
demonstrate the performance of the proposed controller in
simulation, using the soft robot shown in Figure 1 with a
finite element model of dimension 9768. An implementation
of the approach1 that leverages SOFA [20], an open-source
FEM software toolkit, is also provided.

Organization: We begin by presenting a general form
of the nonlinear soft robot FEM model and the associated
optimal control problem in Section II. Next, in Section
III we use reduced order modeling techniques to construct
a ROM, which is then used for computationally efficient
optimal control in Section IV. We present simulation results
in Section V and conclude with the merits of our approach
and avenues of future work in Section VI.

II. PROBLEM FORMULATION

We begin by defining the soft robot finite element model
and formulating the control problem.

A. Soft Robot Finite Element Model
Finite element methods are a numerical approach for

solving partial differential equations (PDEs) and have been
used for physics-based modeling and simulation in many
domains, including fluid and structural mechanics as well as
soft robotics [20]. These methods solve PDEs by performing
a spatial discretization at a finite number of nodes defined by
a mesh, which results in a finite set of ordinary differential
equations corresponding to the state of each mesh node.

In the context of soft robotics, the state of each node
consists of the node’s position and velocity, resulting in six
degrees of freedom. Therefore, for a spatial discretization
with N nodes the resulting FEM model will have a total
dimension of nf = 6N (FEM model variables are denoted
using (·)f ). In particular, the soft robot FEM model is defined
as in [19] using Newton’s second law:

Mf v̇f = P f − F f (qf , vf ) +Hf (qf )u,

q̇f = vf ,
(1)

where qf (t) ∈ R3N is the vector of node positions, vf (t) ∈
R3N is the vector of node velocities, and u(t) ∈ Rm is the

1github.com/StanfordASL/soft-robot-control

control input. Additionally, Mf ∈ R3N×3N is a constant
mass matrix, P f ∈ R3N represents constant external forces
(e.g. gravity), F f (qf , vf ) : R3N ×R3N → R3N is a nonlin-
ear function that defines the internal forces (e.g. stresses from
deformation), and Hf (qf ) : R3N → R3N×m is a nonlinear
function that specifies the input matrix. The internal forces
F f (qf , vf ) can be modeled in several ways depending on the
material properties of the robot. A classic example is to use
a linear-elastic model, which assumes a linear stress-strain
relationship through Hooke’s law.

To enable output feedback control we assume a linear
measurement model given by:

y = Cf
y x

f , (2)

where xf = [vf
T
, qf

T
]T ∈ Rnf

is the combined state vector
and y(t) ∈ Rp is the measurement. Additionally, in FEM-
based control problems only a small set of variables may be
of particular interest (e.g. end-effector position and velocity).
We denote these performance variables as z(t) ∈ Ro and
assume a linear performance output model:

z = Cf
z x

f . (3)

This output model can be used to simplify the formulation of
the optimal control problem by expressing the cost function
and constraints in terms of the relevant performance variables
rather than the full state xf of the FEM model.

B. Constrained Optimal Control Problem
In this section we introduce the soft robot optimal control

problem (OCP). First, a set of constraints on the performance
variables z and control u are assumed to be defined by:

u ∈ U , z ∈ Z, (4)

where U := {u | Huu ≤ bu} and Z := {z | Hzz ≤ bz}
are convex polytopes with Hu ∈ Rnu×m and Hz ∈ Rnz×o.
Second, a cost function is defined over a finite horizon as:

Jf = ‖δz(tf )‖2Qf
+

tf∫
t0

‖δu(t)‖2R + ‖δz(t)‖2Qdt, (5)

where [t0, tf ] defines the time horizon, Q,Qf ∈ Ro×o are
positive semi-definite performance variable cost matrices and
R ∈ Rm×m is a positive definite control cost matrix. The
terms δz(t) = z(t) − zd(t) represent deviations of the per-
formance variables with respect to a desired target trajectory
zd(t), and δu(t) = u(t)−ud(t) represents deviations from a
desired target input ud(t). For example, in trajectory tracking
tasks zd(t) defines the reference trajectory (and typically
ud(t) = 0), and in regulation tasks zd(t) = z0, ud(t) = u0
where z0 and u0 are the desired equilibrium values.

The FEM-based soft robot constrained optimal control
problem is then formulated as:

minimize
qf ,vf ,u

Jf ,

subject to Mf v̇f = P f − F f (qf , vf ) +Hf (qf )u,

q̇f = vf ,

u ∈ U , z ∈ Z, z = Cf
z

[
vf

qf

]
.

(6)

A common approach for solving these types of optimal
control problems is to transcribe the finite-horizon OCP into

https://github.com/StanfordASL/soft-robot-control


a nonlinear programming problem that can be solved with
existing numerical algorithms. This problem can then be used
for closed-loop feedback control by repeatedly solving the
optimization problem in a receding horizon fashion.

However, practical implementations of receding horizon
control schemes require the OCP to be solved in real-time,
which is challenging in this context for several reasons.
First, the FEM model (1) is nonlinear and therefore the
OCP contains non-convex constraints. Second, even the
simple case where the optimization problem is a convex
quadratic program has a computational complexity that is
O(T (N + m)3), where T is the number of time steps in
the OCP horizon [21]. This generally precludes the direct
use of FEM models for optimization-based control of soft
robots since fine spatial discretizations (a large number of
nodes N ) are required for high-fidelity modeling. In fact, it
is not uncommon for the full state dimension nf to be on the
order of thousands to tens of thousands, making it impossible
to solve the OCP in real-time with existing state-of-the-art
optimization algorithms.

Our proposed approach to address this computational
challenge is to leverage model order reduction techniques to
derive a high-fidelity (but low-dimensional) approximation to
the original soft robot FEM model. This reduced order model
can then be directly used for real-time soft robot control.

III. REDUCED ORDER MODELING FOR SOFT ROBOTS

Principled model order reduction techniques have been de-
veloped to derive high-fidelity reduced order models (ROMs)
from high-dimensional models. For nonlinear systems, the
model order reduction process generally consists of two
successive steps. The first is to project the high-dimensional
model onto a reduced-order subspace, and the second is to
define an efficient approach for approximately evaluating the
model’s high-dimensional nonlinear terms.

A. Projection-based Model Order Reduction
In this work we consider projection-based methods, which

are a general class of model order reduction methods that
project the high-dimensional model onto a reduced order sub-
space and include widely-used approaches such as balanced
truncation and proper orthogonal decomposition (POD) [13].
In particular, we use POD to define a Galerkin projection
specified by a projection matrix UUT , where U ∈ R3N×r

is an orthogonal basis matrix and r is the dimension of the
reduced-order subspace (typically r � 3N ). This projection
is applied to the high-dimensional FEM position and velocity
vectors to define reduced order position and velocity vectors:

q = UT (qf − qfref), v = UT (vf − vfref), (7)

and to approximately reconstruct the original states by:

qf ≈ Uq + qfref, vf ≈ Uv + vfref, (8)

where qfref, v
f
ref ∈ R3N are constant reference states that are

used to better condition the basis matrix U . In particular, we
select qfref and vfref to correspond to a static equilibrium (i.e.
vfref = 0) of the soft robot.

The reduced order model is then defined by projecting the
FEM model (1) onto the reduced order subspace:

Mv̇ = P − UTF f (Uq + qfref, Uv + vfref)

+ UTHf (Uq + qfref)u,

q̇ = v + vref,

(9)

with M = UTMfU , P = UTP f , and vref = UT vfref.
Additionally, with the combined reduced order state x =
[vT , qT ]T ∈ Rn (where n = 2r) and reference state xfref =

[vfref
T
, qfref

T
]T ∈ Rn, the reduced order measurement and

performance models are given by:

y = Cyx+ yref, z = Czx+ zref, (10)

where Cy = Cf
y V and Cz = Cf

z V with V defined as
V = blkdiag(U,U), and yref = Cf

y x
f
ref and zref = Cf

z x
f
ref are

constants. Crucially, this projection results in a ROM (9) with
combined dimension n, which can be orders of magnitude
smaller than the original FEM model (1) of dimension nf .

B. Nonlinear Model Reduction
While the ROM (9) has a reduced dimension, evaluation

of the nonlinear terms is still computationally expensive be-
cause of their dependence on the high-dimensional state (e.g.
the evaluation of the internal force UTF f (Uq+qfref, Uv+vfref)
scales as O(nf )). In this work we address this by approxi-
mating the nonlinear terms by reduced order piecewise affine
functions, resulting in a piecewise affine ROM.

Specifically, the piecewise affine approximations are gen-
erated by considering N linearization points (qi, vi), which
are represented in the high-dimensional space by qfi =
Uqi + qfref and vfi = Uvi + vfref. Around each of these
linearization points, the internal forces F f are approximated
by a first-order Taylor expansion:

F f (qf , vf ) ≈F f |qfi ,vf
i

+
∂F f

∂qf
|qfi ,vf

i
(qf − qfi )

+
∂F f

∂vf
|qfi ,vf

i
(vf − vfi ).

The internal force terms from (9) can then be written as:

UTF f (Uq + qfref, Uv + vfref) ≈
Fi +Ki(q − qi) +Di(v − vi),

with reduced order terms:

Fi = UTF f |qfi ,vf
i
, Ki = UT ∂F

f

∂qf
|qfi ,vf

i
U,

Di = UT ∂F
f

∂vf
|qfi ,vf

i
U.

The input matrix Hf in (9) is then simply approximated by
the zeroth-order Taylor series expansion:

Hf (Uq + qfref) ≈ H
f (qfi ).

With these simplifications the ROM (9) can be approximated
in the vicinity of xi = [vTi , q

T
i ]T by:

ẋ = Aix+Biu+ di, (11)

where:

Ai =

[
−M−1Di −M−1Ki

I 0

]
, Bi =

[
M−1Hi

0

]
,

di =

[
M−1(P − Fi +Kiqi +Divi)

vref

]
.

Combined, these N linearization points provide a global
approximation of (9) via the piecewise affine ROM:

ẋ =
{
Aix+Biu+ di, i = arg minj‖x− xj‖W , (12)



where W ∈ Rn×n is a positive semi-definite weighting
matrix that defines a distance metric for determining the
nearest linearization point. For example, we choose W =
blkdiag(0, I) for the soft robot in Figure 1 since the internal
forces are heavily dependent on the robot’s configuration qf .

Since the matrices Ai, Bi, and di are of reduced order, the
ROM (12) can easily be stored in memory, efficiently used
for simulation, and its Jacobians can be trivially extracted for
use in optimization-based control. A discrete-time version of
this model can be defined by:

xk+1 = g(xk, uk) :=
{
Ai,dxk +Bi,duk + di,d,

i = arg min
j
‖xk − xj‖W , (13)

where Ai,d, Bi,d and di,d are the discretized reduced order
matrices, which can also be computed a priori.

Not only is the use of piecewise affine models common for
nonlinear control applications, it is also a popular approach
in the model order reduction community and is known as the
trajectory piecewise linear (TPWL) method [22].

C. Building Piecewise Affine ROM
This section proposes an automated approach for the

development of the piecewise affine ROM (12), specifically
the computation of the reduced order basis matrix U and
the selection of the linearization points (qi, vi). This process
relies on simulations of the high-dimensional FEM model
(1), but can be done entirely offline.

As mentioned in Section III-A, the basis matrix U that
defines the reduced order subspace is computed via POD,
a data-driven method for compressing high-dimensional
physics models. In this work, POD is implemented by
simulating the FEM model (1) to collect a set of “snap-
shots”, which can include the soft robot’s configuration qf ,
velocity vf , and acceleration v̇f , and implicitly defines a
basis that characterizes the robot’s behavior. A principal
component analysis of the snapshots is then used to identify
the reduced order subspace. In particular, the subspace is
selected by defining a “snapshot matrix” S with columns
corresponding to snapshots, and then computing a singular
value decomposition S = Ū Σ̄V̄ . The basis matrix U is then
defined by taking the r columns of Ū associated with the
r largest singular values. The dimension of the subspace,
r, is typically chosen to be as small as possible while
still providing good approximation accuracy. In practice, a
commonly used heuristic for quantifying the approximation
accuracy is the “energy” of the truncated singular values [13].

The linearization points used to define the piecewise
affine ROM (12) are also determined via an offline data-
driven procedure. In particular, at each time step of a FEM
simulation a linearization point is added to the ROM if
the reduced order state predicted by the ROM diverges too
significantly from the FEM result. In other words, the ROM
is built incrementally over the course of the simulation.

For good ROM accuracy, the FEM simulation that is used
for POD snapshot collection and linearization point selection
should sufficiently cover the full range of possible robot
motions. To ensure sufficient data is collected, a simple yet
effective approach is to apply an open-loop control sequence
in the FEM simulation that approximately spans the range
of possible actuations for the robot. Specifically, we choose
this sequence through Latin hypercube sampling of the soft
robot’s admissible actuations. A summary of the automated

procedure for developing the piecewise affine ROM is given
in Algorithm 1, where FEM simulates the FEM model (1)
over one time step, POD computes the reduced order basis
U , project corresponds to the projection (7), and ROM
corresponds to simulating the piecewise affine ROM (12).

Algorithm 1 Defining Piecewise Affine ROM (Offline)

1: procedure DEFINEROM(Tsim, r, Wq , Wv , η)
2: {uk}Tsim

k=0 ← LatinHypercubeSample(Tsim)
3: X f = {(qf0 , v

f
0 , 0)}

4: for k = {0, . . . , Tsim} do
5: (qfk+1, v

f
k+1)← FEM(uk, qfk , vfk )

6: X f ← X f ∪ (qfk+1, v
f
k+1, v

f
k+1 − v

f
k )

7: U ← POD(X f , r)
8: P = {(qf0 , v

f
0 )}

9: for k = {0, . . . , Tsim} do
10: (qfk+1, v

f
k+1)← FEM(uk, qfk , vfk )

11: (qk+1, vk+1)← project(qfk+1, v
f
k+1)

12: (q̃k+1, ṽk+1)← ROM(uk, qk, vk, P)
13: if ‖qk+1−q̃k+1‖Wq

+‖vk+1−ṽk+1‖Wv
> η then

14: P ← P ∪ (qfk , v
f
k )

return U , P

IV. REDUCED ORDER OPTIMAL CONTROL

We now leverage the ROM (12) to formulate a reduced
order OCP to approximately solve the original OCP (6).
An output feedback control scheme is then defined which
consists of three components: (1) the reduced order OCP,
(2) a reduced order state estimator, and (3) a reduced order
feedback control law. In this scheme, the reduced order OCP
optimizes a reduced order trajectory that the soft robot should
follow and the state estimator incorporates measurements to
provide an estimate of the robot’s current (reduced order)
state. The feedback control law then uses the state estimate
to drive the robot to track the optimized trajectory.

A. Reduced Order Optimal Control Problem

A discretized optimal reduced order trajectory (x∗,u∗)k =
({x∗i }

k+T
i=k , {u∗i }

k+T−1
i=k ) for the robot is defined over a finite

horizon T by solving a reduced order approximation of the
high-dimensional OCP (6):

minimize
x,u

‖δzk+T ‖2Qf
+

k+T−1∑
j=k

‖δuj‖2R + ‖δzj‖2Q,

subject to xi+1 = g(xi, ui),

xk = x0,k,

ui ∈ U , zi ∈ Z, zi = Czxi + zref,

(14)

where i = k, . . . , k + T − 1, and x0,k is the initial state at
time step k. This finite horizon problem is then solved in
a receding horizon fashion to define the optimal trajectory
over an arbitrarily long horizon. Specifically, the OCP is
initialized at time k = 0 by setting x0,0 = x̂0, where
x̂0 is the reduced order state estimate. The OCP is then
recursively solved every Tr < T time steps (i.e. at time
steps k = Tr, 2Tr, . . . over the receding horizon [k, k + T ])
by setting x0,k = x∗k, where x∗k is the optimal state from the
previous solution (computed at time step k − Tr).



We solve the nonconvex OCP (14) using sequential convex
programming (SCP), by solving a sequence of quadratic pro-
gram (QP) approximations until convergence. Specifically,
we use a slightly modified version of [23]. Crucially, since
the ROM is constructed such that n� nf this approach can
enable real-time control.

B. Reduced Order Controller and State Estimator
The reduced order OCP (14) defines an optimized open-

loop reduced order trajectory that the robot should follow.
A simple output feedback control scheme is now defined to
drive the robot to track this trajectory.

To estimate the robot’s current reduced order state from
measurements a reduced order state estimator is defined as:

x̂k =g(x̂k−1, uk−1) + Lk(yk − Cyg(x̂k−1, uk−1)), (15)

where Lk ∈ Rn×p is the estimator gain, yk is the robot
measurement, and uk−1 is the previous control input. We
choose the gain Lk to be the extended Kalman filter gain
based on the discrete-time ROM dynamics (13).

The control applied to the robot is then computed using a
reduced order linear feedback control law:

uk = u∗k +Gk(x̂k − x∗k), (16)

where Gk ∈ Rm×n is the controller gain matrix, and (x∗k, u
∗
k)

is the optimized state-input pair computed by the OCP (14).
To define the controller gains Gk we propose a simple and
computationally efficient method based on gain scheduling:

Gk =
{
Gi, i = arg minj‖x∗k − xj‖W , (17)

where the gains Gi are the discrete-time LQR gains at
each linearization point (qi, vi), which can be computed
a priori. In particular, the gains Gi are computed using
the discrete-time reduced order dynamics matrices Ai,d and
Bi,d, and positive semi-definite cost matrix QG ∈ Rn×n

and positive definite control cost matrix RG ∈ Rm×m (e.g.
QG = CT

z QCz and RG = R).
The formulation of the proposed control scheme has a

couple of practical advantages. First, since the OCP (14)
defines the initial condition based on the previous solution
the next solve can be started as soon as the previous solve
is completed. For example, suppose the optimized trajectory
(x∗,u∗)k has already been computed at time step k, then
the OCP problem associated with time step k + Tr can be
solved starting at time step k since x∗k+Tr

is already known.
If the model is discretized with a sampling time of h this
gives hTr seconds to solve the next OCP. Additionally, this
choice of initialization can help with warm-starting of the
SCP algorithm. Second, even though the optimal trajectory
computed by the OCP is discretized with a sampling time h,
the state estimator and control law can be operated at a higher
frequency by simply interpolating the optimal trajectory
(x∗,u∗)k.

V. SIMULATION RESULTS

We now compare our method against two alternative
approaches. First, we use a reduced order model predictive
control (ROMPC) scheme based on a linearized FEM model
[17] to demonstrate the significant benefits of using a nonlin-
ear model. Second, we demonstrate that our method performs
comparably to a data-driven Koopman operator-based control

scheme [10] without suffering common drawbacks of data-
driven methods, such as a loss in generality from building
problem or task-specific models. These comparisons are
discussed in more detail in Section V-B.

We compare these approaches in simulation using the elas-
tomer “Diamond” soft robot shown in Figure 1. This robot
is fixed at the base and is actuated by controlling the tension
in four cables that are attached at the robot’s “elbows”. The
“top” of the robot will be referred to as the “end effector”.
We use the open-source SOFA framework [20], [24] for
finite element model-based simulations, and the mesh used
in our experiments can be found in the SOFA Soft Robots
plugin2. The FEM model used to simulate the Diamond robot
consists of N = 1628 nodes (i.e. nf = 9768), the nonlinear
internal forces F f (qf , vf ) are defined by a linear stress-
strain law, and gravity is assumed to be the only external
force P f . The measurement model includes the position and
velocity of the end effector and the four “elbows” of the robot
(i.e. y ∈ R30), and additive Gaussian measurement noise
is included in the FEM simulation. We consider a control
application where the performance variable is the position
of the robot’s end effector (i.e. z = [xee, yee, zee]

T ). In par-
ticular, a constrained optimal control problem is formulated
to drive the end effector position (xee, yee) to track a desired
trajectory (xd,ee, yd,ee) subject to position constraints, as
shown in Figures 2 and 3. Note that this type of dynamic
control problem cannot be addressed with kinematics-based
controllers, and the addition of constraints precludes the use
of many data-driven control methods.

A. Controllers
For the proposed approach we construct a piecewise affine

ROM for the Diamond robot using the procedure in Algo-
rithm 1. In particular, we use acceleration snapshots in the
POD step to define a reduced order subspace with dimension
r = 21 (i.e. n = 42), we choose vfref = 0, and select qfref
to be the equilibrium configuration of the robot with no
actuation. For selecting the linearization points we choose
the threshold parameter η (with Wq = 0,Wv = I) such that
a total of N = 642 points (qi, vi) are selected. Additionally,
the piecewise affine ROM is defined with W = blkdiag(0, I),
such that only the robot’s configuration q is used to select
the nearest linearization point. The reduced order OCP (14)
is then defined with a horizon of T = 5, a rollout horizon
of Tr = 2, and the ROM is discretized with a sampling time
of h = 0.05 seconds. By interpolating the optimal trajectory
computed by the OCP, the feedback controller (16) and state
estimator (15) operate with a sampling time of 0.01 seconds.

The ROMPC controller [17] uses a ROM generated by
linearizing the FEM model (1) around the point xfref and then
reusing the POD projection from our proposed controller. We
consider the same horizons T, Tr and sampling time h as
in our controller, and the ROMPC feedback controller and
state estimator also operate with a sampling time of 0.01
seconds by interpolating the optimized trajectory. Finally,
for the Koopman operator-based controller [10] we build a
model for the performance variables z with a delay d = 1 and
all monomials of maximum degree 2 to define a lifted state
of dimension NK = 66 and a sampling time of h = 0.05
seconds. The data used to build this model came from the
same FEM model simulation used to define our proposed
controller.

2github.com/SofaDefrost/SoftRobots
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Fig. 2: FEM model simulation results for trajectory tracking with the Diamond soft robot. The green line represents the ROMPC controller [17], orange is the Koopman controller
[10], blue is our proposed control scheme. The red lines represent constraints, and the black dashed line indicates the desired trajectory (which is partially infeasible due to the
constraints). These results demonstrate the ability of our proposed controller to allow the soft robot to perform dynamic tasks such as constrained trajectory tracking.

Fig. 3: FEM model simulation results for the Diamond soft robot with the ROMPC
[17], Koopman [10], and our proposed controller. The black dashed line indicates the
desired trajectory, and the interior of the red box is the admissible region defined by
the constraints. Note that in addition to the advantages discussed in Section V-B, our
proposed approach performs comparably to the Koopman approach with respect to
tracking and constraint satisfaction. The poor performance of ROMPC motivates the
need for nonlinear model-based controllers.

TABLE I: A comparison of the mean square error (MSE) and the time spent solving
QPs in each controller using Gurobi [25], where the reported value for our method
considers the cumulative sum of all QP solve times in the SCP algorithm (on a 2.5
GHz Intel Core i5 processor with 8GB of RAM). These results show our FEM-based
optimal control scheme achieves state-of-the-art performance and is real-time capable.

Tracking Error Computation
Method MSE (mm2) Mean (ms) Min. (ms) Max. (ms)

ROMPC 5.80 10 9 18
Koopman 0.17 21 17 38

Ours 0.07 17 10 34

B. Results

Simulation results of the Diamond FEM model are pre-
sented for each controller in Figures 2 and 3. As can be
seen, the ROMPC scheme, which uses a linearized ROM,
offers poor tracking and severely violates the constraints.
In contrast, our approach and the Koopman controller offer
good tracking performance and generally satisfy the con-
straints, highlighting the importance of capturing the soft
robot’s nonlinear behavior.

To demonstrate the computational requirements of each
controller we report the amount of time spent solving QPs
(which is the most significant computational component) in
Table I. Note that the ROMPC and Koopman controllers only
solve one QP at a time while the proposed SCP approach may
require multiple QPs to be solved. These results show that

the proposed FEM model-based control scheme is real-time
capable.

Our proposed approach offers similar performance to the
Koopman operator-based controller in this simulation (see
Table I), while offering several advantages. First, the Koop-
man approach only models the behavior of a prespecified
choice of the performance variables z, while the FEM model
in our approach captures the robot’s entire state (independent
of the choice of z) and can therefore be used for any number
of different control problems. In contrast to our approach, the
Koopman controller is also restricted to only consider outputs
z that are a subset of the measured variables y. Second, the
dimension of the Koopman model does not scale well with
the number of measured variables. For example, including
all the measured variables y (i.e. setting z = y ∈ R30)
would result in a model of dimension NK = 2145 (using the
same delay d = 1 and all monomials with maximum degree
2). Third, the Koopman controller must operate at whatever
frequency the model is discretized at (and the frequency the
QP is solved at), while our controller can be operated at much
higher frequencies by subsampling the optimized trajectory.

VI. CONCLUSION

In this work we propose a novel approach for model-based
optimal control of soft robots based on high-fidelity nonlinear
finite element models. Notably, computational efficiency
is achieved by defining a reduced order piecewise affine
model to approximate the high-dimensional FEM model.
The proposed controller enables output feedback constrained
optimal control problems to be addressed, including setpoint
and trajectory tracking problems. Simulation results are used
to demonstrate the performance of the proposed approach in
comparison to a state-of-the-art data-driven and linear FEM
model-based constrained control method.

Future Work: Future work includes validation of the pro-
posed approach through hardware experiments as well as sev-
eral extensions, including the use of more advanced nonlin-
ear model reduction techniques (e.g. the energy-conserving
sampling and weighting (ECSW) method [26]), application
to different types of soft robots (e.g. pneumatically actuated
robots, which have a distributed actuation force), the ability
to handle scenarios where the robot makes and breaks contact
with the environment, and whether data-driven techniques
could be used to augment the current approach. Additional
theoretical analysis is also needed to study whether perfor-
mance, stability, and constraint satisfaction guarantees can
be made within the proposed framework.
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