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Abstract— In order to manipulate a deformable object, such
as rope or cloth, in unstructured environments, robots need
a way to estimate its current shape. However, tracking the
shape of a deformable object can be challenging because of the
object’s high flexibility, (self-)occlusion, and interaction with
obstacles. Building a high-fidelity physics simulation to aid in
tracking is difficult for novel environments. Instead we focus
on tracking the object based on RGBD images and geometric
motion estimates and obstacles. Our key contributions over
previous work in this vein are: 1) A better way to handle
severe occlusion by using a motion model to regularize the
tracking estimate; and 2) The formulation of convex geometric
constraints, which allow us to prevent self-intersection and
penetration into known obstacles via a post-processing step.
These contributions allow us to outperform previous methods
by a large margin in terms of accuracy in scenarios with severe
occlusion and obstacles.

I. INTRODUCTION

Tracking the shape of a deformable object is a long-
standing problem that has been studied for applications in
computer graphics [1], [2], surgery [3], [4], computer vision
[5], [6], and robotics [7], [8], [9]. However, tracking de-
formable objects in the presence of severe occlusion and ob-
stacles remains a difficult open problem. The key challenge
is to maintain an estimate of the shape that conforms with
physical constraints, i.e. that the object’s motion conforms
to a reasonable motion model and that the object cannot
move through obstacles or through itself. Occlusion makes
enforcing these kinds of constraints especially difficult.

Previous work on this problem has explored using a
physics simulator to inform the prediction estimate [10], but
such methods assume a simulation environment for the given
scene (with appropriate friction, stiffness, etc. parameters)
can be easily constructed. Even if this were the case, such
methods are quite sensitive to occlusion. More recently,
CDCPD [7] showed that such models were not necessary
for accurate tracking, instead using geometric methods to
infer the shape of occluded parts of the object. However,
CDCPD has two key limitations: 1) It has no motion model
to constrain how the object moves between frames and, as
a result, large erroneous changes in state are possible due
to occlusion; and 2) There is no way to enforce geometric
constraints for self-intersection and obstacle penetration.

This paper builds on CDCPD to address these key defi-
ciencies. Specifically, our method, CDCPD2, makes three
novel additions: 1) We incorporate a user-defined motion
model into the regularization process to bias the tracker
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Fig. 1: Examples of tracking results for rope winding around a
cylinder (top) and cloth behind an obstacle (bottom). The 3D
tracking estimate (yellow) is overlaid on the corresponding image.

toward realistic object motion; 2) We formulate convex con-
straints that prevent edge-crossing and incorporate them into
a post-processing step; and 3) We formulate convex obstacle-
penetration constraints and include them in post-processing.
While we use a similar expectation-maximization procedure
as CDCPD, we emphasize that the above additions are highly
non-trivial and, more importantly, that they allow us to track
deformable objects in much more realistic scenarios, where
occlusion and clutter are unavoidable.

Our experiments compare our method to CDCPD and [10].
Our simulation results (where we can obtain the ground-truth
state of the object) show that CDCPD2 is able to estimate
the state of the object much better than the previous methods
under severe occlusion. Our real-world results show a clear
qualitative improvement in the estimate of the deformable
object shape in several challenging scenarios. Our code is
available open-source2.

II. RELATED WORK
Deformable object tracking has been studied in a variety

of fields. Due to space constraints, we focus on only the
most relevant methods to our work. In computer vision, [5]
explores methods to reconstruct non-rigid scenes in real-time.
However, it does not track a soft object model explicitly, as
new nodes can be added and removed. For self-occlusion, [6]
introduces a method to handle self-occlusion based on feature
matching between between a template and input images.
However, the deformable objects we consider don’t have
obvious features to use for matching.

Deformable object tracking has also been used for image-
guided surgery. However, these approaches typically rely
on textural features [3] or a high-fidelity simulation of the
deformable object to inform tracking [4]. In contrast, our
method does not require either of these and thus it is
applicable to a broader range of objects and novel scenarios.

In robotics, [11] introduces the method of representing a
textured wire as a NURBS spline model and manipulates the

2https://github.com/UM-ARM-Lab/cdcpd/tree/CDCPD2
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wire based on this model. However, it requires the wires to
have a specific color pattern. [12] focuses on tracking with
obstacles and occlusion. However, it is based on the known
Finite Element Method (FEM) model of the specific object,
which can be difficult to construct. [13] focuses on grasping
cloth, where the tracking of the cloth is based on corner
detection. [14] tracks and manipulates rope but is specialized
to knot tying applications, whereas we seek to track both rope
and cloth-like objects. [15], [16] follows a similar approach,
using hand-engineered features for perception.

Unlike much of the above work, which uses hand-
engineered features for perception, several recent methods
use point registration based on Gaussian Mixture Model
Expectation-Maximization (GMM-EM) and Coherent Point
Drift (CPD) (e.g. [17]). Tang et al. proposes to incorporate
physics simulation into the point registration process [8], [9],
[10]. This method is effective for knotting and folding, but it
performs poorly when the object is significantly occluded (by
itself or by obstacles) and it requires setting up a simulation
with many friction parameters and material properties that
are difficult to determine for a given deformable object. Chi
and Berenson [7] introduce a method to track rope and cloth
while allowing for occlusions of the object without relying on
a physics simulator. However, their method does not address
obstacle interactions and self-intersection. We compare to
both [7] and [10] in our experiments.

III. PROBLEM STATEMENT

Let 〈Pt, E〉 to be the configuration of the deformable
object at time t. Pt ∈ R3M is a set of M points, and
every element pi ∈ Pt is a point with coordinate (x, y, z).
E ∈ I2E is a set of E edges, and every element ei ∈ E
has two indices of Pt which form an edge. We assume
that we know the poses of the robot’s G gripper(s). The
gripper(s) configuration at time t is denoted as qt ∈ SE(3)G

with velocity q̇t. Each element q̇g ∈ q̇t can be written as
[vTg ωTg ]

T ∈ se(3), i.e. the concatenation of the translational
and angular velocities. We denote indices of Pt grasped by
G grippers at time t as Ct ∈ IdG, where ci ∈ Ct means d
indices grasped by the ith gripper. In addition, we define ρij
as the geodesic distance distance between points pi and pj
on the surface of the deformable object.

The inputs to the tracking algorithm are a sequence of
RGBD images It, qt (optional), q̇t (optional), Ct (optional),
and an initial connectivity model 〈P0, E〉. The optional may
be used by some motion models, but it depends on the model.
As with previous work ([10], [7]), we assume a point-cloud is
generated from the RGBD image and the object is segmented
out of the pointcloud. In this work, all points not belonging
to the deformable object are assumed to be obstacles. We
denote deformable object masks as Mt, with the same
size as RGBD images It, and masked deformable objects’
corresponding point clouds are denoted as Dt ⊂ R3N , a set
of N points, and every element di ∈ Dt is a point with
coordinate (x, y, z). We assume that the obstacle points can
be used to infer the shape of the obstacles (e.g. using shape-
completion [18], [19], model registration [20], or simply

Algorithm 1: CDCPD2
Input : P0, E ,O, Ctidx, It,Mt, qt, q̇t, Ct, t = 1, 2, ...
Output: Pt, t = 1, 2, ...
Compute G using Eq. 8;
Compute L using [21];
for t = 0, 1, ... do

Retrieve the masked point cloud Dt+1 from It+1;
PGMM,t+1 =
GMM-EM(Pt,Dt+1, L,G, qt+1, q̇t+1, Ct+1,O);

Optimize Pt+1 using Eq. 24;

creating a mesh from the points), and thus we obtain a mesh
representation of obstacles O.

Tracking a deformable object can then be regarded as a
point registration problem of estimating Pt+1 by aligning Pt
to Dt+1, with known obstacles O and (optionally) gripper in-
formation 〈qt+1, q̇t+1, Ct+1〉. Denoting the true configuration
of the deformable object at time t as P∗t+1, our goal is to
output the Pt+1 that minimize ‖P∗t+1−Pt+1‖2. In addition,
we wish to obtain an estimate with the same topology
(in the sense of the over- and under- crossings considered
in knot theory [14]) as the ground truth. This problem is
difficult because the tracking method must compensate for
(self-)occlusion, prevent self-intersection, and enforce the
geometric constraints arising from obstacles.

IV. METHOD
As a foundation for our method, we build on Con-

strained Deformable Coherent Point Drift (CDCPD) [7]. At
its core, CDCPD uses a Gaussian Mixture Model (GMM)
Expectation-Maximization (EM) process to find the config-
uration of the deformable object Pt+1 that best explains
the observation Dt+1 given the previous configuration Pt
and the robot configuration qt+1 (Sec. IV-A). In addition,
CDCPD uses Coherent Point Drift (Sec. IV-B.1) and Locally
Linear Embedding (Sec. IV-B.2) to encourage the result to
be physically plausible, however this is insufficient for some
types of severe occlusion. In this paper, our first contribution
is to introduce an additional novel regularization term based
on a geometric model-based prediction (Sec. IV-B.3); this
enables us to use the motion of the robot (qt → qt+1) to help
infer the motion of the deformable object (Pt → Pt+1).

While these regularization terms encourage physically-
plausible results, they do not exploit constraints that we know
about the system. CDCPD enforces constraints based on the
position of the robot grippers and the maximum size of the
deformable object (Sec. IV-C.1). However, CDCPD does not
account for self-intersection and obstacles. Thus our second
contribution is to introduce two additional constraints: a self-
intersection constraint (Sec. IV-C.2) that ensures that the
tracked deformable object does not pass through itself, and
an obstacle interaction constraint (Sec. IV-C.3) that ensures
that the tacked object is never inside an obstacle. The overall
method is show in Alg. 1.

A. Deformable Object Tracking as Point Set Registration
Assuming relatively small changes in object shape be-

tween two consecutive frames, it is reasonable to regard



the tracking problem as a point registration problem. In
other words, we will align Pt to Dt+1 to get Pt+1. For
simplicity, in this section, we will write Pt as Pprev, Pt+1

as P , PGMM,t+1 as PGMM, and Dt+1 as D. Following the
formulation in [22], [23], [7], the problem will initially be
formulated as a naive GMM problem.

We assume every point pi ∈ PGMM is the center of a
Gaussian distribution with the same isotropic variance σ2.
The sum of M Gaussians is a Gaussian Mixture Model
(GMM). In addition to the Gaussian terms, we add a uniform
term with weight w ∈ (0, 1) to the mixture. Thus

P(m) =

{
1−w
M , m = 1, . . . ,M

w, m =M + 1
(1)

and

P(dn|m) =

 1

(2πσ2)
3
2
exp

(
−‖dn−pm‖

2

2σ2

)
, m = 1, . . . ,M

1
N , m =M + 1

(2)
We then assume that points in D were generated by drawing
samples from the mixture:

P(D) =
N∏
n=1

P(dn) =
N∏
n=1

M+1∑
m=1

P(m)P(dn|m) . (3)

Then our goal is to find the configuration of the de-
formable object that best explains the observation; i.e.

argmax
P

logP(D) . (4)

The EM algorithm can be used to solve this problem,
as shown in [22]. In the E-step we keep the Gaussian
distributions fixed and calculate the expectation that dn is
generated by the m’th Gaussian distribution

P(m|dn) =


1
η exp

(
−‖dn−pm‖

2

2σ2

)
, m = 1, . . . ,M

1
η

w
(1−w)

(2πσ2)
3
2M

N , m =M + 1
(5)

where η > 0 is set so that
∑M+1
m=1 P(m|dn) = 1. Then in the

M-step, following the algorithm described in [22], [23], we
update the position of the Gaussian centroids P and variance
σ by minimizing

Q(P, σ2) =

N∑
n=1

M+1∑
m=1

P(m|dn)
‖dn − pm‖2

2σ2
+

3

2
NP log σ

2

(6)

where NP is the sum of P(m|dn), i.e.
∑N,M
n,m=1 P(m|dn).

Then we iterate E-step and M-step until convergence.
1) Visual Information Exploited for Occlusion: The base

GMM-EM formulation assumes a uniform prior for each
Gaussian centroid (see Eq. 1); CDCPD replaces this assump-
tion based on visibility information. If a particular point on
the deformable object is occluded, then that point is unlikely
to generate any samples in D. This information is encoded
in the posterior probability matrix X ∈ RM×N (see Eq. (9)
in [7]).

Algorithm 2: GMM-EM(Pprev,D, L,G, q, q̇, C,O)
Input : Pprev,D, L,G, q, q̇, C,O
Output: PGMM

Compute pvis using Eq. (7) in [7];
σ2

prev = 0;
σ2 = Var(Pprev);
σ2

diff = ε+ 1;
W = 0;
i = 0;
while σ2

diff > ε and i < max iter do
Compute X using Eq. (9) in [7];
Compute Ppred using motion model;
Solve W using Eq. 15;
σ2

prev = σ2;
Compute σ2 using Eq. 16;
σ2

diff = abs(σ2 − σ2
prev);

i++;
return PGMM = Pprev +GW

B. GMM-EM Regularization
1) Coherent Point Drift Regularization: While GMM-EM

forms a reasonable basis for a probabilistic interpretation of
an observation; it does not account for dependencies between
each Gaussian centroid. In our domain, there is physical
structure to these centroids based on the deformable object;
in particular two points on the deformable object that have
a short geodesic distance between them are likely to move
coherently. CPD encodes this structure by restricting the
motion of the deformable object to be of the form

PGMM = Pprev +GW (7)

where G is a Gaussian kernel matrix with elements

Gij = exp
(
−ρ2ij/(2β2)

)
(8)

and W ∈ RM×3 is a weight matrix. We can then regularize
this weight matrix to enforce motion coherence during the
the M-step:

ECPD = Tr
(
WTGW

)
. (9)

Note that we deviate from CDCPD by using a static value
for G rather than recalculating it at every timestep.

2) Locally Linear Embedding Regularization: While CPD
is able to encourage motion coherence during consecutive
frames, it does not account for excessive change over time.
For example in the extreme case, two points can drift arbi-
trarily far apart given enough time. To address this problem
CDCPD uses a regularization term proposed in [23]. This
term is based on Locally Linear Embedding (LLE) [21],
which represents each point as a linear combination of its
k nearest neighbours, and then penalizes deviation from that
representation. We obtain linear weights L by minimizing
the following cost function:

J(L) =

M∑
m=1

‖p0m −
∑
i∈Km

Lmip
0
i ‖2 (10)

where Km is a set of indices for the k nearest neighbors
of p0m, and L is a M × M adjacency matrix where Lij



Fig. 2: CPCPD producing a large change in the state when the end
of the rope becomes occluded. Left: before. Right: after.

represent a edge between p0i and p0j with their corresponding
linear weight if j ∈ Ki and 0 otherwise. We then define
a regularization term that penalize the deviation from the
original local linear relationship:

ELLE(W ) =

M∑
m=1

‖pGMM
m −

∑
i∈Km

Lmip
GMM
i ‖2 (11)

where pGMM
i are the points from the CPD transformation

(Eq. 7).
3) Geometric Prediction-based Regularization: While

CDCPD is able to handle some occlusion cases, others like
those shown in Fig. 2 cause the algorithm to lose track of one
side of the deformable object, shrinking the tracking to only
the visible points. Though these two frames are close in time,
the tracking result changes dramatically when the trailing end
of the rope is occluded. Without any visual points to “pin”
one side of the rope on the left side of the box, the CDCPD
tracking moves all the points of the rope to the right side,
effectively shrinking the object to fit it to the visible points.

To address this problem, we introduce a novel geometric
prediction-based regularization term into the GMM-EM pro-
cess. By using a geometric prediction like [24], [25], [26], we
are able to avoid the downsides of using a physics simulation
while capturing much of the behavior of a deformable object.
Sec. V-A briefly details the models that we use in our results,
but our method is agnostic to the specifics of the model used.

Let Ppred be a prediction of the configuration of the object
made by some model of deformable object motion. We define
an additional cost function

EPRED(W ) =

M∑
m=1

∥∥pGMM
m − ppred

m

∥∥2
=Tr

(
(PGMM − Ppred)T (PGMM − Ppred)

)
=Tr

(
(Pprev +GW )T (Pprev +GW )

− 2(Pprev +GW )TPpred + PpredTPpred)
(12)

to encode the information from the model. Below we show
how to incorporate Eq. 12 in the CDCPD regularization
procedure.

Thus, similar to a tracking method like the Kalman filter,
we make a prediction with the motion model, and then use
it to update our tracking result along with what we observe
at the next frame. This approach has the advantage of not
being too sensitive to large perceptual changes (e.g. the end
of the rope disappearing), because the motion model helps
to retain physical plausibility.

4) Solving for the Transform Weights: Adding all three
regularization terms, we get the final cost function for the

M-step:

Q(W,σ2) =
N∑
n=1

M∑
m=1

P(m|dn)
∥∥dn − (pprev

m +G(m, ·)W
∥∥2

2σ2

+
3NP

2
log(σ2) +

α

2
ECPD(W )

+
γ

2
ELLE(W ) +

ζ

2
EPRED(W ),

(13)

where α, γ, and ζ are constant weights and NP =∑N,M
n,m=1 P(m|dn).
Similar to the process shown in [23], we can minimize

Q in the M-step by computing a W where ∂Q/∂W = 0:
Denote 1 as a column vector of ones, and d(v) as the
diagonal form of vector v. Let H = (I−L)T (I−L). Then,

A =
(
d(X1)G+ ασ2I + γσ2HG+ ζG

)
B = XD − (d(X1) + γσ2H)PGMM + ζ(Ppred − PGMM),

(14)

where A is a M ×M matrix and B is a M ×3 matrix. Both
A and B are calculated directly from terms we have already
computed. We then obtain W by solving

AW = B. (15)

Then we can obtain σ2 using Eq. (19) from [7]:

σ2 =
1

3NP

(
Tr
(
DT d(XT1)D

))
− 2Tr

(
(PGMM)TXD

)
− 2Tr

(
WTGTXD

)
+Tr

(
(PGMM)T d(X1)PGMM)

+ 2Tr
(
WTGT d(X1)PGMM)+Tr

(
WTGT d(X1)GW

)
(16)

We repeat the E-step and M-step until it reaches the maxi-
mum number of iterations (100) or the change in σ2 between
two iterations is smaller than a threshold (10−4). PGMM after
one time step is thus Pprev +GW .

C. Posterior Constraints
GMM-EM is able to reason about probabilities and costs,

but the result is not guaranteed to be geometrically consistent.
For example, points could be further apart than is possible
for a given deformable object. To address this, CDCPD in-
troduced a post-processing optimization step which enforces
some constraints. We start with those constraints (Sec. IV-
C.1) and propose novel convex constraints for prevent-
ing self-intersection (Sec. IV-C.2) and obstacle penetration
(Sec. IV-C.3). We emphasize that using convex constraints
is essential for efficient and reliable optimization.

Denote pGMM
m as the mth point of the GMM-EM result

PGMM = Pprev+GW . Then our goal is to adjust every pGMM
m

such that all points comply with the geometric constraints
described above.

1) Known Correspondences and Stretching Limits: CD-
CPD considers two constraints. First, a constraint based on
the maximum distance between the nodes in the mesh

‖pi − pj‖ ≤ λρij ∀(i, j) ∈ E (17)



with a parameter λ ≥ 1 which controls the flexibility of the
constraint. Second, a constraint based on known correspon-
dences. For example, if we know that the grippers are rigidly
connected to a particular part of the deformable object, then
we can encode that constraint directly into the optimization at
each timestep. We represent these correspondences between a
set of known points {z1, . . . , zK} ⊂ R3K and corresponding
deformable point indices as Cidx = [c1, c2, . . . , cK ] ∈ N2K

pm = zk ∀(m, k) ∈ Cidx . (18)

2) Self-Intersection Constraints: The first novel constraint
we add is designed to prevent a tracking result from passing
through itself (see Fig. 3). The general idea of preventing
self intersection is checking pairs of edges for potential
intersection and then constraining the movement of the points
such that a small gap remains between any edges that could
cross. This gap corresponds to the thickness of the object.
Specifically, our algorithm checks all pairs of edges that do
not share points. For two edges ei = (i0, i1), ej = (j0, j1) ∈
E , we regard them as two line segments and calculate the
shortest distance sij between the two closest points, pnear,i
and pnear,j , on these line segments. These points are:

pprev
near,i = riPprev(i0) + (1− ri)Pprev(i1) (19)

pprev
near,j = rjPprev(j0) + (1− rj)Pprev(j1) , (20)

where ri and rj are two real number between 0 and 1. If
sij is smaller than the threshold scheck we will constrain
P(i0), P(i1), P(j0) and P(j1). The larger scheck is, the
less likely it is that we miss a self-intersection between
two frames. However, a large scheck will likely result in
more constraints in the optimization problem, which leads
to a higher computation cost and potentially an infeasible
optimization problem.

The closest points pprev
near,i and pprev

near,j found in Pprev above
correspond to the closest points pnear,i and pnear,j found in
P . pnear,i and pnear,j are calculated as below:

pnear,i = riP(i0) + (1− ri)P(i1) (21)
pnear,j = rjP(j0) + (1− rj)P(j1) (22)

We constrain P by requiring the projection of vector pnear,i−
pnear,j on the direction of pprev

near,i − p
prev
near,j to be larger than a

collision threshold s. We write the constraints as below:

(pnear,i − pnear,j)
T

pprev
near,i − p

prev
near,j∥∥pprev

near,i − p
prev
near,j

∥∥ > s ∀(i, j) ∈ E (23)

Intuitively, the parameter s determines how far edges should
keep away from each other, i.e. it approximates object
thickness.

3) Obstacle Interaction Constraints: In addition to self-
intersection constraints, we include a novel constraint to
account for obstacle interaction. If we know the geometry
of some obstacles in the scene, we can constrain the result
of the tracking process to stay consistent with that known
geometry. To achieve this, we add constraints based on the
local geometry near each point pprev

m . For each point pprev
m ,

we find the nearest obstacle point om and the corresponding

Fig. 3: Example of CDCPD tracking result passing through itself
when raised.

normal vector nm. We then constrain the tracking result to
stay on the same side of the tangent plane defined by om
and nm: (pm − om)Tnm > 0 ∀pm ∈ P .

Combining all the constraints together yields the following
convex optimization problem:

argmin
P

M∑
m=1

∥∥pm − pGMM
m

∥∥2
subject to ‖pi − pj‖ ≤ λρij ∀(i, j) ∈ E

pm = zk ∀(m, k) ∈ Cidx

(pnear,i − pnear,j)
T

pprev
near,i − p

prev
near,j∥∥pprev

near,i − p
prev
near,j

∥∥ > s

(pm − om)Tnm > 0 ∀m ∈ [1, . . . ,M ] ,
(24)

which we solve with the Gurobi [27] optimization package,
yielding our final estimate of P .

V. EXPERIMENTS
We conducted experiments in simulation and the real

world to analyze our algorithm quantitatively and quali-
tatively in the presence of severe occlusion and obstacles
(see the accompanying video). We compare our results with
CPD+physics [10] and CDCPD [7].

The parameter values are: β = 1.0, α = 0.5, γ = 1.0 , ζ =
2.0, kvis = 100 (see Eq. (7) of [7]), scheck = 0.02m, s =
0.01m, and λ = 1.1. Point clouds are downsampled using a
voxel grid filter with a grid size of 2cm. CDCPD2, CDCPD
and CPD+Physics are implemented in C++ and tested on an
Intel i7-8700 @ 3.7GHz processor with 32 GB RAM.

A. Geometric Prediction Models
Because our method relies on a prediction of deformable

object motion, we need an efficient model that outputs
this kind of prediction. We emphasize that the model need
not be very accurate, but only that it is more physically
plausible than the output of the CPD process alone. To
show our algorithm’s performance with (and robustness to)
a variety of models, we provide results for three different
geometric models of motion. First, the most naive model,
we call No Motion, assumes there is no movement between
frames: Ppred = Pprev. While naive, this model may be
reasonable when the movement between two frames is small.
The second prediction model we evaluate is the diminishing
rigidity model [24], [25]: Ppred = Pprev + J(P, q)q̇, where
J(P, q) is an estimate of the Jacobian mapping gripper
movements to deformable object movement. We use k =
10.0 (see [24]). The third model prediction we tried is



Fig. 4: Comparison of results of CDCPD2 and baselines for simulation (left of line) and real (right of line) data. The CPD+Physics
implementation from the authors of [10] does not track cloth, so it is used only for rope. Columns show results for a single frame in each
task. First column: ground truth (red) vs. estimates (yellow). CDCPD2 used the diminishing rigidity model for all tasks shown except
lifting crossed rope, where we used the “no motion” model because the rope was manipulated by a human (so q̇ is unknown).

a constrained directional rigidity model [26]. It builds on
diminishing rigidity by directly accounting for the direction
of gripper motion, and formulating constraints to account
for obstacles. This results in a more expressive Jacobian:
Ppred = Pprev + J(P, q, q̇,O)q̇. We use kr = 10.0, kg = 5.0
and kD = 5.0 (see [26]).

B. Experiments with Simulated Data

To analyze performance quantitatively, we obtained
ground truth from simulation in Blender and compared all
methods to this. The rope is modelled as a soft body with
49 line segments. The cloth is modelled as a 20 by 20 mesh.
RGBD images are rendered using the Eevee rendering engine
with size 810 × 540.

The first experiment demonstrates the ability of our
method to prevent the tracking result from shrinking to the
visible part of the object (as in Fig. 2). We drag one end
of the rope until the free end of the rope is occluded by
the obstacle. We can see from Fig. 4 that our result won’t
shrink (regardless of the motion model used), while CDCPD
and CPD+Physics will shrink quickly. Fig. 5 shows the
comparison with ground truth. We can see when the free
end is not occluded, i.e. the first several frames, the error of
all these methods is close. However, when the free end is
occluded, the error of CDCPD and CPD+Physics becomes
much larger.

Our second experiment demonstrates our algorithm’s abil-
ity to handle interaction with obstacles, Here we drape a
cloth over a cylinder with a camera looking from above. Our
result doesn’t penetrate the cylinder, while CDCPD’s does,
as shown in Fig. 4.
C. Experiments with real data

We performed several experiments with real data to guage
the qualitative performance of our method. Examples are
shown in Fig. 4 and the accompanying video. The experi-
ments showed manipulation of a rope and cloth under occlu-
sion and interacting with obstacles. Due to space limitations
we do not describe each experiment in detail but instead
present the key observations: 1) For both rope and cloth, our
method was robust to edge-covering (i.e. not shrinking when

Fig. 5: Mean distance error (m) vs. frame index for simulation ex-
periments. Left: cloth covering cylinder. Right: rope edge-covering.

an edge was covered), unlike CDCPD and CPD+Physics; 2)
CDCPD2 was effective in keeping the object out of known
obstacles (e.g. Fig. 1) while CDCPD was not; 3) CDCPD2
prevented edge crossings for rope on-par with CPD+Physics
and better than CDCPD; 4) For many experiments, the choice
of motion model did not have a major impact, however the
best-performing model overall was diminishing rigidity.
D. Computation time

The average computation time per frame of CDCPD2
across all tasks is 26 ms (rope) and 193 ms (cloth). For
CDCPD, the average computation time is 22 ms (rope) and
101 ms (cloth). For CPD+Physics, the average computation
time is 23 ms (rope). The increase in computation time for
our method on cloth is largely due to the additional obstacle
interaction and self-intersection constraints, which take time
to compute and entail a more difficult optimization problem.

VI. CONCLUSION
Our results show the ability of our algorithm to handle

obstacle interaction, self-intersection and severe occlusion
when tracking deformable objects better than previous work.
We increased the robustness to occlusion by introducing a
prediction-based regularization term in GMM-EM, which is
inspired by the Kalman filter. By adding posterior constraints
to the result from GMM-EM, we prevented the result from
penetrating obstacles and intersecting itself. In future work,
we may explore learning a good initialization of W by
training on a dataset collected in a simulation environment.
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