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Multi-Agent On-Line Extremum Seeking Using

Bandit Algorithm

Bin Du†, Kun Qian‡, Christian Claudel‡, and Dengfeng Sun†

Abstract—This paper presents a learning based distributed
algorithm for solving the on-line extremum seeking problem with
a multi-agent system in an unknown dynamical environment. Our
algorithm, building on a novel notion termed as dummy confi-
dence upper bound (D-UCB), integrates both estimation of the
unknown environment and task planning for the multiple agents
simultaneously, and as a consequence, enables the multi-agent
system to track the extremum spots of the dynamical environment
in an on-line manner. Unlike the standard confidence upper
bound (UCB) algorithm in the context of multi-armed bandits,
the introduction of D-UCB significantly reduces the compu-
tational complexity in solving subproblems of the multi-agent
task planning, and thus renders our algorithm exceptionally
computation-efficient in the distributed setting. The performance
of the algorithm is theoretically guaranteed by showing a sub-
linear upper bound of the cumulative regret. Numerical results
on a real-world pollution monitoring and tracking problem are
also provided to demonstrate the effectiveness of our algorithm.

I. INTRODUCTION

Over the last few decades, extremum seeking, also known

as source seeking, has been a fundamentally crucial problem

and attracted increasing attention, due to its numerous appli-

cations including surveillance [1], [2], environment and health

monitoring [3]–[6], disaster response [7], [8], to name a few.

Extremum seeking involves locating one or several spots,

associated with the maximum/minimum values of interest, in

a possibly unknown and noisy environment. Oftentimes, those

extremum spots are of particular importance in many real-

world applications. For instance, in the scenario of flood/tide

monitoring [5], [9], paying specific attention to the extremum

spots, which usually correspond to the flood peaks, could

provide stake holders with timely warnings. In this paper, we

are particularly interested in solving the problem of extremum

seeking with a multi-agent system, in which a network of

agents are deployed and expected to cooperatively locate as

many extremum spots as possible. It is highlighted that the

underlying environment considered in this paper is not only

unknown but also dynamically changing as the multiple agents

acquire knowledge from it. Under such a circumstance, the

agents need to collaboratively explore the unknown envi-

ronment and simultaneously track the dynamically changing

extremum spots. We remark that these two settings, i.e., the
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multi-agent system and dynamical environment, make our

problem significantly challenging to solve.

Indeed, there have been various existing works [6], [10]–

[17] studying the extremum seeking problem in both central-

ized and distributed settings. The predominate approaches to

this problem are typically based on the gradient estimation,

i.e., driving the agent(s) to trace along with the estimated

gradient direction toward the target which is usually associated

with local extremum values. In particular, the authors in [11]

designed the distributed source seeking control law for a group

of cooperative robots by modeling the unknown environment

as a time-invariant and concave real-valued function. Besides,

the diffusion process is considered in [12] for the scenarios

of dynamically environment. The authors in [13], [14] also

studied the distributed source seeking problem by forcing the

multiple agents to follow a circular formation. In addition,

the stochastic gradient based methods are further proposed

in [15]–[17] to drive the single robot or robot network to the

desired targets. All these gradient based extremum seeking

methods are closely related to the first-order optimization

algorithm, and their advantages are often attributed to the

fact that only local measurements are required during the

whole seeking process without the need of knowing the

agent’s global positional information (GPS is thus denied).

Nevertheless, we should note that, also inherited from the first-

order optimization algorithm, these gradient based methods

are very likely to stuck at the local extremum points when

the considered environment is non-convex/non-concave. More

importantly, the estimation of gradients is usually sensitive

to the noise presented in measurement and/or the underlying

environment, and thus some other assumptions regarding the

noise need to be imposed in the problem setup.

In order to address the aforementioned issues, a very recent

approach, which is closely related to our ideas, devises a

learning based adaptive scheme in [10], by leveraging the

notion of UCB in the study of multi-armed bandits algorithms.

This approach, termed as AdaSearch, maintains a set of

candidate points which are likely to be the extremum spots,

and let the agent repeat a predetermined trajectory so that it can

adaptively collect information from the unknown environment

and iteratively update the candidate set. As a consequence, the

agent will be able to eventually identify the desired extremum

spots after sufficient information is acquired. However, we

should remark that there are two potential drawbacks of the

AdaSearch scheme: 1) it requires the agent to strictly follow

the predetermined trajectory, which might be inefficient at the

later stage of the algorithm; and 2) only one single agent is

considered and the static environment is presumed, thus it

http://arxiv.org/abs/2103.11016v2
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Fig. 1: Visualization of the proposed extremum seeking approach: the
lower layer corresponds to the unknown environment that needs to be
explored; the upper layer depicts the D-UCB which guides the agents’
task planning. Each agent exchanges information with its immediate
neighbors and cooperatively estimate the unknown environment.

is not applicable in our problem setup while considering the

multi-agent system and dynamical environment.

Inspired by [10], in this paper we also develop a learning

based algorithm by integrating the estimation of unknown

environment and task planning for multi-agent simultaneously.

Nevertheless, in contrast to the AdaSearch scheme, we

here let the agents cooperatively determine their paths by

themselves, and introduce the novel variant of UCB, namely

D-UCB, which greatly helps reduce the computational com-

plexity in solving multi-agent task planning problems. These

two points also make our algorithm implementable in both

distributed and on-line manners. In addition, other differences

between this paper and [10] are also noteworthy: 1) while the

measurement noise is assumed to follow a Poisson process

in [10], we consider the noise to be Gaussian distributed;

see Sec. II-B; and 2) the AdaSearch scheme utilizes both

lower and upper confidence bounds to guide the agent’s

decision, in contrast, we only need to compute the upper

bound with our algorithm. The mechanism of our algorithm

is illustrated in Fig. 1.

It is worth noting that the idea of UCB has been commonly

adopted in solving the relevant problems, such as environment

monitoring [18]–[20], sensor coverage [21]–[23] and so on.

In these problems, the environment is often modeled as a

Gaussian process [24]. However, as suggested in [10] and

also in [24] itself, such a modeling strategy often imposes to

some extent the assumption of smoothness of the underlying

environment. Therefore, it may not be able to reflect some

specific scenarios of the extremum seeking problem; for ex-

ample, when considering the sparse, heterogeneous emission

encountered in the radiation detection. On this basis, in this

paper we apply a generic state-space model for the dynamical

environment; see details in Sec. II-B. Furthermore, when it

comes to the distributed setting, solving the standard UCB

based maximization is essentially of combinatorial nature and

thus can be extremely complicated to find the exact solutions.

In order to cope with such an issue, our idea of D-UCB helps

decompose the maximization problems marginally. This also

makes our work significantly different with other literature

relying on the standard UCB approach.

The rest of this paper is organized as follows. Section II

formally defines the considered distributed extremum seeking

problem involved with the estimation of the unknown environ-

ment. Section III develops our distributed on-line algorithm

and Section IV presents the simulation results to demonstrate

effectiveness of the algorithm. Lastly, Section V concludes this

paper. For the reader’s convenience, the proofs of proposition

and theorem are provided in Appendix. We should note that

an earlier version of this paper appears in [25], but the present

paper has been significantly enhanced, including the detailed

theoretical proofs, more comprehensive interpretation of the

proposed algorithm, and more extensive numerical results by

considering a real-world pollution monitoring and tracking

application.

II. PROBLEM STATEMENT

A. Distributed Extremum Seeking

In this subsection, we formalize the problem of distributed

extremum seeking with the multi-agent system. Let us consider

a bounded and obstacle-free environment, in which the ex-

tremum spots of interest are present. In particular, we specify

the considered environment by a set of points S with each

element s ∈ S representing the position of the point. Since

the environment has been assumed to be bounded, it is easy

to see that the set S is finite. We denote N the number of

points in the set, i.e., N = |S|. For each point s in S, there

exists a real-valued function φk(·) : S → R+ that maps the

point’s positional information s to a positive quantity φk(s)
indicating the value of field at the time-step k. Naturally, in

order to locate the extremum spots, our objective is to deploy

the multiple agents to the points with the highest quantities

φk(s). More precisely, we employ a network of I agents which

are capable of moving among S and communicating with

other connected neighbors, and expect them to track as many

extremum spots as possible. That is, at each time-step k, each

individual agent i ∈ I := {1, 2, · · · , I} aims at seeking its

best position p⋆
k[i] ∈ S by cooperatively solving the following

maximization problem,

maximize
p[i]∈S, i∈I

Fk(p[1],p[2], · · · ,p[I]) =
∑

s∈∪I
i=1

p[i]

φk(s).

(1)

Note that the objective function Fk(·) : SI → R+ maps the

agents’ positions p[i]’s to a positive scalar that sums all distinct

measured quantities. Throughout this paper, we assume that

the maximizer
(
p⋆
k[1],p

⋆
k[2], · · · ,p⋆

k[I]
)

of problem (1) is

unique at each time-step k and express it as a compact form

p⋆
k =

[
p⋆
k[1],p

⋆
k[2], · · · ,p⋆

k[I]
]
∈ SI .

It should be noted that, since the set S is finite, the above

maximization problem can be naively solved by assigning the

i-th agent to the point p[i] which has the i-th largest quantity

φk

(
p[i]
)
. However, such a naive scheme inherently assumes

each agent to be aware of its exclusive global ID which is a

restrictive requirement in a fully distributed architecture [26].

As an alternative way to solve the optimization problem (1),

we shall remark that the problem can be viewed as a special

case of the monotone submodular maximization, and thus
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can be solved by the distributed algorithm proposed in our

previous work [27]. The key idea of this algorithm is to find the

equilibrium solution, and interestingly, it can be verified that

the problem (1) has a unique equilibrium which is coincident

with the optimal solution. We refer the interested reader to our

work [27] for details on the distributed algorithm.

B. Extremum Seeking via Estimation on the Environment

Notice that the problem (1) considered in the previous

subsection is somewhat trivial, since it implicitly assumes

that each agent perfectly knows the state φk(s) of the entire

environment at each time-step k. This is unrealistic for the

real-world applications. On this account, we next let the

network of agents cooperatively estimate the environment

based on the local noisy measurements, and in the following,

we first introduce the dynamics of the environment states as

well as the measurement model of the agents.

Suppose that the vector φk ∈ R
N
+ stacks each individual

state φk(s) for all points s in the environment S. We con-

sider the following linear time-varying (LTV) model for the

environment state, i.e.,

φk+1 = Ak+1φk, (2)

where Ak ∈ R
N×N denotes the state transition matrix. In

order to ensure that the above maximization problem (1) is

well-defined, it is required to guarantee that the state φk

is always bounded and also will not vanish to zero as the

time-step k increases. More precisely, we use the following

assumption to constrain the behavior of the state dynamics.

Assumption 1: For the LTV model (2), there exist uniform

lower and upper bounds 0 <
¯
α ≤ ᾱ < ∞ such that, for

∀k ≥ t > 0,

¯
α · I ≤ A[k : t]⊤A[k : t] ≤ ᾱ · I, (3)

where I denotes the identity matrix with appropriate dimen-

sions and the state propagation matrix A[k : t] ∈ R
N×N is

written as

A[k : t] = AkAk−1 · · ·At. (4)

Remark 1: Note that the above Assumption 1 is reasonably

required to ensure that the maximum components of φk

are always recognizable for the multiple agents. Moreover,

this assumption also implies the invertibility of the matrices

Ak’s. In fact, as suggested in [28] (see Remark 2), for the

sampled-data system (one of the mostly studied discrete-time

systems), the matrix Ak is naturally invertible since it is often

obtained by discretization of the continuous-time system. Such

an assumption has been quite standard in various research

studying the state estimation problems, see e.g., [28]–[31].

In addition, we consider the following linear stochastic

measurement model for each agent i,

zik = Hi
(
pk[i]

)
φk + ni

k. (5)

where zik ∈ R
m represents the measurement obtained by the

agent i at the time-step k1; Hi
(
pk[i]

)
∈ R

m×N denotes the

1For simplicity, we assume that each sensor’s measurement has the same
dimension m; this can be easily relaxed to a general case.

measurement matrix depending on the agent’s position pk[i];
and ni

k ∈ R
m is corresponding to the measurement noise

satisfying the following assumption.

Assumption 2: It is assumed that the measurement noise

ni
k follows the independent and identically distributed (i.i.d.)

Gaussian for each individual agent i, with zero-mean and co-

variance matrix V i = vi · I. In addition, there exist lower and

upper bounds 0 <
¯
v ≤ v̄ <∞ such that

¯
v ≤ vi ≤ v̄, ∀i ∈ I. (6)

Remark 2: We shall remark that the measurement matrix

Hi
(
pk[i]

)
is not specified in the above model (5). In fact, it

can be defined by various means based on the agent’s position.

One of the simplest way is to let Hi
(
pk[i]

)
= e⊤l where el ∈

R
N is an unit vector, i.e., the l-th column of the identity matrix,

and l ∈ {1, 2, · · · , N} denotes the index of the position pk[i]
in the environment S. This means that the agent only measures

the quantity at the point where it currently locates. Such a

choice of Hi
(
pk[i]

)
is actually adopted in [10] as the so-called

point-wise sensing model. Besides, some other specifications

of the measurement matrix are also used in the existing works.

For instance, a circular sensing area with radius ri is applied

in [32], which implies that,

Hi
(
pk[i]

)
=
[
el
]⊤
l∈Ci

k

, (7)

where the set Cik := {l | ‖sl − pk[i]‖ ≤ ri} includes the

indices of all points sl that fall into the disk which is centered

at pk[i] and has radius ri.
Based on the measurement model (5), one should notice

that, when some mild conditions on the measurement matrices

are satisfied, the true value of φk can be estimated by many

techniques, such as least-squares, Kalman filter, to name a

few. Therefore, the problem of distributed extremum seeking

with an unknown environment can be addressed by a simple

approach which contains the following two phases separately:

1) let the network of agents move around the environment

and obtain an accurate enough estimation of the state; and

2) specify the agents’ target positions at each time-step k by

solving the maximization problem (1) based on the estimated

states. However, this is essentially an off-line approach, since

the agents do not have specific targets when estimating the

environment in the phase 1) and the phase 2) cannot be started

until an accurate enough estimate is obtained. Motivated by

this, in the next section, we aim to integrate the above two

phases together and propose an adaptive on-line framework.

That is, the agents recursively update their target positions;

meanwhile, measure and estimate the unknown environment,

until the objective is reached in which the network of I agents

manages to track the moving extremum spots.

III. AN ADAPTIVE ON-LINE FRAMEWORK

A. Kalman Consensus Filter

Let us begin by rewriting the measurement model (5) into

the following compact form

zk = Hkφk + nk. (8)
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Note that here zk = [(z1k)
⊤, (z2k)

⊤, · · · , (zIk)⊤]⊤ ∈ R
M is the

measurement obtained by all agents with dimension M = mI;

Hk = [H1(pk[1])
⊤, H2(pk[2])

⊤,· · ·, HI(pk[I])
⊤]⊤∈RM×N

stacks all local measurement matrices as a collective global

one2; and nk = [(n1
k)

⊤, (n2
k)

⊤, · · · , (nI
k)

⊤]⊤ ∈ R
M denotes

the Gaussian noise with zero-mean and covariance matrix

expressed as

V := Diag{V 1, V 2, · · · , V I} ∈ R
M×M . (9)

Subsequently, the centralized Kalman filter for estimating the

mean φ̂k ∈ R
N and covariance Σk ∈ R

N×N performs the

following recursions,

Σk+1 = Ak+1

(
Σ−1

k + Yk

)−1
A⊤

k+1; (10a)

φ̂k+1 = Ak+1

(
φ̂k + (Σ−1

k + Yk)
−1(yk − Ykφ̂k)

)
, (10b)

where the two variables Yk := (Hk)
⊤V −1Hk ∈ R

N×N and

yk := (Hk)
⊤V −1zk ∈ R

N , often referred to as the new

information, incorporate the measurements into the updates.

It is worth mentioning that the Kalman filter (10) readily

estimates the unknown environment in the desired on-line

manner, i.e., the multiple agents move to new positions, obtain

the new measurements, and then update their estimates of the

environment. However, we should note that two issues may

arise: i) the statistical property of the classical Kalman filter

may no longer hold due to the sequential decision process;

ii) such an on-line procedure is performed in a centralized

way, since the new information Yk and yk are involved with

the data obtained/maintained by all agents. In order to devise a

distributed scheme to run the Kalman filter (10), many existing

works, e.g., [33]–[35], leverage the special structure of the

noise covariance V . Considering the diagonal structure of the

matrix V , as shown in (9), the new information can be further

expressed as

Yk =

I∑

i=1

Hi(pk[i])(V
i)−1Hi(pk[i])

⊤; (11a)

yk =

I∑

i=1

Hi(pk[i])(V
i)−1zik, (11b)

which means that Yk and yk can be computed by simply

summing all the local information together. This motivates

the development of Kalman consensus filter, in which each

agent first carries out an average/sum consensus procedure to

fuse local information and then performs the standard Kalman

update (10).

B. The Distributed On-Line Extremum Seeking Algorithm

In the previous subsections, we focused on the estimation of

the unknown environment. Our question now becomes: how

to integrate the estimation together with the agents’ decision-

making processes. A naive idea would be using the estimated

2When writing Hk , with slight abuse of notation, we have absorbed the
dependency on the agents’ positions pk[i]’s into the index k.

mean value φ̂k at each time-step k, and then solving the

following maximization problem,

pk ∈ argmax
p[i]∈S, i∈I

∑

s∈∪I
i=1

p[i]

φ̂k(s). (12)

Here, we use φ̂k(s) ∈ R to denote one component of the vec-

tor φ̂k which corresponds to the point s in the environment. It

should be emphasized that such a scheme cannot guarantee the

network of agents to track the extremum spots with the highest

true φk(s)’s. To elaborate on this, let us consider a special

case where the environment is static, i.e., φk = φ0, ∀k ∈ N+.

Subsequently, an undesired but possible scenario is that the

agents significantly underestimate the maximum value φ0(s
⋆)

at the initial stage, i.e., φ̂(s⋆) ≪ φ0(s
⋆), and as a result, the

agents will never have another chance to visit the key point s⋆.

On this account, it can been seen that merely utilizing the

estimated mean is insufficient to drive the network of agents to

the desired positions. To address this, we next take advantage

of both the estimated mean φ̂k and covariance Σk to develop

our distributed on-line extremum seeking algorithm.

Based on φ̂k and Σk, let us introduce an additional variable

µk ∈ R
N , which we refer to as D-UCB,

µk := φ̂k + βk(δ) · diag1/2(Σk). (13)

Note that the operator diag1/2(·) : RN×N → R
N maps the

square root of the matrix diagonal elements to a vector, and

the parameter βk(δ) > 0 depending on the critical confidence

level δ will be specified later on. In fact, the intuition behind

this notion of D-UCB is straightforward: each µk provides

a probabilistic upper bound of the true value φk by utilizing

the current mean and covariance. Next, we formalize, with the

following proposition, how the true value φk is upper bounded

by the D-UCB µk with the probability related to δ.

Proposition 1: Under Assumptions 1 and 2, let the state

estimates φ̂k and Σk be generated by the Kalman (consensus)

filter (10) with the initialization φ̂0 and
¯
σ · I ≤ Σ0 ≤ σ̄ · I,

then it holds that, for ∀k > 0,

P

(∣∣φ̂k − φk

∣∣ � βk(δ) · diag1/2(Σk)
)
≥ 1− δ, (14)

where the operators | · | and � are defined element-wise, the

probability P(·) is taken on random noises (n1,n2, · · · ,nk),
and {βk(δ)}k∈N+

is an increasing sequence, defined as

βk(δ) ≥ N3/2C1 +N2C2 ·
√
log
( σ̄/

¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

)
,

(15)

with C1 = ‖φ̂0 − φ0‖/
√
¯
σ and C2 = v̄2

√
max{2, 2/

¯
v}.

Proof: See Appendix VI-A.

The above Proposition 1 inherently constructs a polytope

centered at the state estimate φ̂k such that the true state φk

falls into it with probability at least 1 − δ. Based on the

polytope, it can be seen that the D-UCB µk takes the upper

bounds marginally and each element µk(s) is guaranteed to

be satisfied with µk(s) ≥ φk(s) with probability at least 1−δ.

Consequently, we can use the defined D-UCB µk to update
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the agents’ target positions in the on-line manner, by solving

the following maximization problem:

pk ∈ argmax
p[i]∈S, i∈I

∑

s∈∪I
i=1

p[i]

µk(s). (16)

It is worth emphasizing that the introduction of D-UCB

here helps reduce the computational complexity of the pro-

posed algorithm significantly, when solving the problem in

the distributed manner. Since the standard UCB is defined

in a joint sense, when solving the multi-agent maximization

problem (16) with the standard UCB, it is inherently of combi-

natorial nature and thus can be extremely complicated to find

the exact solution. In contrast, due to the fact that the D-UCB

takes the upper bounds marginally here, the maximization (16)

can be essentially decomposed and becomes much easier

to solve for exact solutions. We remark this as one of the

most important contributions of our algorithm. At last, we

summarize our distributed on-line extremum seeking scheme

in the following Algorithm 1 and establish its regret analysis

as the following theorem.

Algorithm 1: Distributed On-Line Extremum Seeking

Initialization: Each agent i initializes its own estimates

φ̂0 and Σ0, and computes the target position p0[i]. Set

the confidence level δ. Let k = 0.

while the stopping criteria is NOT satisfied do

Each agent i simultaneously performs

Step 1 (Measuring): Obtain the measurement zki
based on the measurement matrix Hi(pk[i]);

Step 2 (Kalman Filtering): Collect information

from neighbors, obtain mean φ̂k+1 and covariance

Σk+1 by Kalman consensus filter (10);

Step 3 (D-UCB Computing): Compute via (13)

the updated D-UCB µk+1 by φ̂k+1 and Σk+1;

Step 4 (Target Positions Updating): Assign the

new target position pk+1[i] by solving (16).

Let k ← k + 1, and continue.
end

Theorem 1: Suppose that {pk}k∈N+
is the sequence gen-

erated by Algorithm 1 under the conditions in Proposition 1,

then it holds that, with probability 1− δ, for ∀K > 0,

K∑

k=1

(
Fk(p

⋆
k)−Fk(pk)

)
≤ O

(√
K log(K)

)
, (17)

where the function Fk(·) and the optimal solutions p⋆
k’s are

defined in (1).

Proof: See Appendix VI-B.

IV. SIMULATION

In this section, we demonstrate the effectiveness of the pro-

posed algorithm, by considering tracking the moving sources

Fig. 2: Demonstration of three robots’ tracking of the moving sources
in an unknown pollution field.

in a pollution diffusion field. In fact, such a problem has been

broadly studied in the area of robotics; see e.g., [36]–[40].

Compared to these existing works, two primary differences in

our problem setup are: 1) we deploy multiple robots/agents,

rather than a single one, to the target field; and 2) the pollution

distribution in the field is assumed to be disturbed by complex

streams such that various local extremum spots are present

and therefore the gradient based extremum seeking methods

may fail in this scenario. A snapshot of the pollution sources

tracking mission is shown in Fig. 2. Our objective here is to

enable the individual robots to track as many moving pollution

sources as possible, through the cooperation among the entire

team of robots.

Suppose that the pollution field is described by a D × D
lattice, as shown in the background of Fig. 2. Each cell

l ∈ {1, 2, · · · , D2} in the lattice is represented by its position

sl and also the quantity φk(s
l) which indicates the pollution

level at the discrete time-step k. Overall, the N -dimensional

vector φk = [φk(s
1), φk(s

2), · · · , φk(s
N )]⊤ where N = D2

characterizes the state of the entire pollution field. More

specifically, we set D = 50 in this simulation, and consider

that the state of field is generated by the discretization of the

following convection-diffusion equation [41],

∂φt

∂t
=

λ

cρ

∂2φt

∂2x
+

λ

cρ

∂2φt

∂2y
− ux

∂φt

∂x
− uy

∂φt

∂y
+

Q

cρ
.

(18)

Indeed, the similar equation has been widely adopted as a

mathematical model in the study of spread of pollution; see

e.g., [38], [39]. Note that here Q represents the original pollu-

tants, following the diffusion equation as well as the velocity

field characterized by ux and uy in the x and y directions,

respectively. More precisely, we consider that there are three

original pollutants in the target field, i.e., Q = [Q1, Q2, Q3],
but the robots have no knowledge about them. Other field

related parameters are assumed to be a known prior, so that

the Kalman consensus filter can be performed to estimate the

unknown states. In order to track the moving pollution sources,

we employ a team of three robots as shown in Fig. 2, each of

them is equipped with a sensor that is capable of measuring a

circular area with radius r = 3; see the detailed measurement

model (5) and the description of measurement matrix (7) in

Remark 2. In particular, we assume that the sensing noise of
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Fig. 3: Comparison of the regret with three different schemes

each robot is independent and identically Gaussian distributed

with zero-mean and covariance V i = I, where I denotes

the identity matrix with appropriate dimension. Note that,

since the maximum value of the state φk is set around 5,

the noise covariance is reasonably large so that the overall

problem is essentially non-trivial to solve. Besides, it is also

assumed that the three robots can exchange information with

their immediate neighbors, and the communication channels,

shown as the red dot lines in Fig. 2, follow a simple undirected

connected graph.

To demonstrate the result of tracking of the moving pollu-

tion sources, Fig. 3(a) and Fig. 3(b) show the regret defined

as rk = Fk

(
p⋆
k

)
− Fk

(
pk

)
at each iteration k as well as the

cumulative regret defined as
∑k

t=1 r
t, respectively. Note that

while each curve shows the result averaged from 30 Monte-

Carlo trials, the boxes demonstrate the variance for each inde-

pendent trial. Further, we also compare the performance of our

distributed extreme seeking algorithm with two other existing

schemes: 1) the algorithm proposed in [10]; and 2) a naive

approach, termed as NaiveSearch, in which the robots scan

the whole unknown field repeatedly and determine the position

of the pollution sources by the current estimation of the field.

Notice that in the previous work [10], both AdaSearch

and NaiveSearch only deal with the static environment

with a single robot. In order to compare with them in a

fair way, we adopted the same Kalman consensus filter to

estimate the unknown dynamical pollution field but apply

different searching strategies to seek the pollution sources. It

can be concluded from Fig. 3 that the regret rk generated by

our algorithm decreases to zero as the number of iterations

grows, which confirms that the team of robots will be able to

track the moving pollution sources. In addition, our algorithm

achieves the fastest regret descending rate, meaning that the

pollution sources will be tracked more efficiently than the two

schemes. The cumulative regret shows a sub-linear increase

for the proposed algorithm, which is also consistent with the

theoretical result presented in Theorem 1.

V. CONCLUSION

In this paper, we proposed a novel algorithmic framework

for solving the multi-agent on-line extremum seeking problem

in an unknown, dynamical environment. Building on the no-

tion of D-UCB, our algorithm integrates the estimation of the

unknown environment and task planning for multiple agents

in the on-line manner, and more importantly, significantly

reduces the computational complexity of solving the maxi-

mization subproblems. Both theoretical analysis and numerical

simulations show that our algorithm can enable the network

of agents to dynamically track the moving extremum spots

presented in the unknown environment. A primary direction

of the future works will be focused on the development of

algorithm dealing with a more general environment setup; for

example, considering the states of environment to be affected

by some process noise and/or unknown disturbances.

VI. APPENDIX

In order to facilitate the following proofs, let us start with

introducing several vector norms. First, associated with an

arbitrary positive definite matrix M = [mij ]
N
i,j=1 ∈ R

N×N ,

we define the L2-based vector norm ‖ · ‖M : RN → R+ as

‖x‖M :=
√
x⊤Mx, (19)

where x = [x1, x2, · · ·xN ]⊤ ∈ R
N . Further, let us define the

L∞-based norm ‖ · ‖DM ,∞ : R
N → R+ associated with

the diagonal matrix of the arbitrary positive definite M , i.e.,

DM = Diag{m11,m22, · · · ,mNN} ∈ R
N×N , as

‖x‖DM ,∞ := max
1≤i≤N

mii · |xi|. (20)

Note that the above norm ‖ · ‖DM ,∞ is well-defined since the

positive definiteness of M ensures that mii > 0. Similarly, we

define the L1-based norm ‖ · ‖DM ,1 : RN → R+ as

‖x‖DM ,1 :=

N∑

i=1

mii · |xi|. (21)

With the vector norms introduced above, it can be immedi-

ately verified that the L1-based norm ‖ ·‖D,1 is the dual norm
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of the L∞-based ‖ · ‖D−1,∞ where D−1
M takes the inverse of

the matrix DM , and for ∀x ∈ R
N ,

‖x‖DM ,∞ ≤ ‖x‖DM ,1 ≤
√
N · ‖x‖D2

M
. (22)

In addition, we show, by the following lemma, the relationship

between ‖x‖M and ‖x‖DM .

Lemma 1: For arbitrary positive definite M ∈ R
N×N , it

holds that ∀x ∈ R
N ,

‖x‖M ≤ N · ‖x‖DM . (23)

Proof: According to the above definitions, one can have

that

‖x‖2M =

N∑

i=1

N∑

j=1

mij · xixj

≤
N∑

i=1

mii · x2
i +

N∑

i=1

∑

j 6=i

|mij | · |xixj |

≤
N∑

i=1

mii · x2
i +

N∑

i=1

∑

j 6=i

√
miimjj · |xixj |

≤
N∑

i=1

mii · x2
i +

N∑

i=1

∑

j 6=i

1

2
(mii · x2

i +mjj · x2
j )

= N ·
N∑

i=1

mii · x2
i

= N · ‖x‖DM .

(24)

Note that the second inequality is due to the positive definite-

ness of M , i.e., |mij | ≤ √miimjj . Therefore, the proof is

completed.

A. Proof of Proposition 1

By taking advantages of the defined norm ‖ · ‖DM ,∞, the

inequality (14) in Proposition 1 is equivalent to state that, with

probability at least 1− δ,
∥∥φ̂k − φk

∥∥
D

−1/2
Σk

,∞
≤ βk(δ). (25)

Therefore, we next prove the inequality (25) where βk(δ) is

defined in (15).

Note that the Kalman consensus filter generates the state

estimate φ̂k and covariance Σk as shown in (10), we first show,

by the following lemma, an equivalent form of the Kalman

consensus filter.

Lemma 2: Suppose that the state estimates φ̂k and covari-

ance Σk are generated by (10), then at each iteration k, it is

equivalent to write

Σk = A[k : 1]Υ−1
k A[k : 1]⊤; (26a)

φ̂k = A[k : 1]Υ−1
k

(
Σ−1

0 φ̂0 +

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1zt

)
,

(26b)

where the matrix Υk ∈ R
N×N is defined as

Υk = Σ−1
0 +

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1HtA[t : 1]. (27)

Proof: Let us prove the lemma by mathematical induc-

tion. First, it is straightforward to confirm that the above (26)

is identical to the original recursion (10) when k = 1. Then,

let us assume that (26) produces the same results as (10) up

to the time-step k. Next, we prove the consistency for the

time-step k + 1.

Before proceeding, let us first notice the following identity

with the definition of the matrix Υk,

Υ−1
k+1 = (I−Υ−1

k+1A[k : 1]⊤H⊤
k V −1HkA[k : 1])Υ−1

k . (28)

Note that the above equality can be immediately verified by

multiplying Υk+1 on the both sides

Based on the recursion (10a), we plug in the previously

obtained Σk in the form of (26a) and have that

Σk+1 = Ak+1

(
Σ−1

k +H⊤
k V −1Hk

)−1

A⊤
k+1

= Ak+1

(
A[k : 1]−⊤ΥkA[k : 1]−1 +H⊤

k V −1Hk

)−1

A⊤
k+1

= A[k + 1 : 1]
(
Υk +A[k : 1]⊤H⊤

k V −1HkA[k : 1]
)−1

·A[k + 1 : 1]⊤

= A[k + 1 : 1]Υ−1
k+1A[k + 1 : 1]⊤.

(29)

Similarly, we plug φ̂k in the form of (26b) into the recur-

sion (10b) and obtain

φ̂k+1 = Ak+1

(
φ̂k + (Σ−1

k + Yk)
−1(yk − Ykφ̂k)

)

= Ak+1

(
I− (Σ−1

k + Yk)
−1Yk

)
φ̂k

+Ak+1(Σ
−1
k + Yk)

−1H⊤
k V −1zk

= A[k+1 : 1]
(
I−Υ−1

k+1A[k : 1]⊤H⊤
k V −1HkA[k : 1]

)
Υ−1

k

·

(
Σ−1

0 φ̂0 +

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1zt

)

+A[k+1 : 1]Υ−1
k+1A[k : 1]⊤H⊤

k V −1zk

= A[k+1 : 1]Υ−1
k+1

(
Σ−1

0 φ̂0 +

k∑

t=0

A[t : 1]⊤H⊤
t V −1zt

)
.

(30)

Note that the above identity (28) is applied in the second

last equality. Based on (29) and (30), the proof is completed.

Next, given that the state dynamics has φk = A[k : 1]φ0

and thus zk = HkA[k : 1]φ0 + nk, the state estimate φ̂k can

be further expressed as

φ̂k = A[k : 1]Υ−1
k

(
Σ−1

0 φ̂0 +

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

+Υkφ0 − Σ−1
0 φ0

)

= φk +A[k : 1]Υ−1
k

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

+A[k : 1]Υ−1
k Σ−1

0 (φ̂0 − φ0).

(31)
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Therefore, it holds that ∀x ∈ R
N ,

x⊤(φ̂k − φk)

= x⊤A[k : 1]Υ−1
k

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

+ x⊤A[k : 1]Υ−1
k Σ−1

0 (φ̂0 − φ0)

(1.a)

≤
∥∥A[k : 1]⊤x

∥∥
Υ−1

k

·
∥∥∥

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

∥∥∥
Υ−1

k

+
∥∥A[k : 1]⊤x

∥∥
Υ−1

k

·
∥∥Σ−1

0 (φ̂0 − φ0)
∥∥
Υ−1

k

(1.b)
=
∥∥x
∥∥
Σk
·
(∥∥∥

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

∥∥∥
Υ−1

k

+
∥∥Σ−1

0 (φ̂0 − φ0)
∥∥
Υ−1

k

)

(1.c)

≤ N ·
∥∥x
∥∥
DΣk

·
(∥∥∥

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

∥∥∥
Υ−1

k

+
∥∥Σ−1

0 (φ̂0 − φ0)
∥∥
Υ−1

k

)
.

(32)

where (1.a) is due to the Cauchy-Schwartz inequality; (1.b)
is due to (26a); and (1.c) is based on Lemma 1.

Now, let x = D−1
Σk

(φ̂k − φk), it follows that

∥∥φ̂k − φk

∥∥
D−1

Σk

≤ N ·
(∥∥∥

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

∥∥∥
Υ−1

k

+
∥∥Σ−1

0 (φ̂0 − φ0)
∥∥
Υ−1

k

)
.

(33)

According to the inequality in (22), we can have that
∥∥φ̂k − φk

∥∥
D

−1/2
Σk

,∞

≤
√
N ·

∥∥φ̂k − φk

∥∥
D−1

Σk

≤ N3/2·
(∥∥∥

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

∥∥∥
Υ−1

k

+
∥∥Σ−1

0 (φ̂0 − φ0)
∥∥
Υ−1

k

)
.

(34)

In order to prove the inequality (25), we now need to upper

bound the two terms on the right hand side of (34); see the

following two lemmas.

Lemma 3: Let the conditions in Proposition 1 hold and the

matrix Υk be defined as (27), then there exists a constant

C1 = ‖φ̂0 − φ0‖/
√
¯
σ such that for ∀k > 0,

∥∥Σ−1
0 (φ̂0 − φ0)

∥∥
Υ−1

k

≤ C1. (35)

Proof: By the definition (27) of the matrix Υk, it is

straightforward to see that Υ−1
k ≤ Σ0, and therefore,

∥∥Σ−1
0 (φ̂0 − φ0)

∥∥2
Υ−1

k

= (φ̂0 − φ0)
⊤Σ−1

0 Υ−1
k Σ−1

0 (φ̂0 − φ0)

≤ (φ̂0 − φ0)
⊤Σ−1

0 (φ̂0 − φ0)

≤ 1/
¯
σ · ‖φ̂0 − φ0‖2,

(36)

where the last inequality is due to the condition Σ0 ≥
¯
σ · I.

Thus, the proof is completed.

Lemma 4: Let the conditions in Proposition 1 hold and the

matrix Υk be defined as (27), then there exists a constant

C′
2 = v̄2

√
2N ·max{1, 1/

¯
v} such that with probability at

least 1− δ, for ∀k > 0,

∥∥∥
k−1∑

t=0

A[t : 1]⊤H⊤
t V −1nt

∥∥∥
Υ−1

k

≤ C′
2 ·
√
log
( σ̄/

¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

)
.

(37)

Proof: This proof is primarily based on the existing

results presented in [42] (see Lemmas 8 – 10 and Theorem 1).

For the notational simplicity, let us define

Xt := A[t : 1]⊤H⊤
t V −1 ∈ R

N×M . (38)

Then, according to Theorem 1 in [42], it holds with probability

at least 1− δ that,

∥∥∥
k−1∑

t=0

Xtnt

∥∥∥
Ω−1

k

≤ 2v̄2 ·
√
log
(det(Ωk)1/2 det(Σ0)1/2

δ

)
,

(39)

where Ωk := Σ−1
0 +

∑k−1
t=0 XtX

⊤
t ∈ R

N×N . Let us recall the

definition (27) of the matrix Υk and notice that there is a slight

difference between Ωk and Υk. Next, we show that there exists

a constant C′
3 = max{1, 1/

¯
v} such that Ωk ≤ C′

3 ·Υk, ∀k > 0.

In fact, it holds that

Ωk = Σ−1
0 +

k−1∑

t=0

A[t : 1]⊤H⊤
t V −2HtA[t : 1]

≤ Σ−1
0 + 1/

¯
v ·

k−1∑

t=0

A[t : 1]⊤H⊤
t V −1HtA[t : 1]

≤ max{1, 1/
¯
v} ·Υk.

(40)

Note that the first inequality is due to the fact that
¯
v is the

smallest entry of the diagonal matrix V ; see Assumption 2.

Therefore, the previous statement can be immediately proved

by letting C′
3 = max{1, 1/

¯
v}. Now, based on such a state-

ment, it holds that Υ−1
k ≤ C′

3 · Ω−1
k . Together with the

inequality (39), one can have that

∥∥∥
k−1∑

t=0

Xtnt

∥∥∥
Υ−1

k

≤
√
C′

3 ·
∥∥∥

k−1∑

t=0

Xtnt

∥∥∥
Ω−1

k

≤ 2v̄2
√
max{1, 1/

¯
v} ·
√
log
(det(Ωk)1/2 det(Σ0)1/2

δ

)
.

(41)

Moreover, according to the inequality of arithmetic and

geometric means and the definition of Ωk, it holds that

det(Ωk) ≤
(
1/N · trace

(
Σ−1

0

)
+ 1/N ·

k−1∑

t=0

trace(XtX
⊤
t )
)N

,

(42)
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where the trace of the matrix XtX
⊤
t further has

trace(XtX
⊤
t ) = trace

(
A[t : 1]⊤H⊤

t V −2HtA[t : 1]
)

(2.a)

≤ 1/
¯
v2 ·

N∑

n=1

e⊤nA[t : 1]
⊤H⊤

t HtA[t : 1]en

(2.b)

≤ 1/
¯
v2 ·

N∑

n=1

e⊤nA[t : 1]
⊤A[t : 1]en

(2.c)

≤ N · ᾱ/
¯
v2.

(43)

Note that (2.a) is due to Assumption 2 and en ∈ R
N denotes

the unit vector; (2.b) follows from the special form of the

measurement matrix Ht, i.e., each row has only one element

equal to one and all others equal to zero; and (2.c) is based

on Assumption 1. In addition, given that the initialization Σ0

ensures
¯
σ · I ≤ Σ0 ≤ σ̄ · I, it follows that trace(Σ−1

0 ) ≤ N/
¯
σ

and det(Σ0) ≤ σ̄N . As a result, we can eventually arrive at

√
log
(
det(Ωk)1/2 det(Σ0)1/2/δ

)

=
√
1/2 · log

(
det(Ωk)

)
+ 1/2 · log

(
det(Σ0)

)
− log(δ)

≤
√
N/2 ·

√
log
( σ̄/

¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

)
.

(44)

Together with the inequality (39), the proof of Lemma 4 is

completed.

Now, based on Lemmas 3 – 4 and inequality (34), it has

been shown that, with probability 1− δ

∥∥φ̂k − φk

∥∥
D

−1/2
Σk

,∞

≤ N3/2 ·
(
C1 + C′

2 ·
√
log
( σ̄/

¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

))
,

(45)

with C1 = ‖φ̂0 − φ0‖2/
¯
σ and C′

2 = v̄2
√
2N ·max{1, 1/

¯
v}.

Therefore, Proposition 1 is proved.

B. Proof of Theorem 1

Let us start the proof by introducing additional notations.

Recall that p⋆
k, as defined in (1), denotes the positions of

the moving extremum spots at time-step k, and similarly, pk

denotes the target positions for the multiple agents generated

by our algorithm. To better characterize the positional infor-

mation, let us define a mapping a(·) : SI → R
N which maps

the position p to the N -dimensional vector,

a(p) =

I∑

i=1

esi , (46)

where each si corresponds to the index of the position p[i].
More precisely, since the positions pk and p⋆

k are solved

by the maximization problems; see (16) and (1), it can be

immediately verified that the vectors a(pk) and a(p⋆
k) must

have I elements equal to one and all others equal to zero.

Therefore, we denote the set of all possibilities of these vectors

as

A := {a | a ∈ {0, 1}N ,1⊤a = I}. (47)

Furthermore, for the notational simplicity, we abbreviate the

above a(pk) and a(p⋆
k) to ak ∈ A and a⋆k ∈ A, respectively.

With the help of these notations, the loss of function values

can be expressed as,

rk := Fk

(
p⋆
k

)
− Fk(pk) = 〈a⋆k − ak,φk〉. (48)

Next, we show, by the following lemma, that there exists

an uniform upper bound for the loss of function values.

Lemma 5: Suppose that Assumption 1 holds and the loss of

function rk is defined as (48), then there is an upper bound

γ̄ = 2
√
Iᾱ · ‖φ0‖2 such that for rk ≤ γ̄, ∀k > 0.

Proof: Recall that the linear dynamics of the state φk

ensures φk = A[k : 1]φ0, thus based on (48), it follows that

rk
(3.a)

≤ ‖a⋆k − ak‖ · ‖φk‖
(3.b)

≤
(
‖a⋆k‖+ ‖ak‖

)
·
∥∥φ⊤

0 A[k : 1]⊤A[k : 1]φ0

∥∥
(3.c)

≤ 2
√
Iᾱ · ‖φ0‖2

(49)

where (3.a) is due to the Cauchy-Schwartz inequality; (3.b)
follows from the triangle inequality and the state dynamics;

and (3.c) is based on the fact that both a⋆k and ak are from

the set A as well as Assumption 1.

Let us define another set χk ∈ R
N which is characterized

by Proposition 1 (or the inequality (25)),

χk :=
{
φ
∣∣ ‖φ̂k − φ‖

D
−1/2
Σk

,∞
≤ βk(δ)

}
. (50)

It is guaranteed by Proposition 1 that φk must be in the set

χk with probability at least 1− δ at each time-step k.

With the help of the defined set χk, we now present a

supporting lemma which measures the update of the target

positions pk (or ak) at each time-step k.

Lemma 6: Under the conditions in Proposition 1, suppose

that the positional information ak is generated by solving the

maximization problem (16) with the D-UCB µk computed

by (13), then the optimal function value 〈ak,µk〉 of (16)

can be obtained by solving the following constrained bi-linear

program,

maximize
a∈A,φ∈χk

〈a, φ〉. (51)

In addition, it holds with probability 1− δ that,

〈ak, µk〉 ≥ 〈a⋆k, φk〉. (52)

Proof: Notice that the constraint bi-linear problem (51)

can be written as the following equivalent form,

maximize
a∈A

Q(a), (53)

where the objective function Q(·) : A → R is defined by

another maximization problem,

Q(a) := maximize
φ∈χk

〈a, φ〉. (54)
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Based on the KKT conditions and the definition of the

feasible set χk, the optimal solution φ⋆ of the problem (54)

can be analytically expressed as

φ⋆ = φ̂k + βk(δ) · diag1/2(Σk), (55)

which is exactly the same as the definition of D-UCB in (13).

Therefore, it holds that

〈ak, µk〉 = maximize
a∈A,φ∈χk

〈a, φ〉. (56)

Furthermore, since Proposition 1 guarantees that φk ∈ χk

with probability 1 − δ and a⋆ = argmax
a∈A〈a, φk〉, it is

straightforward to verify that the inequality (52) holds with

probability 1− δ.

Now, we are ready to prove the statement in Theorem 1,

i.e.,
∑K

k=1 rk ≤ O
(√

K log (K)
)
. Before proceeding, let us

first recall that the vector norm ‖ · ‖DM ,1 as defined in (21) is

the dual norm of ‖ · ‖D−1

M ,∞ as defined in (20). Therefore, the

loss of function value rk has

rk = 〈a⋆k, φk〉 − 〈ak, φk〉
(4.a)

≤ 〈ak, µk〉 − 〈ak, φk〉
= 〈ak, µk − φk〉

(4.b)

≤ ‖ak‖D1/2
Σk

,1
· ‖µk − φk‖D−1/2

Σk
,∞

(4.c)

≤ 2βk(δ) · ‖ak‖D1/2
Σk

,1

(4.d)

≤ 2
√
Nβk(δ) · ‖ak‖DΣk

,

(57)

where the inequality (4.a) is due to the above Lemma 6;

(4.b) follows from the Hölder’s inequality; (4.c) is due to

the triangle inequality and the fact that both µk and φk are in

the set χk; and (4.d) comes from the inequality (22). Next, in

order to further investigate the key term ‖ak‖DΣk−1
, we show

an upper bound for the cumulative ‖ak‖DΣk−1
’s with respect

to the time-step k.

Lemma 7: Suppose that the conditions in Proposition 1

hold and the positional information ak’s are generated by

Algorithm 1, then it holds that for ∀K > 0,

K−1∑

k=0

min{1, 1/v̄ · ‖ak‖2DΣk
}

≤ 2N · log
(
det(Σ0)

1/N · ᾱ ·
(
(
¯
α
¯
σ)−1 +K · (

¯
α
¯
v)−1

))
.

(58)

Proof: Recall that the matrix Σk is generated by the

following recursion,

Σk+1 = Ak+1

(
Σ−1

k +H⊤
k V −1Hk

)−1

A⊤
k+1. (59)

For the sake of presentation, let us first focus on the inverse

of Σk, i.e., Θk = Σ−1
k ∈ R

N×N , and thus it holds that,

Θk+1 = A−⊤
k+1

(
Θk +H⊤

k V −1Hk

)
A−1

k+1. (60)

Consider the determinant of the matrices Θk’s, then one can

have that

det(Θk+1)

= 1/ det(A⊤
k+1Ak+1) · det

(
Θk +H⊤

k V −1Hk

)

= 1/ det(A⊤
k+1Ak+1)

· det
(
Θ

1/2
k

(
I+Θ

−1/2
k H⊤

k V −1HkΘ
−1/2
k

)
Θ

1/2
k

)

= det(Θk)/ det(A
⊤
k+1Ak+1)

· det
(
I+Θ

−1/2
k H⊤

k V −1HkΘ
−1/2
k

)
.

(61)

For simplicity, we here use Yk to substitute H⊤
k V −1Hk again.

Consider that the noise covariance matrix V is diagonal and

Hk takes the specific form of

Hk = [el]
⊤
l∈∪I

i=1
Ci , (62)

where each set Ci contains the indices of the positions covered

by the agent i’s sensing area. Therefore, the matrix Yk is also

diagonal and can be expressed as

Yk =

I∑

i=1

∑

l∈Ci

1/vi · ele⊤l . (63)

Further, let us denote Θ
−1/2
k YkΘ

−1/2
k by Ξk ∈ R

N×N .

Suppose that λn(Ξk) represents the n-th eigenvalue and ξknn
is the n-th diagonal entry of Ξk, then the trace of the matrix

has

trace(Ξk) =

N∑

n=1

λn(Ξk) =

N∑

n=1

ξknn. (64)

In addition, we denote θk
n ∈ R

N the n-th column of the matrix

Θ
−1/2
k ; note that (θk

n)
⊤ is also the n-th row since Θ

−1/2
k is

symmetric. As a result of the specific structure of the matrix

Yk, the diagonal entries ξknn of Ξk has

ξknn
(5.a)
=
( I∑

i=1

δik(n)/v
i
)
· (θk

n)
⊤θk

n

(5.b)
=
( I∑

i=1

δik(n)/v
i
)
σk
nn

(5.c)

≥ 1/v̄ ·
I∑

i=1

δik(n)σ
k
nn,

(65)

where in (5.a), we let δik(n) = 1 if the position indexed

by n is in the sensing area Ci at the time-step k, and δin = 0
otherwise; (5.b) is due to the definition of θk

n and the fact that

σk
nn denotes the n-th diagonal entry of Σk; and (5.c) comes

from Assumption 2. Now, based on (65), one can further have

that
N∑

n=1

ξknn ≥ 1/v̄ ·
N∑

n=1

I∑

i=1

δik(n)σ
k
nn

(6.a)

≥ 1/v̄ ·
I∑

i=1

e⊤sik
Σkesik

(6.b)
= 1/v̄ · a⊤k DΣk

ak

(6.c)
= 1/v̄ · ‖ak‖2DΣk

,

(66)



11

where sik denotes the index of the agent i’s position at the

time-step k in (6.a) and δik(s
i
k) must be one; (6.b) is by the

definition (46) of ak and (6.c) is due to the definition of the

norm ‖ · ‖DΣk
.

Now, the previous equalities in (61) can be continued as

det(Θk+1) = det(Θk)/ det(A
⊤
k+1Ak+1) · det(I+ Ξk)

(7.a)
= det(Θk)/ det(A

⊤
k+1Ak+1) ·

N∏

n=1

(
1 + λn(Ξk)

)

(7.b)

≥ det(Θk)/ det(A
⊤
k+1Ak+1) ·

(
1 +

N∑

n=1

λn(Ξk)
)

(7.c)
= det(Θk)/ det(A

⊤
k+1Ak+1) ·

(
1 +

N∑

n=1

ξknn

)

(7.d)

≥ det(Θk)/ det(A
⊤
k+1Ak+1) ·

(
1 + 1/v̄ · ‖ak‖2DΣk

)
,

(67)

where (7.a) is due to the fact that the determinant of a

matrix equals the product of eigenvalues; (7.b) follows from

the inequality of arithmetic and geometric means and the

positive definiteness of the matrix Ξk; (7.c) is based on

the equality (64); and (7.d) is due to the inequality (66).

Subsequently, applying (67) recursively yields

det(Θk+1) ≥ det(Θ0)/ det
(
A[k + 1 : 1]⊤A[k + 1 : 1]

)

·

k∏

t=0

(
1 + 1/v̄ · ‖at‖2D

Σt

)

≥ ᾱ−N det(Θ0) ·
k∏

t=0

(
1 + 1/v̄ · ‖at‖2D

Σt

)
.

(68)

Note that the last inequality relies on Assumption 1.

Next, notice that min{1, x} ≤ 2 log(1 + x) is always true

for any non-negative scalar x ≥ 0, therefore,

k∑

t=0

min{1, 1/v̄ · ‖at‖2D
Σt
}

≤
k∑

t=0

2 log
(
1 + 1/v̄ · ‖at‖2D

Σt

)

≤ 2 log
(
ᾱN · det(Θk+1)/ det(Θ0)

)
.

(69)

Furthermore, based on the recursion (60) of Θk, it follows that

Θk+1 = A[k + 1 : 1]−⊤Θ0A[k + 1 : 1]−1

+

k∑

t=0

A[k + 1 : t+ 1]−⊤HtV
−1HtA[k + 1 : t+ 1]−1.

(70)

Thus, one can have that

det(Θk+1) ≤
(
1/N · trace(Θk+1)

)N

=

(
1/N ·

N∑

i=1

(
e⊤nA[k + 1 : 1]−⊤Θ0A[k + 1 : 1]−1en

+

k∑

t=0

e⊤nA[k+1:t+1]−⊤HtV
−1HtA[k+1:t+1]−1en

))N

≤
(
1/N ·

N∑

i=1

(
(
¯
α
¯
σ)−1 +

k∑

t=0

(
¯
α
¯
v)−1

))N

=
(
(
¯
α
¯
σ)−1 + (k + 1) · (

¯
α
¯
v)−1

)N
.

(71)

Note that the last inequality is due to the facts i) Σ0 ≤
¯
σ · I;

ii) A[k : t]−⊤A[k : t]−1 ≤
¯
α−1 · I (see Assumption 1); and

iii) H⊤
t V −1Ht ≤

¯
v−1 · I since the specific form of Ht and

Assumption 2. As a consequence, it holds that

log
(
ᾱN · det(Θk+1)/ det(Θ0)

)

≤ N · log
(
det(Σ0)

1/N · ᾱ
(
(
¯
α
¯
σ)−1 + (k + 1) · (

¯
α
¯
v)−1

))
.

(72)

Together with the inequality (69), the proof of Lemma 7 is

completed.

With the help of the above Lemma 7, we can now continue

our proof for the theorem. Since Lemma 5 has guaranteed that

the loss of function rk ≤ γ̄ = 2
√
Iᾱ · ‖φ0‖2, ∀k > 0 Based

on the inequality (57), it follows that

rk ≤ min
{
γ̄, 2
√
Nβk(δ) · ‖ak‖DΣk

}

≤ κ ·min
{
1, 2
√
Nβk(δ)/

√
v̄ · ‖ak‖DΣk

}

≤ κβ′
k(δ) ·min

{
1, 1/

√
v̄ · ‖ak‖DΣk

}
.

(73)

In the last two inequalities, we let κ = max{γ̄,
√
v̄} and

β′
k(δ) = max{1, 2

√
2βk(δ)}. According to the definition (15)

of the non-decreasing sequence {βk(δ)}k∈N+
, it can be seen

that the sequence {β′
k(δ)}k∈N+

is also non-decreasing, i.e.,

β′
k(δ) ≤ β′

k+1(δ). Then, one can have

K−1∑

k=0

rk ≤

√√√√K ·
K−1∑

k=0

r2k

(8.a)

≤ κβ′
K(δ) ·

√√√√K ·
K−1∑

k=0

min
{
1, 1/v̄ · ‖ak‖2DΣk

}

(8.b)

≤ κβ′
K(δ) ·

√
2KN

·

√
log
(
det(Σ0)1/N · ᾱ

(
(
¯
α
¯
σ)−1 +K · (

¯
α
¯
v)−1

))
,

(74)

where (8.a) follows from the inequality (73) and (8.b) is due

to Lemma 7. Given that β′
K(δ) = max{1, 2

√
2βK(δ)} and

βK(δ) = O
(√

log(K)
)

in Proposition 1, it can be obtained

either β′
K(δ) = 1 or β′

K(δ) = O
(√

log(K)
)
. Therefore,

together with the inequality (74), the statement in Theorem 1

is proved, i.e.,
∑K

k=0 rk ≤ O
(√

K log (K)
)
.
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algorithms for linear stochastic bandits. Advances in Neural Information

Processing Systems, 24:2312–2320, 2011.


	I Introduction
	II Problem Statement
	II-A Distributed Extremum Seeking
	II-B Extremum Seeking via Estimation on the Environment

	III An Adaptive On-line Framework
	III-A Kalman Consensus Filter
	III-B The Distributed On-Line Extremum Seeking Algorithm

	IV Simulation
	V Conclusion
	VI Appendix
	VI-A Proof of Proposition 1
	VI-B Proof of Theorem 1

	References

