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Optimized Coverage Planning for UV Surface Disinfection

Jodo Marcos Correia Marques®, Ramya Ramalingam?, Zherong Pan' and Kris Hauser

Abstract— UV radiation has been used as a disinfection
strategy to deactivate a wide range of pathogens, but existing
irradiation strategies do not ensure sufficient exposure of all
environmental surfaces and/or require long disinfection times.
We present a near-optimal coverage planner for mobile UV dis-
infection robots. The formulation optimizes the irradiation time
efficiency, while ensuring that a sufficient dosage of radiation
is received by each surface. The trajectory and dosage plan
are optimized taking collision and light occlusion constraints
into account. We propose a two-stage scheme to approximate
the solution of the induced NP-hard optimization, and, for
efficiency, perform key irradiance and occlusion calculations
on a GPU. Empirical results show that our technique achieves
more coverage for the same exposure time as strategies for
existing UV robots, can be used to compare UV robot designs,
and produces near-optimal plans. This is an extended version
of the paper originally contributed to ICRA2021.

I. INTRODUCTION

The Covid-19 pandemic has encouraged worldwide inno-
vation in methods for reducing the risk of disease trans-
mission in hospitals, public transportation and other public
spaces. One promising technology is ultraviolet (UV) disin-
fection of surfaces, which has strong antimicrobial properties
particularly in the UVC (200-280nm) spectrum. UVC has
long been known to deactivate a wide range of pathogens,
such as Coronaviruses [1}, |2], bacteria and protozoans [3].
Existing UV delivery approaches include air and water
disinfection systems used in filtration and waste processing
plants [2], as well as surface disinfection systems in the form
of wands [4], overhead lights, pushcarts, and mobile robots
carrying high-power UVC lamps [5]]. Hospital testing [6]
has shown that a combination of standard manual cleaning
followed by UVC surface irradiation has shown to be more
effective in disinfecting environments than manual cleaning
alone.

Dosing is an important factor in effective use of UVC, and
is usually performed by following manufacturers’ guidelines.
Although some UV disinfection robots also feature sensors
that measure reflected radiant energy as an approximation of
surface dosage, existing methods fail to disinfect certain parts
of the environment [7]. Two pitfalls are noted. The radiant
fluence received by a surface is affected by the inverse square
law, so fluence drops quickly as distance increases. Second,
occlusions also affect the delivery of light into back-facing or
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Fig. 1: Comparison of a standard stationary mobile robot (top)
against an optimized motion (bottom). Robot carries a tower light
that emits UV radiation uniformly along its length. Surfaces are
color coded by UV fluence received, with red indicating 0J/m? and
green indicating 280J/m? or higher. A stationary light is unable
to disinfect much of the environment after 30 minutes, while
a mobile robot following our optimally computed trajectory (in
orange) achieves almost complete coverage. (Best viewed in color)

shadowed regions. These effects are illustrated in Figure [T}
which shows a simulation of the irradiation of a hospital
infirmary under a static UV tower, demonstrating ineffective
disinfection of bedsides and occluded equipment.

We present a method for planning optimal trajectories of
a mobile UV disinfection robot with dosing constraints. Our
optimization can be configured to prioritize coverage of high-
touch surfaces under a fixed time budget, or to guarantee
the eventual full disinfection of all surfaces reachable by
irradiation. The robot’s movement must be collision-free
while conforming to the dosing constraints. We solve the
problem by building a probabilistic roadmap in the robot’s
configuration space, and then finding a tour of a subset



of configurations that optimizes the dose. The coverage
problem on the roadmap can be cast as an NP-hard Mixed-
Integer Linear Programming (MILP), but we propose an
approximate two-stage solver that uses a Linear Program
(LP) to find dwell times followed by a Traveling Salesman
Problem (TSP) to find the tour. Experiments show that
our solver is orders of magnitude faster than MILP with
a loss of less than 3% of optimality. Moreover, dosage
planning requires determination of an irradiance matrix that
considers visibility and exposure of every surface patch from
each candidate UV light pose, and we propose an approach
that efficiently calculates this large matrix using a Graphics
Processing Unit (GPU).

II. RELATED WORK

Motion planning for UV disinfection bears a resemblance
to two well-studied problems: coverage and inspection plan-
ning. The goal of coverage planning [8,|9,|10}|11] is for every
point in the freespace to be covered by the robot, while the
goal of inspection planning [[12] |13} |14} |15 |16] is for every
point on an object surface to be visible from some point on
the robot trajectory. The disinfection planning problem intro-
duced in this paper adds an additional layer of complexity to
inspection planning, where every point in an object surface
must receive a certain amount of irradiance exposure. This
scenario induces a joint problem of robot trajectory planning
and disinfection time assignment. Compared with standard
coverage and inspection planning, UV disinfection is applied
routinely in healthcare facilities, public spaces, and food
industries, and can take tens of minutes to ensure enough
dosage. Therefore, achieving (near) optimality in reducing
the disinfection time for a known environment, which is
the focus of this paper, is more important than adapting
to unknown environments or online re-planning as done in
Refs. [13 [11]].

Besides robotics, UV disinfection planning can be under-
stood as an effort to model and control light transport. In
this aspect, there is overlap with similar efforts in the field
of radiation dosage planning [[17, |18, |19, 20], rendering of
Lambertian surfaces using boundary element method [21}
22, 23], 24] (otherwise known as radiosity), and optimization
of light placements [25] [26]. The radiation dosage planning
problem has the same goal as our problem, ensuring the
delivery of sufficient amount of dosage to target volumes. An
additional goal is to reduce the dosage as much as possible
for the organs at risk. However, since geometric information
of human organs is difficult to acquire, these methods are
mostly heuristic and sub-optimal. Radiosity is used to only
model light transportation, reflection, and absorption. Of
particular interest is GPU-accelerated radiosity [23] where
the occlusion map is computed using GPU rasterization. A
similar technique is used in this work, while indirect light
reflections are ignored by our method as their contributions
are assumed neglectable. Other works on lighting optimiza-
tion for urban design or scientific data visualization [25| [26]]
also considers moving light sources, but these lights are fixed
after the design phase.

Finally, Hu et al. [27] present a pipeline for UV disin-
fection of built environments, wherein 3D environments are
reconstructed using off-the-shelf SLAM, while performing
affordance estimation using a neural-network on the RGBD
streams and projecting them into the generated map. The
labels are then projected onto the 3D map and used to
indicate areas that are likely to be contaminated and direct
their robot to those segments, executing one of two disin-
fection motion primitives on the environment - a scanning
motion for flat segments and a circling motion for cylindrical
shapes. They do not, however, provide any reasoning or
experiments regarding the effectiveness of their disinfection
strategy, focusing their results on the performance of the
affordance estimates and on the mechanical feasibility of
their disinfection primitives on a static robot. Their planning
strategy also does not consider a disinfection tour, but
limits itself to planning collision-free trajectories between the
robot’s current position and a given area to be disinfected.

III. UV DISINFECTION TRAJECTORY PLANNING

Here we formalize the path planning problem for targeted
UV disinfection first as a continuous, infinite-dimensional
trajectory optimization problem, and then as a discrete ap-
proximation.

A. Continuous Formulation

Let E c R? be the boundary of the environment, which is
the surface to be disinfected. The disinfection is performed
using a mobile robot equipped with a UV light, where C is
the robot’s configuration space and Cy,.. is the freespace.
When the robot assumes any collision-free configuration x €
Cree, each infinitesimal surface patch ds € E will receive
a certain amount of radiative fluence per second. We model
the radiative fluence distribution using a so-called Poynting
vector function I(x,ds), such that the infinitesimal surface
patch ds receives the following irradiance:

Ly (x) = (I(z, ds), n(s)), (1)

where ds is the infinitesimal surface patch with outward
normal n(s) and (e,e) is the inner product. Note that
I(z, ds) already encodes the effects of light mirror reflections
and occlusions by the environment. For instance, in the
case where there are full occlusions before reaching ds,
this vector is zero. We denote 7(t) : R = Cype. as the
trajectory in the robot configuration space parameterized in
time ¢ € [0,Tfinq]. The radiant fluence (also known as
radiant exposure) of an infinitesimal surface patch ds from
a trajectory 7, denoted by 45, is described by:

Tfinal
jas(7) = fo " L (r(1))dt. @)



We define the minimum-time, continuous path planning
problem for UV disinfection as:

argmin T'yinq;
Tfinal,T

s.t. uds(T) 2 Umin(ds) Vds
T(t) € (Cf'ree 3)
Vi e [Oaninal] 7(t) = f(r,7,u)

[u(®)] < tmaz

where f(7,7,u) encodes the robot dynamics , u(t) is the
control signal, . is the control limits and fi,,;,(ds) is
the minimum disinfection fluence (dose) prescribed to the
surface. The prescribed dose can be surface-dependent (e.g.,
to deliver more radiation to high-touch surfaces), but we set
a constant fi.,,;, for notational simplicity. Eq. |3|is intractable
due to the infinite number of constraints and the integral in
Equation [2]

B. Discrete Formulation

Next, we formulate a discrete counterpart of (3). The
surface [E is discretized using a simplicial complex with
N triangles, {s;|¢ = 1,---,N}. The robot can only take
a discrete set of K configurations {z1,,2x} € Cpree.
Each configuration zj, is called a vantage configuration. To
simplify total irradiance calculations, we assume that the
light source stops at each configuration z, in its trajectory for
some dwelling time, denoted as t; > 0, and emits no radiation
during the transition between vantage configurations. Let t
be the vector of K dwell times. We then discretize (I]) and

as:
Ii(on) = [ (K(onds),n(s))ds, 4)

K
/Ll(t) = Z Ii(xk)tk. (5)
k=1

Suppose there exists a network of paths between configura-
tions that satisfies kinematics and dynamics constraints. Let
dy; > 0 be the distance along the network between any z;, and
x7, with dg; = oo if no path connects them. We then formulate
the discrete version of (3)) as a path subset selection problem.
We introduce binary variables zx; € {0,1}, each indicating
whether the path dg; is used in the final path, and a vector
z collecting each indicator. Then the discrete version of
is defined as:

1

K K
3> duizn

Umaz k=11=1

Vi=1,-N (6)

K
argmin Z t, +
t,z k=1

s.t. i (t) > wmin
z connected

tr >0 iff z;,; =1 or z;;, = 1 for some [.

The last two conditions are consistency constraints, stating
that the selected paths form a simply connected path, and
the second ensures that the robot can only dwell on vantage
configurations that are part of the selected path.

IV. PROPOSED SOLUTION

In this section, we propose a novel approximate algorithm
to search for near-optimal coverage plans. The main steps of
our approach are listed below:

1) Select vantage points {x1,---,zx+} and obtain the sub-
set of vantage configurations {q1,--,qx } for feasible
points (Detailed in Section IV-A).

2) Compute network R of paths between configurations
using a PRM-style approach. Retain subset of reachable
configurations. (Sec.IV-B)

3) Compute irradiance matrix I;(x) (Sec.IV-C)

4) Solve a LP for optimal dwell times t (Sec.IV-D)

5) Solve a TSP for a tour of all configurations ¢ for which
dwell time is nonzero, that is ¢t > 0 (Sec.IV-D)

6) Execute the tour, stopping for time t; at each visited
configuration qj

We show in Appendix I, that Eq. (6) can be formulated
as a Mixed Integer Linear Program (MILP). As vantage
configurations grow increasingly dense and paths in the
network R approach optimal paths, the MILP solution will
approach the optimal solution to the original continuous
problem (B). However, finding optimal MILP solutions is
NP-hard - and finding suitable solutions usually gets harder
with the amount of integer variables in the formulation of the
problem - which in the case of the formulation in Appendix I
scales with O(K?). We therefore opt to tackle this problem
with a two-stage LP+TSP approach.

The LP first finds an dosage plan, in the form of dwell
times to be spent at each vantage configuration, that is opti-
mal assuming that the robot can instantly “teleport” between
configurations. Second, the TSP finds the minimum-time
traversal of the configurations with non-zero dwell times.
Assuming that the robot is sufficiently fast that irradiation
is the limiting step, this strategy will produce near-optimal
results.

Another issue to be addressed is that the integral in (4))
does not have a closed form. We quickly compute an approx-
imate irradiance vector from every vantage configuration and
assemble them into an irradiance matrix using a GPU-based
visibility check.

A. Vantage Configuration Selection

We first uniformly select a set of light positions in the task
space, giving a superset {x1,--, x5} of K’ light positions.
For each light position, we solve the inverse kinematics
problem for each robot 1K (xy) = ¢ and insert g into
the vantage configuration set if a collision-free IK solution
can be found. During IK feasibility computation, the robot’s
geometry is dilated by 5 cm to discourage the use of “coiled*
configurations, since these induce harder planning problems.
The selection scheme of {x1,,xx} is robot-dependent. If
the robot is able to move in 3-D, then they are drawn from
an uniform grid in the bounding box of E in R?, but if the
robot is constrained to 2D motion, like a mobile base, they
are drawn from a gridding of the floorplan of E in R2.



B. Roadmap Computation

In this step we compute a PRM [28§]] to attempt to connect
the vantage configurations {qi,--,qx } with feasible paths.

The PRM is an undirected graph R = (V, E) consisting
of configurations q € Cy,¢, called “milestones”, and edges
(a,b) € E between milestones a and b are straight line paths
that are required to lie completely in the free space, that
is, ab € Cyree. The feasibility of an edge is verified by
linearly interpolating between configurations @ and b and
checking for collisions at regular intervals. In addition, we
define the distance between two milestones a and b to be the
length of the end-effector trajectory resulting from the linear
interpolation between a and b in the workspace.

We then construct R with the following sampling scheme:

1) Add {q1,-,qx} as initial milestones of the PRM and
try to connect pairs of nearby milestones if the edge
between them is feasible.

2) Sample 4 thousand configurations at random from con-
figuration space and attempt to connect them to the
existing roadmap R. This random sampling is as fol-
lows: 30% of the time, we sample uniformly at random
from the configuration space and the remaining 70%
of the time, we sample within a neighborhood of a
target milestone, selected uniformly at random. If at the
end of this step all target configurations lie in the same
connected component, go to 6; else, go to 3

3) If the fraction of target milestones within the same
connected component (¢) is smaller than 0.8, continue
sampling milestones following the procedure in 2 in
increments of 200 samples. Otherwise, move to 4

4) If all target configurations are in the same connected
component, go to 6; Else, if ¢ > 0.8, proceed with
targeted sampling. Select one of the target milestones
that is yet to be connected to the others uniformly
at random, hereby named ¢yocys. Find the connected
component to which gyocus belongs, Crocus. Find the
connected component containing the majority of the
target milestones Cp,qjor-

5) Find the nearest neighbors between Crocus and Cpyqjor,
Qfocusnear AMd Gmajor,..,- Then, draw samples near
either ¢rocuspea, ANd Gmajorn.,,» Uniformly at random.
After 10 samples have been drawn in this manner, return
to 4.

6) Extract the configuration space trajectory between the
target configurations from R, with no additional pro-
cessing of the paths (i.e. shortcutting or a-posteriori
trajectory optimization), and calculate the distances be-
tween them.

Step 6 is introduced to help the planner focus its sampling
on narrow passages in configuration space.

After R is computed, vantage points that are not in the
largest connected component are discarded. For the remain-
ing points, the shortest paths in R between all pairs (qx,q;)
are computed to form the distance matrix d;. Note that
one consequence of this targeted sampling approach is that
milestones that lie in free space tend to be connected early
on and, thus, tend to have more jagged paths between them.
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Fig. 2: Illustrating the GPU-based irradiance calculation. (a): The
triangle index is rasterized into an environment map using geom-
etry shader. (b): The power emission e(%,j) is precomputed. (c):
The operation F[T[i,7]] += e(,7) is performed using hardware
accelerated pixel-blending. (Best seen in color)

C. Discrete Radiative Fluence

We approximately calculate the radiative fluence matrix
with entries I;(x). Note that a typical environment in
3D contains millions of triangles (/N) and we will sample
tens of thousands of potential vantage configurations (K).
Therefore, the matrix size I;(xy) is huge and its calculation
can typically become the bottleneck. We provide a GPU-
based implementation that can calculate each column I, ()
in milliseconds.

The irradiance is a measure of the rate of radiant exposure,
and is given in the units of watts per square meter. We first
describe the simple case where the robot is a point light
source, i.e. X = R3. We assume that reflected light is not a
major source of illumination, so that the irradiance density
received by the infinitesimal patch ds is given according to
the inverse square law:

0 ds visible from zj,
(I(zk, ds),n(s)) = {IMMSD

pr —L otherwise,

(N
where P is the power (or radiant flux) of the light source
and s is the location of the infinitesimal surface patch. A
patch is considered visible only if (y — zx,n(s)) > 0 and no
other surface lies closer to xj; along the ray y — xy.

If no other triangles are in the way from zj to the entire
triangle s;, then the irradiance can be calculated according
to [29], ie. the integral of Equation [ has closed form
solution. However, when occlusion occurs, no closed form
solution can be found for the per-triangle irradiance. Instead,
our GPU-based implementation calculates the irradiance
I;(xy) by rasterization. This roughly follows the pipeline
for radiosity calculations used in computer graphics [30,
23| disregarding Lambertian reflectance. Our implementation
(Fig. ) is comprised of the following steps:

o The scene is rasterized using a standard graphics pipeline,
with the camera centered at xj. Each triangle’s index
is rendered into the pixel buffer 7" bound to a cubemap
texture (the visibility cube) using framebuffer object and
a geometry shader [31]. In the meantime, a Z-buffer is



used for visible surface determination. After rasterization,
we store the value T'[i,j] for each pixel (i,7) on the
image plane. T[i,j] is the index of the closest triangle
intersecting the ray from pixel (7,7) to zx. A void pixel
indicates that no triangle is occupying the pixel.

« For each pixel T'[4,j] containing a visible triangle, the
amount of power e(i,j) emitted over the solid angle
subtended by the pixel is calculated using [29] and all
power terms e(%,7) belonging to T'[i,j] are summed up
and stored in the triangle buffer F'. This summation of
e(i,7) is performed using the GPU’s hardware accelerated
pixel-blending. In particular, we first set the triangle buffer
F as the render target and store T[4, 7] in the GPU bulffer.
We then execute a shader program for each e(4,j), where
we check T'[4,7] for the index in F and use geometry
shader [32] to render a single pixel into F', with color equal
to e(4,7) and pixel-blending turned on. The accumulated
value for each triangle is the radiant flux, which measures
irradiance integrated over the non-occluded area of the
triangle.

« The radiant flux F'[¢] is divided by the area of each triangle
to obtain the mean irradiance I;(xy) = F[i]/|s:].

Because this process will be performed repeatedly, the power
emission e(4, j) for each pixel is precomputed and stored in
a separate texture of the same dimensions as the rendered
buffers, denoted as F, so that it can be retrieved with a single
memory lookup. A note-worthy caveat of our method is the
use of mean irradiance I;(xy) = F[i]/|s;] to replace the true
uneven irradiance distribution within a single triangle, which
can be remedied by having more finely discretized meshes.

Non-Point Light Sources: Our procedure to compute
I;(zx) can be naturally extended to non-trivial light source
shapes, such as an omnidirectional cylindrical light source. In
those instances, the surface of light sources can be approx-
imated by a set of evenly distributed point sources, where
each point source emits an equal fraction of the light’s total
radiant power. The total radiant flux is accumulated for each
point before dividing by the area of each triangle to obtain
the irradiance. More advanced shader programs such as [33]]
can also be used to approximate the continuous integration
of light contributions along the light source’s surface area on
GPU. For light sources with uneven irradiance distribution,
such as shielded or mirrored lights, we can replace the power
emission texture E with a precomputed custom distribution.

If the light source is not standalone but mounted on a
robot, then the position of the light source p is determined
by its forward kinematics, which is denoted as p(zj) and
plugged into Equation [/] in the place of zj, arriving at

I(p(xr),n(s)).

D. Approximate Two-Stage Optimization

At this point, all related variables of Equation [6| have been
calculated. The first stage proceeds by relaxing all z; = 1 and
derives an optimal set of dwell times. Assuming no transit
time, the optimal dwell times can be determined by solving

the following linear program:

K

argmin 17
123 kz=:1 ®)

S.b. i 2 fhmin Vi=1,-N,

A potential issue with Equation [8|is that it does not account
for partially infeasible problems, which frequently occur
in practice because some triangles s; are totally invisible
from all vantage configurations. In these cases, Equation [§]
will report infeasibility rather than return an approximate
solution. To remedy this problem, we propose the following
relaxed LP that always returns feasible solutions:

K N
argmin Z tr + Zpioi
te,0620 k=1 i=1
S.t. p; + 05 2 fmin Vi=1,--- N )

K

Z Ik < Tmam;

k=1
where p; denotes the infeasibility penalty of a triangle s; and
o; is a slack variable allowing all constraints to be satisfied
in the worst case. We further constrain the time budget for
disinfection to Ty,q.. With large penalties p; > |I.(z.)|#
and sufficiently large 7},4;, the solution to the LP tends to
set all o; = 0 and the solution to Equation [9] approaches
the solution to Equation [§] When some surfaces are totally
invisible or disinfection cannot be accomplished within the
time budget, the LP solution accepts o; = fmin — t; > 0 for
some indices i, thereby accepting penalty p; (f4min — ;). For
prioritized surface patches s;, a larger p; should be used so
the LP tends to avoid positive o;. To solve Equation [0 we
leverage the large-scale interior-point algorithm implemented
in Gurobi [34].

The second stage in this approximate approach solves the
TSP problem to find a tour amongst vantage points with
nonzero dwell times, that is, minimizes transit times amongst
edges {zxi|ty > 0 At; > 0}. While this problem is still NP-
hard, it is solved over a much smaller set of candidate paths.
In addition, since it fits the traditional TSP formulation,
we are able to leverage polynomial-time approximate TSP
solvers, such as [35]], which have near-optimal performance
for relatively small euclidean TSP instances as the ones we
encounter. Once the tour is found, the final disinfection tra-
jectory is obtained by linearly interpolating in configuration
space along the edges of the roadmap.

V. EXPERIMENTS

Our experiments aim to answer the following questions:

1) How much better is the coverage of an optimally
planned disinfection trajectory if compared to a single-
point strategy?

2) How large is the optimality penalty incurred by solving
the problem sequentially vs using an optimal MILP
formulation?

3) How do different robot designs compare in terms of
maximum disinfection coverage and efficiency?
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Fig. 3: Empty room disinfected by the best stationary point (red
dot) and by our method. Each surface is colored by its received
fluence, and the optimized trajectory is drawn in red. (Best seen in
color)

We use a simplified 2.5D experiment to test questions 1 and
2, and a realistic environment in 3D for question 3.

In each experiment, all surfaces require a minimum dis-
infection fluence fiy,;, = 280 J/m?, which is a conservative
estimate of the necessary fluence to induce a 3log;, reduc-
tion in infectivity of SARS-Cov2 [2]. In addition, the light is
assumed to have a constant radiant flux, P, of 80 W and that
the maximum speed of all robot end-effectors is 0.5 m/s.

A. Comparison with static illumination

First we evaluate disinfecting the walls of a 5Smx5m empty
room as a 2.5D problem. Walls are 2m meters tall and a
spherical point light source is used. We consider a discretized
version of the room where each wall is subdivided into
fixed-length subsegments, and irradiance from a point can
be calculated analytically for rectangles [36]. We consider a
static illumination strategy that places the disinfection light
to have maximum coverage over the obstacle space, allowing
it to irradiate the surfaces for as long as necessary to fully
disinfect its visible surfaces. In our method, we treat the
robot as a cylindrical base of radius 10 cm, and constrain
the movement of the light to a plane at height 1 m. Vantage
points are sampled along a 0.1 m grid. The static method
takes 143.7 minutes to reach full room disinfection, while
ours does so in 95.6 minutes, including movement time
between vantage points - the contrast between solutions is
illustrated in Figure [3]

Next, we randomly generate 25 2.5D rooms in a 4 mx4 m
area and with 2m tall polygonal obstacles. Each world
contains a random number of obstacles (between 7 and
19), with each obstacle randomly generated by scaling,
shearing and displacing regular polygons. Visibilities of
each segment from a given vantage point are determined
by creating a visibility graph amongst vantage points and
segment midpoints [37]]. Figure 4] shows the output for one
example. Note that for our method, all segments are covered,
and few segments are overexposed. Figure [5] shows results
averaged over all rooms, indicating that our proposed method
consistently disinfects 100% of the environment, whereas the
optimal static illumination only disinfects 35%. Moreover,
to disinfect the visible segments, static illumination requires
approximately 2 orders of magnitude more time.

(a) Stationary illumination (b) Our method

Fig. 4: Same room disinfected by the best stationary point (red dot)
and by our method. Each surface is colored by its received fluence
and the trajectory is drawn in red. (Best seen in color)
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Fig. 5: 2.5D Disinfection performance comparisons with best single
point strategies

B. Comparison against MILP formulation

Next, we compare the two-stage scheme and the glob-
ally optimal MILP formulation described in our extended
report [|38]]. We limited the point robot to travel along a grid
with 0.5m spacing, resulting in ~ 64 candidate vantage points
and ~ 4k boolean variables in the MILP(to ensure MILP
feasibility within constrained time). These results are illus-
trated in Figure[6] Columns 1, 2 indicate the mean percentage
difference between MILP and LP solutions; columns 3 and
4 indicate the mean percentage of dwell time w.r.t. the total
disinfection time in each solution and column 5 is the mean
value of the ratio between the computation time of the MILP
over the computation time for the LP+TSP. Note that path
lengths differ, on average, less than 10% between the two
solution methods - which is evidenced by the mean difference
of less than 5% in total disinfection time. In addition, we
verify our initial assumption that dwell times make up the
majority of disinfection time, since they represent over 90%
of the total disinfection times in both cases. Moreover, the
two-stage approach is 6 times faster, on average, to compute
than the optimal MILP solution - even in examples with
coarse grid. Note that in a grid with twice the resolution (~
256 candidate vantage points - ~ 65k boolean variables in
the MILP), we could not get solutions within 2 hours for the
MILP formulation, while the LP+TSP solutions took about
5 seconds to compute, on average. Additional experiments
evaluating the impact of grid resolution and environment
discretization resolution can be found in Appendix II.
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Fig. 7: Towerbot mid-disinfection

C. Comparing Robot Designs

Our 3D tests were performed in a hospital infirmary’s
CAD modeﬂ (Figure , simplified to 60k triangles using
quadric edge collapse decimation. The method described in
Sec. IV-C is configured to use 512x512 resolution frame-
buffers for computing irradiances.

We compare three models for the disinfection robot:
“Floatbot*, a freely-moving spherical light source, “Tower-
bot“, a cylindrical mobile base that moves in the plane,
is 55cm in diameter and 37 cm tall, and has a 1.2m tall
cylindrical light source attached to its top, seen in (Figure [7));
and “Armbot™, a mobile base upon which a URS5e 6-DOF
manipulator is mounted and holds a spherical point light
source, seen in (Figure [§), with their lamps highlitghted.
Floatbot is an idealized model of maximum performance.
Towerbot is a model for commercially available mobile
disinfection robots (like the Akara Violet and UVD robot’s
Model B and C) El while Armbot represents a potential
advancement that can access more hard-to-reach surfaces
than a tower design. All solutions were computed within 50
minutes, with the irradiance matrix calculation taking over
80% of the time on all 3D experiments.

Our experiments designate an irradiation time limit of
Tz = 30 minutes and 100 hours for evaluating asymp-
totic performance. For vantage point selection, we define a
3D grid with resolution 0.25m (resulting in 8547 vantage
candidates). We also compare with the strategy of placing
Towerbot in the center of the room for the prescribed

Uhttps://grabcad.com/library/hospital-ward-2-2
Zhttps://www.uvd-robots.com/robots — https://www.akara.ai/violet.htm]

Fig. 8: Armbot mid-disinfection
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Fig. 9: Performance of robot designs disinfecting an infirmary.

time budgets to mimic the static status-quo. During motion
planning, 4k feasible samples are drawn to create the PRM
(with additional samples added in increments of 20 if full
milestone connectivity is not achieved).

Results are shown in Figure 9] We find that robots
with more freedom to explore the free space, like Armbot
and Floatbot, disinfect a larger area under a given time
budget. Matching experimental results, [7]], the status-quo
of stationary placement of Towerbot fails to cover much
of the surface, as illustrated in Figure [} The asymptotic
performance is nearly identical among all mobile solutions,
whereas the disinfection efficiency comes with a tradeoff
in total distance travelled, among which Towerbot has the
smallest trajectory length and Armbot has the longest. This
is presumably due to two factors. First, distances in higher
dimensions tend to be higher (3D vs 2D) and, second, motion
planning for Armbot involves many steps that are prone
to sub-optimality, such as vantage configuration selection
given a desired lamp position and high-dimensional multi-
query path planning. Floatbot’s trajectory length is a trivial
lower bound to Armbot’s trajecory length. More details
about the trajectories can be found the attached suplemental
video. Additional experiments evaluating the effect of grid
resolution on the disinfection performance of the 3 robots
can also be found on Appendix II.

VI. CONCLUSION & FUTURE WORK

We presented a targeted approach to solve coverage
planning problems for UV light disinfection. Our opti-
mization minimizes the disinfection time while ensuring
maximum coverage by imposing constraints of minimal
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Fig. 10: Time lapse of Armbot’s disinfection progress for an infirmary within a time budget of 30 minutes. (Best seen in color)

irradiance exposure of surfaces. We show that globally
optimal solutions can be found by solving a NP-hard
MILP and propose a two-stage approximation scheme that
can find near optimal solutions with less than 3% sacri-
fice of optimality while being orders of magnitude faster.
We also confirm real-world experiments [7] that show
limitations of stationary UV disinfection robots. Further-
more, our algorithm is general enough to analyze differ-
ent robotic disinfection mechanisms. Code for the method
is available at |https://github.com/joaomcm/Optimized-U V-
Disinfection. In future work, we would like to analyze the
MILP formulation and its interaction with the continuous
path planning component. Second, we hope to test the
proposed pipeline in a physical system to evaluate how
positioning errors from SLAM algorithms and reconstruction
errors affect disinfection performance. Third, our vantage
configurations are sampled along a uniform task space grid,
which may not be the most efficient choice. Finally, we
would like to study how joint optimization of vantage
configurations, task-space points, and paths could yield more
efficient traversals.


https://github.com/joaomcm/Optimized-UV-Disinfection
https://github.com/joaomcm/Optimized-UV-Disinfection

APPENDIX I
MIXED-INTEGER LINEAR PROGRAMMING

It is evident from Equation [6] that we have a discrete
combinatoric optimization problem - which aims to minimize
the time needed to disinfect a surface by jointly optimizing
the sum of dwell times and the time taken to move between
the vantage points x;. However, there are two consistency
constraints, the mathematical form of which is unclear. In
this section, we reduce these constraints to a set of mixed-
integer linear equations.

The second consistency constraint requires that ¢, can only
be non-zero when some z5; = 1 or z;;, = 1. These constraints
can be re-written using a big-constant M as follows:

K
0<ty < MZ(ZM + 21k).
=1

(10)

The first consistency constraint requires that zi; form a
simple path. This constraint can be reduced to mixed-integer
linear equations using a similar technique as mixed-integer
re-formulation of the Traveling Salesman Problem (TSP).
The only difference is that we are not requiring the salesman
to pass through every vertex x; but only a subset of them.
We first strengthen the constraint to requiring that zj; form a
simple loop and the first configuration z; must be in the loop.
(If a simple open path is desired, a dummy configuration
x1 can be introduced by assigning dix = di; = 0.) First,
we ensure that there is at most one emanating edge from a
vertex:

K
szlﬁl Vi=2-- K
k=1 (1n

K
Z ZEk1 = 1.
k=1

Second, we ensure the number of emanating edges is equal
to the number of incident edges:

K K

szlz zzlk VZZI,---,K. (12)
k=1 k=1

A major challenge in TSP is to ensure that there are no
independent loops (e.g. ze3 = 234 = 242 = 1 = 256 = 267 =
z75). To this end, we use the single-commodity flow (SCF)
formulation [39]. The idea is to have the robot carry some
amount of goods and it needs to unload a unit amount of
goods to each selected vertex xy, (similar to the network-flow
constraint). To model this behavior, we introduce continuous
variables gj; (we assume gy, = 0) representing the amount
of ”goods” the robot is carrying when traveling along dg;. If
we introduce the following constraint:

K K K
Dok gk= Y,z V=2, K
k=1 k=1 k=1
0<gr < Kz

K K
e <. D zap - 1,

a=1b=1

then we can guarantee the solution contains only one simple
loop. The first line implies that if a vertex xy, is selected, then

13)

the robot will carry one unit fewer amount of goods when
leaving this vertex. The second line dictates that, if an edge
is not selected, then the robot cannot carry any goods along
it. The third line requires the robot to carry the minimum
amount of goods that is just enough.

Altogether, our MILP formulation solves the following
problem:

N 1 K
argmin Z t, + Z dy1 2kl
tksZkis gkl k=1 Umaz | 1=1 (14)
s.t. i > min Vi=1,--- N

Equation [O[TT[T2[T3|

Our implementation uses Gurobi [40]], a fast commercial
solver that handles MILPs. Note, however, that for any non-
trivial case, this formulation consists of a very large MILP
problem, for which finding a solution is often intractable,
even with modern powerful solvers. To remedy that, we
propose our two-stage approximation scheme that sidesteps
the large dimensionality of this problem by dividing it into
two parts.

APPENDIX II
ADDITIONAL EXPERIMENTS

A. 2.5D Resolution Experiments

In 2.5D there are two main factors that could influence the
outcomes of our algorithm - the resolution of the vantage
point selection grid and the resolution of the environment
representation - i.e. - how finely we discretize the polygonal
obstacles when calculating their respective irradiances. It
is worth noting that finer environment resolutions should
yield more accurate estimates of the irradiance at points
in the surface, whereas a finer vantage point grid should
afford more optimal dwell times. In the first experiment, the
grid resolution was kept at 0.1m , whereas the environment
resolution was changed between %m and ém (i.e., the line
segments of the polygons were subdivided into line segments
at the specified environment resolution) and the optimal
disinfection trajectories were computed using our algorithm
on our 25 randomly generated rooms. In Figure[TT] the values
were normalized per room by the quantities obtained in the
coarsest resolution to facilitate comparisons. We can see that
the mean total dwell time did not vary much, while the path
lengths grew by 50% on average, which is expected given the
150% increase in the number of selected irradiation points.
This increase should not greatly impact the total disinfection
performance, given the small fraction that the displacement
time has on the total disinfection time.

On the second experiment, we kept the environment res-
olution fixed at % given that it was observed in the previous
experiment to be a balanced point between environment
description and the time needed to calculate the irradiance
matrix. We then varied the vantage point selection grid
resolution between %m and 3—12m. The results in Figure
were normalized for comparison in a similar fashion to the
previous ones. Here, an inverse trend is observed: As the grid

resolution gets coarser, the dwell times grow larger, which
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is expected, as a coarser grid is likely to offer less optimal
vantage points. Interestingly, once the resolution reaches
ém the reduction in dwell times with further refinement is
nearly negligible and, similarly to before, finer grids result
in a larger number of vantage points being selected, with
diminishing returns in terms of total dwell times.
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Fig. 12: Effect of grid resolution on 2.5D disinfection performance
metrics - error bars indicate the standard deviation (best seen in
color)

B. 3D Resolution Experiments

In order to verify if our conclusions in the simplified 2.5D
model held in a 3D environment, we reproduced the envi-
ronment grid resolution experiments in our 3D CAD model.
The 3D grids were created with a spacing of 1000,750, 500,
400, 300,250,200 ,150 and 125 milimiters and the effects of
the grid size on the 30-minute and Asymptotic disinfection
tasks were evaluated. Finer resolutions were not tested due
to memory limitations on our workstations. Figure [I3] shows
that, as expected, finer resolutions result in higher surface
coverage. However, between 300 and 400 millimeters, strong
diminishing returns are observed - in particular when consid-
ering the cubic scaling related to the spatial grid in terms of
compute time for the irradiance matrix - and in the number
of variables in the linear program. One should also note that
the 30-minute disinfection coverage for the robots is close to
their asymptotic disinfection performance, seen in Figure [T4]
Another curious observation is that it seems that the towerbot
design seems to be the least sensitive to the grid resolution.

Adding to this tradeoff, we can see in Figure that the
end-effector planned end-effector motion grows as the grid
spacing is reduced. This, again, is expected, as the number of
selected disinfection points in the optimal irradiation points
tends to grow with finer environmental resolution - which
is also observed in the asymptotic case, seen in Figure
Figures [T7] and [T8] help illustrate this trade-off. Note how
the two trajectories seem to still cover many of the same
vantage points - yet Figure [I8] illustrating the trajectory for
the finer grid discretization has finer movement and better
coverage. In sum, our experiments suggest that there exists
an ideal tradeoff between grid resolution, computation time
and disinfection performance, though experiments in a more
varied set of environments are needed to confirm this trend.
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Fig. 17: Final disinfection tour of Floatbot under 30 minutes time
budget with an environment grid resolution of 500mm. Trajectory
taken is illustrated in orange. Estimated surface coverage = 82.3%

Fig. 18: Final disinfection tour of Floatbot under 30 minutes time
budget with an environment grid resolution of 125mm. Trajectory
taken is illustrated in orange. Estimated surface coverage = 90.9%
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