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Adversarial Training is Not Ready for Robot Learning

Mathias Lechner!, Ramin Hasani2, Radu Grosu®, Daniela RusZ, Thomas A. Henzinger1

Abstract— Adversarial training is an effective method to
train deep learning models that are resilient to norm-bounded
perturbations, with the cost of nominal performance drop.
While adversarial training appears to enhance the robustness
and safety of a deep model deployed in open-world decision-
critical applications, counterintuitively, it induces undesired
behaviors in robot learning settings. In this paper, we show the-
oretically and experimentally that neural controllers obtained
via adversarial training are subjected to three types of defects,
namely transient, systematic, and conditional errors. We first
generalize adversarial training to a safety-domain optimization
scheme allowing for more generic specifications. We then prove
that such a learning process tends to cause certain error profiles.
We support our theoretical results by a thorough experimental
safety analysis in a robot-learning task. Our results suggest that
adversarial training is not yet ready for robot learning.

I. INTRODUCTION

In this work, we discover that improving the safety of
vision-based robot learning systems by adversarial training
results in undesired side-effects of the robot’s real-world
behavior. Training deep neural networks while accounting for
adversarial examples robustifies the model to these visually
imperceptible perturbations. This process trades nominal
performance gained by standard empirical risk minimization
(ERM) learning techniques, with worst-case performance
under norm-bounded input perturbations [1], [2], [3].

Adversarial training has been mainly studied in image
classification settings [4], [5], [6], [7], [8], [9], which exclu-
sively focused on how much adversarial training trades nom-
inal for robust test accuracy. While these metrics resemble
the performance in static image classification tasks, robotic
control tasks are inherently continuous and highly dynamic.
Consequently, pure accuracy might not reflect the underlying
performance of a robotic system accurately. For instance, for
a closed control-loop, stability might be the highest priority,
whereas faithfulness could be of high priority for vehicle
routing algorithms.

In this work, we study how the nominal performance drop
introduced by adversarial training methods is distributed over
the real-world behavior in vision-based robot learning tasks.
First, we propose safety-domain training, a generalization
of adversarial training, which allows us to incorporate more
general forms of safety specifications as secondary training
objectives. We introduce a theoretical framework for char-
acterizing error behaviors of learned controllers for robotic
tasks. We then prove how safety-domain training changes the
learned agent’s error-profile depending on the enforced safety
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Fig. 1: Adversarial training gives rise to new error profiles
that significantly decrease a neural controller’s performance.

specification. We test our training algorithm and confirm
the consequences of our theory on an experimental case-
study of an autonomous carrier robot with a variety of safety
and robustness specifications. Based on our observations, we
claim that:

Adversarial training is not yet ready for robot learning.
More precisely, our experiments demonstrate that models
trained by standard empirical risk minimization yield the
best robotic performance in real-world scenarios. Counter-
intuitively, the best-performing agents are also vulnerable
to making the robot crash under adversarial patterns. Con-
versely, while the models learned via our safety-domain
training are provable immune to such worst-case behavior,
they significantly perform worse in real-world scenarios.
In particular, we observed that the strictness of the spec-
ifications enforced using adversarial training is the most
dominant factor in determining the expected real-world
robotic performance. Our empirical evaluations confirm that
adversarial training of neural controllers requires rethinking
before reliably using them in robot learning schemes [10],
[11].

Summary of Contributions.

1) Formulate a generalization of adversarial training algo-

rithms called safety-domain training with guarantees.

2) Theoretical framework consisting of erroneous behav-

ior characterizations and induced error-profile by our
safety-domain training algorithm.

3) Experimental confirmation of our framework on an

image- and LiDAR-based autonomous carrier robot in
various environments and assessment scenarios.



II. RELATED WORKS

Adversarial Training. Adversarial training has led to sig-
nificant improvements of deep models’ resiliency to imper-
ceptible perturbations. This was shown both empirically [2],
[12], [13], [14] and with certification [15], [16], [17], [18],
[19], [20], [21]. An emerging line of work suggests that
the representations learned by adversarially trained mod-
els resemble visual features as perceived by humans more
accurately compared to standard networks [22], [23], [24],
[25], [26], [27]. In contrast, a large body of work tried
to characterize the trade-off between a model’s robustness
and accuracy when trained by adversarial learning schemes
[28], [29], [30], [31]. Some gradient issues, such as gradient
obfuscation [32], [33], during training, seemed to play a role
in the mediocre performance of the models. Nevertheless,
adversarially trained networks also showed to maintain their
robustness properties [34] as well as their accuracy [35], [9]
in transfer learning settings.

This work shows that despite the vast success of adver-
sarially trained models in obtaining robustness properties on
vision-based classification tasks, they can introduce novel
error profiles in robot learning schemes. Our work aims to
identify and report these profiles to enable the practical use
of adversarial training in safety-critical applications.
Adversarial Training for Safe Robot Learning. Related ap-
proaches can be grouped into three categories; i) adversarial
learning as a data augmentation technique; ii) Hand-crafted
perturbation distribution; and iii) Task-specific models.

(i) Adversarial learning as a data augmentation tech-
nique — A couple of recent works characterized gener-
ative adversarial networks (GANSs) [36] as a data aug-
mentation method to enhance neural controllers’ trans-
ferability. For example, [37] used GAN-based train-
ing for robotic visuomotor control, and [38] explored
GANSs to determine robust metric localization by using
appearance transfer (e.g., day to night transformation
of input images). These methods fundamentally differ
from safety-related adversarial training frameworks [5]
that we explore in this paper, as they refer to methods
useful for data augmentation.

(ii) Hand-crafted perturbation distribution — invariant
sets, i.e., hand-crafted changes in underlying data dis-
tribution such as change of a gripper’s appearance and
objects’ color used in task-relevant adversarial imitation
learning [39]. These approaches require a simulator
capable of generating domain-specific perturbations and
are mainly designed for training performant agents. Our
paper discusses a more general setting where we do not
require domain-specific attributes.

(iii) Task-specific models — Adversarial training in task-
specific domains such as motion planning [40], [41],
[42] and localization [43] has been used for enhancing
robustness. Moreover, in reinforcement learning (RL)
environments, adversarial training benefited agents in
competitive scenarios such as active perception [44],
interaction-aware multi-agent tracking, and behavior

prediction [45] and identifying weaknesses of a learned
policy [46], [47]. These works do not evaluate existing
general methods but propose tailored solutions for the
specific task under-test. Our paper focuses on the broad
vision-based robot learning problems that use contem-
porary adversarial training for enhancing safety.

III. ERROR PROFILES IN ROBOT LEARNING

Training a neural network fg in supervised learning,
considers finding the best approximation function fy : x+>y
parameterized by 6, that maps the input data x to labels y.
In a robotic learning setting, the data (x,y) is taken from
a data distribution over a finite subset I of the functional
relation RM x RV, i.e., sensor values and motor commands
have finite precision. Limited training data, noise in the
learning process [48], and inadequate causal modeling [49],
[50], [51], [52] prevent the network from achieving a perfect
mapping of the ground truth dependency between x and y.
Consequently, these imperfections lead to errors during test
time. In robot learning settings, we characterize these errors
made by a neural controller by three categories: Systematic
errors, transient errors, and conditional errors. Our objective
is to show that these error profiles occur and lead to mediocre
performance even when the neural controller is trained by
safety-domain training methods such as adversarial training
[5]. Let us first formally define these error profiles:

Definition 1 (Transient error): Given a loss function .,
a neural network fp, a threshold 17 > 0 and neighborhood
€ >0, we call a point (x',)’) transient error if

g(y/7f9<x/))>n and g(yafe(f)><n’ (1)

for all (%,5) where 0 < ||X—x'|| <e.

Definition 2 (Systematic error): Given a loss function .2,
a neural network fp, a threshold n > 0, we say fy suffers
from a systematic error if

Z(y.fo(x)) >, 2

for all (x,y) € D.

Definition 3 (Conditional error): Given a loss function
2, a neural network fp and a threshold 1 > 0, then we
call a domain 2 = {(x,y)|(x,y) € D} a conditional error if

B [Z0: 0] >0 Q)
and
LEL[Z0 ] <n @

Fig. [J] illustrates these error types schematically for a
single-dimensional learning problem. Transient errors might
induce divergent behavior at the evaluation time (e.g., see
the model’s approximation at the evaluation step x,—;) in
the second chart). Conditional errors can result in local
mismatches that affect an agent’s local behavior to reach
unsafe states. Systematic errors lead to distribution and base-
line shifts for the entirety of the sample data. Next, we
define a safety-domain robot learning scheme equipped with
adversarial training and explore if this framework can give
rise to the error types identified above.
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Fig. 2: Different types of errors that can occur when fitting
a network f(x) =1y

IV. LEARNING WITH WORST-CASES IN MIND

This section defines a generalization of adversarial training
by relaxing the €-neighborhood for arbitrary domains. We
call this approach Safety-Domain Training. We then explain
how to solve the inner optimization loop of safety-domain
training, either by empirical or certified safety methods and
illustrate the resulting method in Algorithm [I]

Standard training of a neural network fg concerns opti-
mizing 6 to minimize the empirical risk as follows:

1y
i Y2 2 (3 fol). )

where £ is a loss function and {(x;,y;)|i = 1,2,...n} the
training samples. The optimization performed by mini-batch
stochastic gradient descent (SGD) yields the best performing
networks.

Adversarial training extends the objective in Eq. [5] by
replacing each input x; by an adversarial input &; within the
e-neighborhood of x;. Formally:

Definition 4 (Adversarial training [5]): Let fy be a neu-
ral network, {(x;,y;)|i =1,2,...n} the training samples, .¥
the loss function, and € > 0 the adversarial attack radius.
Then adversarial training optimizes the criterion

n

1 -
min ~ ;X:H max 2 (yi,fe (X)) (6)

We generalize adversarial training to a more generic
safety-domain training. In particular, we replace the &-

neighborhoods of the training samples by arbitrary domains,
i.e., labelled and connected sets.

Definition 5 (Safety-domain training): Let fg be a neural
network, {(x;,y;)[i =1,2,...n} the training samples, .£ the
loss function, and {(D;,z;)|i =1,2,...k} the safety domains.
Then safety-domain training optimizes the criterion

11y Iy ~

min {* Z$<yiaf9(xi)) +1- Y I}laXf(Ziafe(X))} » (D)
6 n i=1 k i=1 xeD;

where the hyperparameter A specifies the tradeoff between

optimizing the empirical training risk and the worst-case risk

on the safety-domains.

Safety-domain training generalizes adversarial training
and can be shown intuitively as follows:

Proposition 1: [Safety-domain training is a generalization
of adversarial training] The criterion Eq is a general-
ization of the adversarial training objective in Eq (6). In
particular, this is true as we define D; := {%: ||¥ —x;|| < €}
with z; :=y; and the training samples {}.

Empirical vs. certified safety In practice, we have two
options on how we solve the inner maximization step of
safety-domain training. The first option is to perform several
steps of projected gradient descent [2]. While this approach is
computationally efficient and straightforward to implement,
it provides no true worst-case guarantees as SGD does
not ensure convergence to the global optimum. In practice,
empirical approaches are often used for adversarial training
of classifiers to account for computational complexity.

A more rigorous approach, albeit expensive, is to compute
an upper-bound of the loss of each safety domain and
minimize the upper bound via stochastic gradient descent
[15], [53]. While computing an upper-bound of a network’s
output is difficult and may overestimate the true maximum,
it provides certified guarantees on the worst-case loss. The
interval bound propagation method falls into the category
in which the upper bound of the loss is computed by an
interval arithmetic abstraction of the network [54], [55]. The

Algorithm 1 Safety-domain training with guarantees

Input: Training data {(x;,y;)|i =1...n}, Safety domains
{(Z,‘,D,‘)li =1 k}
Parameters: safety threshold &, batch sizes by, by
Learning rate o, minimum training epochs ipjp.
safety_bound = oo
while i < i, and safety_bound > 6 do
i=i+l
(%,7) = sample_batch(b,, {(x;,y;)[i=1...n})
(2,D) = sample batch(by, {(z;,D;)|i = 1...k})
V= %ii?élf(ii,fe(fi)
V=V+ %l,}s Z?;l max . p. X(Zi,fg (x))
6=06-aV
safety_bound = max;—;_;maxsep, £ (z,-, fo (x))
end while
return 0




main difficulty of such certified approaches is to scale the
training to large networks.

Algorithm [T] represents our framework for training an
adversarially robust neural controller with safety guarantees.

V. ADVERSARIAL TRAINING NOT READY FOR ROBOT
LEARNING

In this section, we show theoretically that adversarial
training and even its generalization result in unexplored error
profiles that lead to unsafe behavior. To construct our theory,
we first describe a set of required assumptions.

A. Assumptions

To build the theory, we should rule out ill-posed edge-
cases, thus relying on the following assumptions: 1) Bounded
generalization The training loss provides a lower bound on
the generalized loss [56], i.e., the expected loss over the data
distribution. 2) Bounded sets Safety domains are bounded
subsets of the data domain D. 3) Non-conflicting data Safety-
domains and ground truth data are non-conflicting, i,e., for
every sample (x;,y;) and safety domain (D;,z;) it holds that
ifx,'EDj = Yi=2j

Theorem 1: [Safety-domain training tend to cause con-
ditional errors] Let f be a neural network, .£ be a loss
function, {(x;,y;)|[i = 1,2,...m} be the iid training data,
and 6 be the weights obtained by Algorithm [I] with the
safety-domains {(D;,z;)|i = 1,2,...k} and the threshold §.
Moreover, we assume & to be a lower bound of the total
training loss in Equation (7), i.e., ruling out cases where
fitting f to the underlying data distribution is trivial. Let (x,y)
be an arbitrary sample from the underlying data distribution,
then

E[Z (. fo(x) \erD}<E[ 0 folx |x¢UD] ®)

Proof: For x € D; we have
&z (y, fo (X)) Smax¥ (Zi,fe (f))

< maxmax.i”(z,,fe( ))

J X€D;

=94.
Thus

[ ( fo(x) |x€UD}<6

i=1

For x ¢ Uf‘zl D;, we know from our generalization bound

Nl ¢ UD} Z-i”(yz,fe (x))

>4,

[ (v, fo(x

which shows the claim. |

In the rest of this section, we discuss two important
implications of Theorem [I] when adding additional assump-
tions about the networks and training process. In particu-
lar, we assume 1) Locality For any two training samples

(x1,¥1), (x2,y2) and a trained fy it holds that
Hx1 —XQH >K —
E['iﬁ()}lafe(xl))] ~ E{f(%fe(xl))|$(Y2,fe(x2))}7

i.e., the network’s performance of a sample is not influenced
by far apart samples. 2) Training stability For any training
sample (x,y) and two trained networks fp,, fp, it holds that

E[ 201 o, ()] ~E[Z 0. fa ()],

i.e., re-training a network does not introduce errors into the
network.

Implication 1: The conditional errors introduced by the
safety-domain training tends to occur near the boundaries of
the safety-domains Let fy be a network obtained by safety-
domain training and fy( be a network obtained my standard
training. Moreover, let (x,y) be a sample with (x,y) with

ELZ(y. fo(x))] > ELZ(y. for ())]. then

() € {(xy)[(x.y) ¢ Di and [|x—%|| > K
for all (%,7) € D; and i=1,...k},

for some K > 0.
The claim that (x,y) ¢ D; follows simply from applying
Theorem The second part, i.e., ||x— || > K, can be shown
by deriving a contradiction when assuming the opposite is
true. In particular, if ||x— X|| < K, our locality assumption im-
plies that E[.Z(y, fo(x))] is independent from any (%,7) € D;.
Due to this independence and our second training stability
assumption, we know that the expected loss at (x,y) does
not change when we retrain the network without any safety-
domains. However, as safety-domain training with empty
safety-domains corresponds to standard training, this contra-
dicts our assumption that E[.Z(y, fo(x))] > E[.Z(y, for (x))].
Proposition 2: [Transient and systematic errors are spe-
cial cases of conditional errors] Let (x',y’) be a transient
error according to definition then it implies a special
case of a conditional error with 2 = (x',y’) and 2° =
(x,3)](x,y) eD:0 < ||x—X|| = €}, i.e., a domain with only
a single element and whose underlying data domain is
defined locally. Moreover, if fy suffers from a systematic
error as defined in [2| then it implies a special case of a
conditional error with ¥ = D), i.e., conditional error domain
is the entire data domain.
Proposition [2| shows that adversarial training, i.e., when the
safety-domains are small and sampled across the entire data
domain, can lead to transient and systematic errors.

VI. EXPERIMENTAL EVALUATION: A CASE-STUDY

The objective of our experimental evaluation is to I)
validate our claims empirically and II) study the different
error-types on a more fine-grained level than the theory
allows. In particular, we will study an end-to-end robotic
control problem by learning from demonstration with deep
models. Besides optimizing for high accuracy, we enforce
secondary robustness and safety specifications on the net-
works. We impose the specification with various strictness
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Fig. 3: State machine of the high-level controller. Transitions
between states are triggered by a ResNet50 image classifier.
In the active state the second neural network translates the
LiDAR inputs to motor outputs.

levels to study how the specifications affect the network’s
error characteristics on a fine-grained scale.

In our case study, we develop a controller for a vision
+ Lidar-based mobile robot. A human operator enables and
disables the mobile robot via visual gestures. Once activated,
the robot navigates such that it always faces the human oper-
ator at a distance of roughly one meter. The control software
consists of two neural networks and a state-machine with two
states. State transitions are triggered by a neural network (the
vision network) processing the camera inputs. Fig. |3| shows
an illustration of the state-machine and its transition profiles.
The robot’s active behavior is realized via a second neural
network (the follow network) that continuously translates a
2D-LiDAR scan of the environment into motor commands.
The correct behavior is entirely determined by the networks’
performance, making the controller well suited for our empir-
ical study. A video demonstration of the controller in action
can be found at https://youtu.be/xrgnShlmk38,

Our implementation approach is in contrast to traditional
approaches for implementing such a robotic controller, which
rely on hand-designed rules applied to infrared sensors [57]
camera inputs [58], [59], or local localization protocols [60].
Perhaps the closest work to ours is the setup described in
[61], which uses a stereo camera setup and machine learning
using Support Vector Machines (SVMs).

Our physical robot is equipped with a Sick LMS1xx
2D-LiDAR rangefinder, a Logitech RGB camera, and a
4-wheeled differential drive. Consequently, our application
allows for an additional layer of safety compared to pure
vision-based approaches.

For our vision network we use a ResNet50 [62] pre-trained
on ImageNet [63]. The fine-tuning task concerns classifying
1825 training images in three categories, i.e., idle, enable,
disable gestures, as illustrated in Fig. 3| We avoid overfitting
of the network by fine-tuning only the last few layers. We
train the vision network by adversarial training with the
fast-gradient-sign method [6] and three different values for
€, i.e., l» neighborhoods with € € {0,1,2}, see Fig. E] for
an example. Note that adversarial training with € =0 is
equivalent to a standard empirical risk minimization training.
The training and validation accuracy is reported in Table

Our command-following network is a 9-layer 1D convolu-
tional neural network mapping the 541-dimensional inputs to
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Fig. 4: Left: Visualization of a safety-domain. No LiDAR
signal in green area should be classified as a “forward”
decision. Right: The network trained with standard ERM
can be attacked to output a “forward” despite the LiDAR
signal indicating a large object 10cm in front of the robot.

7 possible output categories, i.e., stay, forward, left forward,
right forward, backward, left backward, and right backward.
As the Follow network directly controls the motors, it poten-
tially crashes into the human operator or an obstacle causing
physical damage. To avoid such worst-case outcomes, we
enforced safety-specifications on the network. In particular,
we want to avoid the forward movement of the robot in case
an object is in front of it. In Table [II} we define four levels
of safety-domains that characterize our safety requirements
with increasing strictness.

Safety level 0 corresponds to standard empirical risk
minimization. The other safety levels are enforced via safety-
domain training using interval bound propagation (IBP), i.e.,
certified safety compared to the empirical safety of the vision
network. A visualization of a safety-domain from the level 1
specification is shown in Fig. ] on the left. We collected
a total of 2705 training and 570 validation samples, as
illustrated in Fig. 5] the training and validation accuracy is
shown in Table

For both the vision and follow network, we evaluate each
specification in seven standardized scenarios. The scenarios
differ in complexity, e.g., operator commands, obstacles,
environment, and lighting conditions. For the vision network,
we report the number of misinterpreted gestures, i.e., an
enabling or disabling of the controller without the operator’s
command. Consequently, some types of errors are masked
out (for instance, “enabling when the controller is already
enabled”).

We report a holistic metric for the Follow network if
the robot maneuvered correctly for the entire scenario. The
results for the adversarially fine-tuned vision network are

TABLE I: Training and validation accuracy of the vision
network trained with different adversarial perturbation radii.
Training accuracy represents adversarial accuracy and vali-
dation accuracy represents clean accuracy.

Level \ Training acc. (adversarial) \ Validation acc. (clean)

0 99.7 % 98.4%
1 52.0% 92.8%
2 32.5% 71.9%



https://youtu.be/xrgnSh1mk38

TABLE II: Specification of the safety domains D; for the
different safety levels.

Level \ Description of safety domains D;

0 | Di=0

1 Di:{x|0§xj§0.2 for je {i—1,i,i+1} and
0§x,~§3f0rj¢{i71,i,i+l}}
2 | pi={xo<xu<02and
ngj§3forj7éi}
3| pi={xo<x<02and
ngj§4f0rj7£i}

Setup Details: For each level there are 240 domains, i.e., i = 150...390. The
corresponding labels z; are defined as a any non-forward moving category,
i.e., z; € {stay,backward, left backward, right backward}. The domains with
increase safety level represent super-set of the lower safety level, e.g. the
conditions considered at level 1 are a strict subset of the level 2 safety. Level
1 safety only considers cases where at least three consecutive LiDAR rays
are less than 20 cm, whereas one ray is enough for level 2 and 3. Level 3
differs from level 2 in terms of the upper bounds on the other rays.
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Fig. 5: Three training samples of the active-mode following
network. The network has to detect feet patterns in laser-
rangefinder scans from seven different categories.

shown in Table [Vl While the network trained with € = 1
performed as well as the model trained by standard ERM,
the performance significantly dropped when increasing the
adversarial attack budget. Given that for human observers,
adversarial perturbations with € =2 are imperceptible, our
results indicate that current training methods are unable
to enforce non-trivial adversarial robustness on an image
classifier in a robotic learning context.

Moreover, the results confirm that the errors occurred
uniformly across different scenarios. Therefore, we conclude
that imposing adversarial robustness specification causes
transient errors confirming our theory.

The results for the safety-domain imposed follow network
is reported in Table Only the network trained with stan-
dard ERM could successfully handle all scenarios. Interest-
ingly, Fig. [ (right image) shows that this network is highly
vulnerable to adversarial misclassifications and would output

TABLE III: Training and validation accuracy of the follow
network trained when enforcing different safety-levels.

Level | Training accuracy | Validation accuracy

0 98.8% 84.7%
1 99.7% 76.8%
2 97.1% 73.4%
3 57.3% 53.2%

Output = Stop Adversarial mask Output = Go

Fig. 6: Visualization of an adversarial attack on our vision
network. Adding an adversarial mask flips the decision from
a stop command to an activation command. The adversarial
mask changes each pixel by only £ 2 steps on the 8-bit color
channels, making the attack imperceptible to humans.

TABLE IV: Evaluation of the LiDAR follow networks

Scenario Standard Safety Safety Safety

Description training  Level 1  Level 2  Level 3
1 Plain v v v Fail
2 Around boxes v Fail Fail Fail
3 Out of corner v v v Fail
4 Through gate v v Fail Fail
5 Around table v v v Fail
6 Garage parking v v v Fail
7 Narrow hallway v Fail Fail Fail
Total | | 77 5/7 4/7 0/7

Note: Evaluation of the LiDAR follow networks with various safety specifi-
cation enforced on seven standardized test scenarios. Successful navigation
of a scenario is marked by a v. Fail indicates unsuccessful tests.

a forward decision if the large object is directly in front of the
robot. While the networks with safety-level one and above
are immune to such attacks, they perform significantly worse
on the seven test-scenarios. With increasing specification
level, the performance monotonously decreases until the
network trained with the most rigorous safety specification
cannot handle any scenario at all.

In contrast to the adversarial experiment of the Vision
network, the defects made by the certified networks are
conditional errors. In particular, if a network with specifi-
cation level 1 could not solve a scenario, then a network
with 2 and 3 could not either. Moreover, the failure of the
level 1 and level 2 networks happened only during forward
locomotion, i.e., close to the border of the safety-domains.
This observation also supports our claims that errors induced
by safety-domain training occur conditionally.

VII. CONCLUSION

Adpversarial training and its generalization, safety-domain
training can, in principle, learn robust and safe deep learn-
ing models. However, in this work, we showed that these
methods induce unexplored error profiles in robotic tasks.
We proposed a framework for characterizing these errors
and predicting their presence based on the type of safety
specification enforced during the training.

We empirically validated our claims and demonstrated that
the type and strictness of the enforced specification govern
the real-world performance of learned controllers for robotic



TABLE V: Evaluation of the image recognition networks.

# Scenario Adversarial training radius
description e=0 e¢e=1 e=2

1 Forward-backward 1 - 5

2 With surgical mask - 1 3

3 Against direct sunlight - - 1

4 Staying idle 1 - 4

5 Summon out of garage - 1 1

6 Artificial lighting (idle) - - 3

7 Artificial lighting (follow) - - 1
Total | | 2 2 18

Note: Evaluation of the image recognition networks trained with and without
adversarial training on seven standardized test scenarios. Numbers indicate
number of misclassified gestures that triggered a change in operation
mode, i.e., errors without an effect are not counted. Dash represent zero
misinterpretations.

environments. Our results concluded that adversarial training
requires rethinking before being deployed in robot learning
[64].
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