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Behavior Planning at Urban Intersections through Hierarchical
Reinforcement Learning*
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Abstract— For autonomous vehicles, effective behavior plan-
ning is crucial to ensure safety of the ego car. In many urban
scenarios, it is hard to create sufficiently general heuristic
rules, especially for challenging scenarios that some new human
drivers find difficult. In this work, we propose a behavior
planning structure based on reinforcement learning (RL) which
is capable of performing autonomous vehicle behavior planning
with a hierarchical structure in simulated urban environments.
Application of the hierarchical structure allows the various
layers of the behavior planning system to be satisfied. Our al-
gorithms can perform better than heuristic-rule-based methods
for elective decisions such as when to turn left between vehicles
approaching from the opposite direction or possible lane-
change when approaching an intersection due to lane blockage
or delay in front of the ego car. Such behavior is hard to
evaluate as correct or incorrect, but for some aggressive expert
human drivers handle such scenarios effectively and quickly.
On the other hand, compared to traditional RL methods,
our algorithm is more sample-efficient, due to the use of a
hybrid reward mechanism and heuristic exploration during
the training process. The results also show that the proposed
method converges to an optimal policy faster than traditional
RL methods.

I. INTRODUCTION

An autonomous vehicle (AV) consists of three main sys-
tems: 1) Perception, 2) Planning and 3) Control. By analogy
with a human driver, perception can be compared to the
human’s eyes, planning to the human’s brain and conscious-
ness, and control to the human’s arms and legs. Generally,
the whole driving system needs the sensors or human eyes
to detect the environment and localize the vehicle. Then
according to the map information and the prediction of
the events happening, the route planner gives out the route
from starting point to destination. The behavior planner
then makes behavior-level decisions for driving like merging
onto the exit lane, turning left, etc. Then the autonomous
vehicle needs to generate the trajectory for the controller to
follow, while human drivers can control the car by limbs
through feelings and experience directly. The human brain
and consciousness are mysterious in many ways and contain
various phenomena and characteristics that are difficult to
explain. Similarly, the planning part of driving is difficult,
especially for new human drivers, due to lack of experience.

Understanding how human drivers make decisions while
driving can provide heuristics for autonomous vehicles. The
behavioral approach towards decision-making emphasizes

*This work is supported by Argo Al

Zhigian Qiao is a Ph.D. student of Electrical and Computer Engi-
neering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, USA
zhigiang@andrew.cmu.edu

2 The Robotics Institute, Carnegie Mellon University

Behavior Planner
Behavior Planner Lane Follow
Change Front
Lane Follow
Change Front !
1 Trajectory Planner
Controller |:'> _/'v
| Accelerate H Decelerate 7
T~ Controller
Throttle
Brake | Accelerate H Decelerate ‘
Throttle
Brake

Fig. 1: Hierarchical structure of planning system with hier-
archical reinforcement learning

that the decision makers are prone to varying degrees of
rationality while making decisions, which makes it hard to
ensure complete rationality at all times. In order to mimic
this kind of human behavior, we propose a hierarchical
reinforcement learning structure which can generate both
higher-level behavior decisions and a lower-level controller.
However, applying the controller by directly connecting to
the behavior decision with reinforcement learning causes
jerky and unsafe maneuvers for some complicated urban
intersection scenarios, especially when the steering angle,
throttle and brake are controlled together.

A traditional planner structure for a self-driving car con-
sists of a route planner, behavior planner and trajectory plan-
ner. In this work, the hierarchical structure for the behavior
planning system with RL is shown in Figure 1. The two-layer
setup includes a high-level behavior planner and a low-level
controller. For a traditional planning system, the trajectory
planner can increase the car’s control stability. As a result,
in this work we also propose a three-layer setup which adds
an intermediate layer in order to output the target trajectory
points. The system would first output the high-level behavior
decision. Then, depending on the decision, the trajectory
layer generates a corresponding target waypoint that the ego
car intends to follow. Finally, the action layer outputs the
throttle, brake and steering angle. Adding a trajectory layer
to the hierarchical reinforcement learning structure has the
following advantages: 1. it avoids the exploration of some
obviously unsafe behaviors during the training process; 2. the
low-level controller is more smooth in following the target
waypoints received from the trajectory layer. This paper’s
contributions are:



1) A hierarchical RL structure with different layers for
the planning system of a self-driving car.

2) Application of a hierarchical behavior planning struc-
ture at urban intersections.

3) Demonstration of improved performance of our al-
gorithms compared to traditional heuristic rule-based
methods and vanilla RL algorithms, using various
metrics.

II. RELATED WORK

This section summarizes previous work related to this
paper under the following headings: 1) papers that propose
self-driving behavior planning algorithms; 2) papers that
address reinforcement learning (RL) technologies.

A. Behavior Planning of Autonomous Vehicles

Previous work applied heuristic-based rules-enumeration,
imitation learning and reinforcement learning algorithms to
the behavior planning of autonomous vehicles based on
different scenarios.

Time-to-collision (TTC) [1] is a typical heuristic-based
algorithm that is used to be compared with as a baseline
for various learning-based algorithms. [2] proposed a slot-
based approach to check if it is safe to merge into lanes
or across an intersection with moving traffic. This method
is based on the information of slots available for merging,
which includes the size of the slot in the target lane, and the
distance between the ego-vehicle and front vehicle. However,
the proposed heuristic-based methods rely heavily on the
parameter tuning and each set of parameters is restricted
to the corresponding scenarios and environments. The use
of heuristics alone makes it hard to make the algorithm
sufficiently general when designing a high-performance au-
tonomous vehicle behavior planning system. Especially for
complex urban scenarios, it is laborious and time-consuming
to develop a set of rules with or without advanced technology
which can cover all possible cases.

Imitation learning is an alternative method for a self-
driving behavior planner that requires a large amount of
data collected from human expert drivers. The fundamental
imitation learning algorithms can be categorized into be-
havior cloning [3][4][5], direct policy learning and inverse
reinforcement learning (IRL) [6]. [7] and [8] are examples of
using behavior cloning in order to mimic human driver data
collected from real-world cars or high-fidelity simulations.
This kind of supervised learning algorithm can work well
if the state-action pairs during testing are similar to that
during training and the assumption is met that the state-action
pair are independent and identically distributed. However,
for most driving scenarios, the driving process is a Markov
Decision Process in which the current state relies on the
previous state, so that the error for generating an action will
continuously increase for an action generated by behavior
cloning only. Direct policy learning. [9] modeled the interac-
tion between autonomous vehicles and human drivers by the
method of IRL in a simulated environment. However, IRL
needs two processes of reward learning and reinforcement

learning, which leads to difficult convergence during the
training process.

If the reward function is not difficult to get from experts
or it can be easily gotten from the heuristic rules described
before, reinforcement learning [10][11][12][13] is easier to
apply to the self-driving problem. RL is capable to transfer
multiple rules into a mapping function or neural network.
[14] formulated the decision-making problem for AV under
uncertain environments as a POMDP and trained out a
Bayesian Network to deal with a T-shape intersection merg-
ing problem. [15] used Deep Recurrent Q-network (DRQN)
with states from a bird’s-eye view of the intersection to
learn a policy for traversing the intersection. [16] proposed
an efficient strategy to navigate through intersections with
occlusion by using the DRL method. These works focused
on designing variants of the state-space and add-on network
modules in order to allow the agent to handle different
scenarios. However, RL has difficulties to validate the in-
termediate process. For the self-driving car scenarios, the
planning system needs Facilitate validation and explainable
behavior to ensure the safeness. In this work, we proposed
to build a hierarchical learning-based structure which allow
the validation of different local policies as a sub-function
with fully capabilities within the hierarchical system instead
of presenting a monolithic neural-network black-box policy.

B. Reinforcement Learning

Algorithms with extended functions based on RL and
Hierarchical RL [17][18][19] have been proposed. For the
hierarchical structure, [20] proposed the idea of a meta
controller, which is used to define a policy governing when
the lower-level action policy is initialized and terminated.
[21] used the idea of the hierarchical model and transferred
it into parameterized action representations. Most previous
work designs a single hierarchical structure which can be
used to solve the entire problem. However, in most real-
world cases, a complicated task such as behavior planning
of autonomous vehicle can be compromised with several sub-
tasks.

Some previous work are using human expert data to
deal with the exploration problem during the RL training
process. For example, [22] proposed the Deep Q-learning
from Demonstrations (DQfD) which used the demonstration
data collected from human to accelerate the learning process.
[23] use demonstrations to improve the exploration process
and successfully learn to perform long-horizon, multi-step
robotics tasks with continuous control by using Deep Deter-
ministic Policy Gradients and Hindsight Experience Replay.
In our work, instead of using demonstration data directly, we
include the heuristic-based rules-enumeration policy to dur-
ing the exploration process for multiple hierarchical planning
layers in order to accelerate the training process massively.
We proposed to build the HRL-structure according to the
heuristic method so that the system can adjust the exploration
rate according to the training results real time and meanwhile
can more easily figure out the local optimal policy based on
the environment.



III. METHODOLOGY

In this section we present our proposed model, which
is a HRL-based planning system with a hybrid reward
mechanism and an adjusted heuristic exploration training
schema. Meanwhile, we introduce the behavior and trajectory
planning system. We will refer to this model as HybridHRL
throughout the paper.

A. Preliminaries

Firstly, we introduce the fundamentals of the Hybrid hier-
archical reinforcement learning (HybridHRL) method, which
is based on DQN [11] and DDQN [13]. These two proposed
methods have been widely applied in various reinforcement
learning problems. For Q-learning, an action-value function
Oxr(s,a) is learned to get the optimal policy 7 which can
maximize the action-value function Q*(s,a):

Q*(s,a) = mng(s,a\G) =r+ ymng(s’,a’\G) (1)

s and a are current state and action, respectively. When up-
dating the network, for DQN, the loss function and updating
methods can be written as:

Y2 =Ry + ymax Q(S+1,a|6)

2
L(6) = (Y2~ 0(s.A/l6))) @
dL(6
61=6+a 8(9)

For the DDQN, the target action-value Y€ is revised
. / .
according to another target Q-network Q' with parameter 6':

YtQ =Ri+1+ YQ(Sz+1,argmgXQ’(Sm,aI@z)I@/) 3)

For the original HRL model [20] with sequential sub-
goals, a meta controller Q! generates the sub-goal g for
the following steps and a controller Q%outputs the actions
based on this sub-goal until the next sub-goal is generated
by the meta controller. The objective functions are chosen
separately:

o t+1+N 1
ve = Z Ry + ymax O(Si+14n,8/6¢)
t'=t+1 ¢

2
Y2 =Rep1 +ymaxQ(Si1,al67,g)

4)

B. Reinforcement learning for hierarchical planning struc-
ture

We propose HybridHRL, which can be applied to both
two-layer and three-layer planning structures. For the two-
layer structure, we use three fully connected networks, one
to get an optimal behavior decision, and the other two to
output the controller actions, which are throttle, brake, and
steering angle. Figure 2 shows the network structure for the
two-layer setup. Similarly, for the three-layer setup, there are
only two networks, one to get an optimal behavior decision,
and the other to get the corresponding trajectory points that
the ego car intends to trace. After that, a PID controller is
used to optimize the lower-level controller system. Figure 3
shows the hierarchical structure for the three-layer setup.
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Fig. 2: Hierarchical structure of planning system for two-
layer setup. The networks are all fully connected.
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Fig. 3: Hierarchical structure of planning system for three-
layer setup. The networks are all fully connected.

C. Adjusted heuristic exploration

During the reinforcement learning training process, some
previous work [22] [24] [23] uses expert data to help the
agent learn the optimal policy by embedding the difference
between expert data and learnt behavior into the loss func-
tion. In our work, based on the original e-greedy method,
we directly applied the heuristic rules enumeration policy to
generate actions during the exploration period for training.
Based on the exploration probability value &, for some
epochs the action will explore according to the heuristic-
based rules enumeration policy. Meanwhile, we adjust the
decay rate for € according to changing total reward of the
current epoch. When the average total reward is higher than a
period of previous epochs, € is decreased during the training
process. Otherwise, € will increase to favor exploration over
exploitation.

Algorithm 1 describes the main training approach for a
three-layer autonomous vehicle planning system. Algorithm
2 describes the method flow of adjusted heuristic exploration
and Algorithm 3 is the hybrid reward mechanism that is
applied to calculate the hierarchical rewards for the training
process.

IV. EXPERIMENTS

In this section, we show the results of applying Hy-
bridHRL to both two-level and three-level planning systems
in some urban scenarios. Meanwhile, we compare our al-
gorithms with heuristic-based rules enumeration policies, as
well as previous RL approaches. We tested our algorithm in
MSC’s VIRES VTD (Virtual Test Drive) simulator.



Algorithm 1 HybridHRL for three-layer planning system

1: procedure HYBRIDHRL()
2: Initialize behavior-layer and trajectory-layer network Q°, QP with
weights 6%, @7 and the target behavior and trajectory network Qb/, QP/
with weights 6%, 67",
Construct an empty replay buffer B with max memory length /p.
€ =1, k is a predefined training period number.
for e < 0 to E training epochs do
Get initial states s.
while s is not the terminal state do
Select behavior decision B,
Ad justedH euristicExploration().
Apply PID controller to trace the trajectory point F; in
simulation to get corresponding throttle, brake and steering angle and
results in the next state S;41.

R

and P, based on

©

10: r,bJrl,rrp_*_1 = HybridReward(S;,B;,F;).

11: Store transition 7 into B: T = {St,BhP,,r,bH,rtpH?S,H}.
12: Re=Yn

13:

14: if YR, < X8 5 R then

15: e=mne, ne0,1]

16: else

17: e=¢/n,nel0,1]

18: Train the buffer.

Algorithm 2 Adjusted Heuristic Exploration

1: procedure ADJUSTEDHEURISTICEXPLORATION()
if (¢/k) mod 2=0 then
if random() > € then
action = FollowH euristicRule()
else
action = FollowHeuristicRule() + 4 (1,0)

else

action = arg maxaerion Q(state, action)
return action

IR A

Algorithm 3 Hybrid Reward Mechanism

1: procedure HYBRIDREWARD()
Penalize r{ and r{ for regular step penalties (e.x.: time penalty).
for & in sub-goals candidates do
if O fails then
if option o, == § then
Penalize option reward r{
else
Penalize action reward r{

if task success (all & success) then
Reward both r{ and r{.

S AR

—_

A. Scenarios

Based on traffic data collected at an urban intersection
in Pittsburgh, PA using UrbanFlow [25], we notified two
important cases which need strong human intention to get
through. Figure 4 shows a snapshot of the two cases we will
consider in the experiment part:

1) For Car 1: The white car is trying to turn left at a green
light. However, in Pittsburgh, most green traffic lights
control all the vehicles either intending to go straight
or turn left. As a result, the white car is blocked by
vehicles going straight approaching from the opposite
direction. When training the policy in simulation, the
initial positions of the ego agent and other vehicles
in the scene are all randomly assigned. There is no
vehicle in front of the ego agent initially.

Fig. 4: Scenarios of human drivers who have strong inten-
tions to get through an urban intersection
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Fig. 5: Green objects with letter A are the ego agent for two
scenarios. Cyan objects with letter T are the selected target
vehicles whose features are included in the state space.

2) For Car 2: The black car is trying to go straight at a
green light. But because the white car described above
is blocked, the black car is blocked as well. As a result,
the driver needs to make a lane change in order to
traverse the intersection during the current green light.
When training the policy in the simulation, the initial
positions of the ego agent and other vehicles in the
scene are all randomly assigned. Either the left lane
or right lane is blocked randomly. Sometimes, there is
no lane blocked and the ego vehicle is not required to
perform a lane-change behavior.

In the attached video, we explain the two scenarios in detail.

B. MDP Transitions

1) State: For each of the two scenarios, we choose three
nearest target vehicles to be included in the state space.
Figure 5 shows the ego agent and target vehicles in different
scenarios. The feature included in the state space can be
categorized into two parts:

« Ego agent features: 1) velocity v, acceleration a, heading
angle h; 2) lateral djper and longitudinal djyz.ry distance
related to the center of the intersection; 3) time spent
waiting at the intersection f¢;

o Target vehicle features: 1) velocity v; acceleration a;
heading angle &; 2) relative distance d, to the ego agent;
3) time to collision #fc¢ corresponding to the ego agent.



TABLE I: Results comparisons between heuristic-based rules-enumeration and HybridHRL for left-turn scenario

applying two-layer planning system

while

Rewards Ste Performance Rate
Behavior Reward  Throttle Reward  Steering Reward P Collision  Out of Road  Timeout _ Success
Rule 3.64 -16.50 0.48 249 19.35% 11.83% 17.20%  51.61%
HybridHRL 82.98 71.97 87.37 52 0.8% 0.4% 0.0% 98.8%
2) Action: iy fp— test_success

« High-level behavior planner:

— Left-turn scenario: LaneChange or FollowFrontVe-
hicle.
— Go-straight scenario: LeftTurn or Wait.

« Intermediate-level trajectory planner: the waypoint the
agent intends to follow.
o Low-level controller: throttle or brake, steering angle

3) Reward function: The reward function can be catego-
rized into two parts:

e For each step: 1) Time penalty; 2) Unsmoothness
penalty if jerk is too large; 3) Unsafe penalty; 4) Penalty
for deviating from the lane center when doing lane
keeping.

o For the termination conditions 1) Collision penalty; 2)
Timeout penalty. For example, the agent is stuck or
waits too long to move forward; 3) Out of road penalty;
4) Success reward.

C. Results

1) Left-turn scenario: In Table I, we compare HybridHRL
to the heuristic-based rules-enumeration policy which is
based on predicting the difference of the time when arriving
the potential collision point between the target vehicles and
the ego agent. In addition to the great improvement of the
performance rate, for reward evaluated from each level, we
found out that both behavior and controller work better than
rule-based method. In Figure 6 and Figure 7, we can see the
performance metrics and reward changing during the training
process.

For the same environment setup, we compare the behavior
planner and velocity profiles for the rule-based method and
HybridHRL. We set a constant time-to-collision threshold
based on the velocity and the relative distance of the target
vehicle for the rule-based methods and tune the threshold
in order to get a relative high average reward for a set
of test cases. But due to the high density of the traffic in
the scene, the time-to-collision threshold is not robust to
various situations. An obvious drawback is that the behavior
decision of the rule-based method waits a much longer time
than HybridHRL, which can quickly traverse the intersection
with fewer steps. Figure 8 and 9 compare the behavior-level
decisions as well as the velocity profiles for the rule-based
method and HybridHRL. In the 3D plots, the rule-based
method is more likely to choose WAIT during the left turn,
which makes the ego agent slow down frequently. In the
figures on the right, rule-based ego agent faces more target
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Fig. 6: Performance rate for left-turn scenario during training
process. The rate is an average performance for 500 test cases
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The reward is an average performance for 500 cases. The
train_X results mean the actions are selected with adjusted
heuristic exploration. The test_X results mean the actions are

selected directly through the network.

approaching vehicles than HybridHRL due to its waiting
behavior.

2) Go-straight scenario: For the two-layer planning sys-
tem, we visualize the behavior planner in Figure 10. The
steering controller did not work well, especially for some
cases that did not need lane change. When the ego agent
moved forward, it could not stay centered in the lane. As a
result, we introduced the three-layer planning system so that
the trajectory planner can help to stabilize the controller.

In Table II, we compare the HybridHRL and heuristic-
based rules-enumeration policy. For HybridHRL, we tested



TABLE II: Results comparisons between heuristic-based rules-enumeration and HybridHRL for go-straight scenario

Rewards Ste Performance Metrics
Behavior Reward  Throttle Reward  Steering Reward P ["Collision  Out of Road _ Timeout _ Success
Rule 34.33 32.43 40.84 108 19.60% 0.0% 1.2% 79.8%
HybridHRL 2-layer 52.37 47.12 50.26 157 11.6% 3.7% 0.0% 84.7%
HybridHRL 3-layer 82.31 76.32 77.53 157 4.2% 0.2% 0.0% 95.6%
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Fig. 8: Heuristic-based rules-enumeration policy for left turn + lane_change + lane change
while encountering approaching vehicles from the opposite
direction.
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Fig. 9: HybridHRL for left turn while encountering ap-
proaching vehicles from the opposite direction.

on both the two-layer and three-layer planning system. When
evaluating the reward for the three-layer planning system,
it shares the same reward mechanism with the two-layer
planning system.

Moreover, we tested the scenario for other reinforcement
learning algorithms and visualized the training process in
Figure 11. For the Double DQN (DDQN) method, we
used e-greedy exploration and no hybrid reward mechanism
was applied. For HybridHRL w/o heuristic exploration, we
applied the hybrid reward mechanism technique and the Hy-
bridHRL is for a two-layer planning system. The HybridHRL
trajectory point is for the three-layer planning system, which
also performs the best compared to the other methods.

For both scenarios we include the dynamic results in the
video!. The video illustrates the planner results for both
HybridHRL and rule-based decisions.

V. CONCLUSIONS

In this work, we successfully applied deep reinforcement
learning to a broader range of challenging urban intersection
scenarios. For the proposed method, we create a hierarchical
RL structure with hybrid reward mechanism in order to deal
with a multi-layer planning system for autonomous vehicles.

Ihttps://youtu.be/Wn300PwuVes

Fig. 10: Behavior planner visualization for go-straight cases.
For some situations when the no lane is blocked, the lane-
change behavior is unnecessary. Different color dots show
the corresponding behavior decisions that are selected.

—— Hybrid_HRL trajectory point WW
Hybrid_HRL w/o heuristic exploration
—— DDQN
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Tl
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Fig. 11: Training results of different RL algorithms for go-
straight scenario.

Moreover, we applied a heuristic-based rules-enumeration
policy during the exploration process in training to improve
the training speed. Our algorithm shows superior perfor-
mance to that of previous methods using various metrics.
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