
Efficient Self-Supervised Data Collection for Offline Robot Learning

Shadi Endrawis12, Gal Leibovich2, Guy Jacob2, Gal Novik2, Aviv Tamar1
1 Technion – Israel Institute of Technology

2 Intel Labs

Abstract— A practical approach to robot reinforcement
learning is to first collect a large batch of real or simulated
robot interaction data, using some data collection policy, and
then learn from this data to perform various tasks, using
offline learning algorithms. Previous work focused on manually
designing the data collection policy, and on tasks where suitable
policies can easily be designed, such as random picking policies
for collecting data about object grasping. For more complex
tasks, however, it may be difficult to find a data collection
policy that explores the environment effectively, and produces
data that is diverse enough for the downstream task. In this
work, we propose that data collection policies should actively
explore the environment to collect diverse data. In particular, we
develop a simple-yet-effective goal-conditioned reinforcement-
learning method that actively focuses data collection on novel
observations, thereby collecting a diverse data-set. We evaluate
our method on simulated robot manipulation tasks with visual
inputs and show that the improved diversity of active data
collection leads to significant improvements in the downstream
learning tasks.

I. INTRODUCTION

Reinforcement learning (RL) is a popular approach for
learning robotics skills [1], [2], [3]. In general, RL can
be performed in an online manner, where the robot simul-
taneously interacts with the environment and improves its
policy, or offline, where first, some data about the robot-
environment interaction is collected, and then, a learning
algorithm calculates the desired policy using this data.

The offline learning approach offers many practical ben-
efits: data can be collected in a safe and controlled man-
ner, and collection can be parallelized across different
robots/environments [4], [5]. However, the quality of offline
learning clearly depends on the quality of the data, which
in turn depends on the data collection policy. Indeed, recent
studies focused on tasks where a policy that produces high-
quality and diverse data can manually be designed, such as
randomly picking objects for learning to grasp [3], randomly
poking objects for learning to push [6], [7], [8], or randomly
throwing an object for learning to grasp and throw [9].

For learning more complex tasks, however, we posit that
manually designing data collection policies can become very
difficult. As an example, consider a robot that must learn to
stack two rigid blocks. If data is collected by a policy that
randomly picks and places a block, the chances of observing
task-relevant data is small. In this work, we investigate a
principled approach for designing data collection policies
that actively explore their environment, with the hypothesis
that active exploration can lead to more relevant data.

Fig. 1: Goal-Conditioned Exploration for Data Collection:
We show that we can improve the learning of downstream
tasks by using higher quality data that we produce using an
exploration scheme that combines intrinsic motivation and
goal-conditioned policies.

We aim for a general method that can produce high-quality
data-sets that would broadly improve the performance of
downstream robot learning tasks. Our specific desiderata are:

1) Data that exhibits a diversified set of behaviours to
allow for building better models and policies.

2) Data that is evenly distributed, and not highly concen-
trated on a small part of the state space.

3) Efficient data collection, without spending valuable
robot time on non-interesting parts of the state space.

We approach the problem by defining the data collection
phase as a reinforcement learning (RL) problem, where the
goal of the agent is to cover as much of the state space
as possible. Such objectives are common in RL exploration
strategies based on intrinsic motivation (IM) [10], [11], [12],
[13], [14], [15]. We propose an improvement of the random
network distillation (RND) method [15] that actively drives
the robot to explore novel states, thereby efficiently collecting
diverse data. Our key idea is that we can use goal-conditioned
policies to quickly reach states that are novel, without waiting
for the robot to reach these states through the slow reward
maximization of standard RL.

We focus on learning from high dimensional image inputs
– a challenging and important robot learning setting. Our
empirical results demonstrate significantly better exploration
than commonly used RL exploration strategies. More impor-
tantly, our data-set collection method significantly improves
learning performance in various downstream tasks, such as
supervised learning and offline RL.

II. BACKGROUND

We recapitulate several RL ideas we build on in our work:

ar
X

iv
:2

10
5.

04
60

7v
1

 [
cs

.R
O

]
 1

0
M

ay
 2

02
1

a) Reinforcement Learning: In Reinforcement Learn-
ing, at every time step t an agent is in a state st ∈ S.
The agent executes an action at ∈ A, transitioning into
a new state following the transition probability st+1 ∼
p(st+1|st, at), and receiving a reward rt = R(st, at). This is
often formalized as a Markov Decision Process (MDP). The
goal is to find a policy at = π(st) that maximizes expected
cumulative reward, E

[∑T
t=1 γ

trt

]
, where γ ∈ (0, 1] is

the discount factor. The value of a state-action pair when
following a policy π, Qπ(s, a), is defined as the expected
sum of discounted rewards from that state-action pair:

Qπ(s, a) = E
a∼π

[∞∑
k=t+1

γk−t−1rk

∣∣∣st = s, at = a

]
.

Actor-critic algorithms aim to find the optimal policy
π∗(st) by using two functions approximators, one for the
policy πθ(st) (actor) and the other for state-action value
function Qπφ(st, at) (critic). Specifically, we use Twin De-
layed Deep Deterministic Policy Gradient (TD3) [16], which
learns Qπφ(st, at) by minimizing the mean squared Bellman
error of transition sampled from a replay buffer D:

L(φ) = E
(st,at,rt,st+1)∼D

[
(rt + γQφ(st+1, πθ(st+1))−Qφ(st, at))2

]
,

and learns a policy πθ(st) that maximizes Qφ(st, at) using a
loss function L(θ) = − E

st∼D
[Qφ(st, πθ(st))] . TD3 addition-

ally applies stability improvements such as a target network,
twin critics, delayed updates, and noise regularization. We
use TD3 for data collection, by training policies that max-
imize intrinsic motivation (Sec. II-A) or goal-conditioned
policies (Sec. II-B).

A. Intrinsic Motivation

Intrinsic motivation (IM) methods add a reward signal to
an RL agent that incentivizes exploratory behavior. Curiosity,
one of the most widely used IM methods, adds reward for
visiting novel states. For high dimensional problems, the
‘novelty’ of the state can be hard to define, and several
ideas have been explored in the literature [10], [13], [17];
here we focus on random network distillation (RND) [15],
[14]. The RND reward bonus is the error in predicting the
features of the current state, where the features are defined
by a randomly initialized ‘target’ neural network that is not
changed throughout learning. A ‘predictor’ network with the
same architecture as the target network is trained to predict
the target output on data collected by the agent. Formally, the
target network maps a state to an embedding f : S → Rk
and the predictor neural network f̂ : S → Rk is trained
by gradient descent to minimize the expected MSE loss
‖f̂(st|θf̂) − f(st)‖

2 with respect to its parameters θf̂ . The
prediction error is expected to be higher for novel states than
for states similar to the ones the predictor has trained on.

B. Goal-Conditioned Learning

To handle sparse reward RL problems, several recent
works proposed learning goal-conditioned polices. The idea
is that learning to reach any state in the domain will give

a denser reward signal, which can be easier to learn from.
Universal Value Function Approximators (UVFA) [18] sim-
ply augment the state input to the policy and value function,
s ∈ S, with an additional goal-state input g ∈ G. Hindsight
experience replay (HER) [19] is an off-policy algorithm
for training goal-conditioned policies. After collecting a
trajectory s0, s1, ..., sT , we store in the replay buffer every
transition st → st+1 not only with the original goal used
for this episode, but also with a goal randomly taken from
the trajectory g′ ∈ s0, s1, ..., sT . The main idea is that
even in trajectories where we failed to achieve the goal we
sought to reach, we still have successfully collected data
for training the UVFA to reach g′. Notice that the goal
being pursued influences the agent’s actions but not the
environment dynamics and therefore we can replay each
trajectory with an arbitrary goal, assuming that we use an
off-policy RL algorithm.

III. METHOD

In this section, we describe our RL-based method for
automatic data collection. As discussed in Sec. I, we desire
data that effectively covers the state space, and IM-based
methods are therefore suitable for driving the agent towards
parts of the state space that have not yet been visited.
However, by simply adding a reward bonus to the RL
algorithm, such methods explore the state space inefficiently:
typical RL algorithms adapt slowly to changes in the reward
function, and the agent will spend a long time visiting already
known parts of the state space until its policy changes to
visit the novel parts. For online RL, this issue manifests as a
slow learning process. In offline RL, however, where the data
set size is limited in advance, the problem is more severe:
inefficient learning will cover less relevant states, and will
therefore hinder performance in downstream tasks.

We propose an algorithm for an agent to autonomously
explore its domain and reach novel states quickly. Our main
idea is to actively drive the agent towards novel states by
training a goal-conditioned policy, and set the goals to be
states which are deemed novel according to the current
RND criterion. Thus, when a new part of the state space is
identified as novel, the agent will not spend time on learning
to reach it through maximizing the reward function, but will
directly navigate towards it using the goal-conditioned policy.

Our method is specified in Algorithm 1. To act in the
environment, at the beginning of every episode the agent
picks a goal state with maximal novelty from the replay
buffer (line 6), and then uses the goal-conditioned policy to
reach that goal. In practice, it is usually infeasible to calculate
novelty for the entire replay buffer R every episode, so in
lines 5-6 the maximum is taken only over a subset R′.

To train the goal-conditioned policy using an off-policy
algorithm, we follow an approach similar to HER, which
samples a goal from the future of the state in the episode
and assigns -1 reward to any transition that does not reach
the goal. This self-supervised reward definition causes the
agent to learn to reach its goal with as few steps as possible.
Under such definition, the goal-conditioned value function

Algorithm 1 Data-set Collection with Goal-Conditioned
Policy and RND

1: Initialize RND networks f, f̂
2: Initialize off-policy algorithm A with replay buffer R
3: for training cycle = 1, . . . , N do
4: for episode = 1, . . . ,M do
5: Sample R′ from R . |R′| =M · T
6: g ← argmaxR′‖f̂(sk+1)− f(sk+1)‖2
7: for t = 0, . . . , T do
8: at ← π(st, g)
9: Execute the action at and observe new state st+1

10: Store transition (st, at, st+1) in R
11: end for
12: for 0, . . . , T do
13: Sample mini-batch B from R
14: for (sτ , aτ , sτ+1) ∈ B do
15: Sample goal gτ from sτ , ..., sT
16: rτ ← −(gτ 6= sτ)
17: dτ ← (gτ = sτ) ∨ (gτ = sτ+1) . done flag
18: Store ((sτ , gτ), aτ , rτ , (sτ+1, gτ), dτ) in B′

19: end for
20: Perform one step of off-policy RL using A and B′

21: end for
22: end for
23: Train f̂ on the last M episodes in R for K epochs
24: end for
25: return R

of the off-policy algorithm is effectively an inverse distance
function between two state observations.

However, dissimilar to HER, which samples a goal for
each state and stores the state-goal pair statically in the replay
buffer (i.e., for each state the goal is chosen once when the
state is being inserted into the replay buffer, corresponding
to setting the goal before line 10 in Algorithm 1 instead of
in line 15), we sample goals dynamically each time a batch
of states is sampled to train the network, which means that
each state can be paired with many different goals throughout
the training. We found that this allows for greater sample
efficiency and better use of the data.

Additionally, with a small probability, for state sτ we
sample the goal to be the state itself, and in that case the
reward is 0 and the done signal is True (lines 16 and 17
in Algorithm 1), meaning that the value of the state-goal
pair should be 0. We found that this helps stabilize training.
We hypothesize that since the value function represents an
inverse distance function, if the network never encounters
identical or very close state-goal pairs during the training,
the predictions near the goal would be very noisy.

In order to not be biased towards states that remain in the
buffer for a long time, RND is trained only on states from
recent experience, similar to the online RND algorithm [15].

IV. RELATED WORK
One approach to curiosity-driven exploration is known

as Intrinsically Motivated Goal Exploration Processes
(IMGEPs) [20]. IMGEPs equip the agent with a goal space,
where each point is a vector of (target) features of be-
havioural outcomes. During exploration, the agent samples
goals in this goal space by maximizing empirical competence

progress using multi-armed bandits, enabling a learning cur-
riculum where goals are progressively explored from simple
to more complex. One limitation of IMGEPs is the need
to manually engineer goal space representations, which is
difficult for high-dimensional observations such as images.

Closely related to our approach is Go-Explore [21]. In Go-
Explore, the agent is returned to promising states from its
previous experience to explore further. The implementation
of this idea in [21] has some drawbacks. The simulator’s
internal state is reset in order to return to promising states,
which is not feasible for real robots. Our approach, on
the other hand, trains a goal-conditioned policy to reach
desired states. Moreover, novelty is measured by counting
state visitation, which requires compact state representations
that are heavily dependant on prior knowledge of the domain.

In order to alleviate some of the shortcomings of Go-
Explore and intrinsic motivation methods, Guo and Brun-
skill [22] use HER alongside a one-step prediction model
to calculate novelty. While their method addresses the non-
static nature of the intrinsic reward and does not require a
reset like Go-Explore, it does not take full advantage of the
data throughout the training due to the fact that both the
goal relabeling and novelty assignment are done statically:
the goal and novelty value for each state is picked only
once when they are inserted into the replay buffer. Moreover,
one-step prediction models can be difficult to train on high-
dimensional state spaces and are susceptible to random noise
from the environment. Indeed, [22] did not show results
with image inputs, and to the best of our knowledge, our
work demonstrates the first application of goal-conditioned
policies and intrinsic motivation with images.

The idea of quickly reaching novel states for efficient
exploration was shown to be effective in the tabular case
with algorithms such as Explicit Explore or Exploit (E3)
[23]. E3 divides the state space into two sets, known and
unknown, based on how thoroughly a given state has been
visited. When exploring, a policy for reaching unknown
states quickly is used. In the tabular case, a simple visitation
count can be used to measure state novelty; our work
extends this idea to high-dimensional state spaces by using a
generalized novelty measure and a goal-conditioned policy.

V. RESULTS

In this section we evaluate our algorithm on a robotic
manipulation environment using various downstream tasks.
We show that using our data collection method we can signif-
icantly improve learning performance in downstream tasks,
as compared to other collection strategies. We investigate the
following questions:

1) Can we improve performance in downstream learning
tasks by collecting more diversified data?

2) Can self-supervised data collection be useful for learn-
ing multiple downstream tasks using the same data?

3) Does our goal-conditioned algorithm collect better data
than vanilla RL exploration?

Fig. 2: Illustrative experiment. On the left is the image state
that the agent observes of the object moving against a black
background. On the right is a visualization of the RND
novelty values in states previously visited, the brighter the
red the more novel the state is. The goal-conditioned agent
will pick goals from the brightest region on the right side of
the image.

A. Illustrative domain

We begin with a toy domain that will allow us to illustrate
the benefits of our goal-conditioned exploration approach.
The domain is motivated by a robotic problem of manipu-
lating a rigid object using raw vision input. The observation
is a white object against a black background, the object can
move up, down, left and right by one pixel or rotate clock-
wise and counter clock-wise with a resolution of 30 degrees.
The size of the image is 84×84. The length of each episode
is 250 and the object is returned to the center at the beginning
of each episode. An example can be seen in Figure 2.

Our goal in this experiment is to test which approach
covers as much of the state space as possible. To do so, we
count the number of discrete states the agent visits during
the training, where the state is the position and rotation of
the object, resulting in a state space of size 84× 84× 12.

In addition to the baselines described above, we also
consider an ablation where we change the goal picking
strategy when acting (line 6 in Algorithm 1) to either
picking a random state from the replay buffer or a state
with minimum novelty. Figure 3 shows that RND novelty
leads to better coverage of the state space compared to ran-
dom exploration. Moreover, our algorithm exploits novelty
information more efficiently than vanilla RL with intrinsic
motivation. As expected, the goal-conditioned agent based
on minimum novelty goals performs worst. Interestingly, the
agent that picks random goals performs worse than the agent
that behaves completely randomly, indicating that the goal
picking strategy is an important component of the algorithm.
We can also see that the random exploration reaches a plateau
and doesn’t keep exploring further, which means we won’t
achieve better exploration by simply collecting more samples
with random actions.

Additionally, we plot the average number of unique states
visited within every episode, and the average number of
unique and novel states visited every episode, i.e., the number
of states that the agent visited for the first time over the
entire training so far. Note that the goal-conditioned agent
visits less unique states every episode than the random

0 100 200 300 400 500

50

100

150

200

0 100 200 300 400 500
0

50

100

150

Episode

								Random
								Intrinsic	Motivation
								Goal-Conditioned	(Maximum)
								Goal-Conditioned	(Minimum)
								Goal-Conditioned	(Random)

0 100 200 300 400 500

0

10K

20K

30K

Fig. 3: State visitation counts for the illustrative domain. On
top we show the total number of unique states the agent
visited. On the bottom left we show the number of unique
states the agent visited during each episode. Lastly, on the
bottom right we show the number of unique states the agent
visited during each episode which have also never been
visited in previous episodes.

agent, but significantly more novel states. This is since the
goal-conditioned approach leads the agent to discover novel
regions, all throughout the training process.

B. Simulated Robotic Manipulation Domains

We next describe results on simulated robotic manipulation
domains. We begin by describing our simulation setting and
baseline comparisons, and then present our results.

Simulation environment: We simulate a 7DoF Franka
Panda robotic arm with a closed gripper and cartesian
position control of the end-effector. The robot is positioned
on a table, and a cube object with colored sides is placed in
front of it. The robot can move freely in space, and can move
and flip the cube on the table into different configurations.
The camera observations are retrieved from a fixed camera
positioned in front of the robot looking downwards at the
table. An example of the setup can be seen in Figure 4.
For studying how the robot’s presence in the image affects
our exploration algorithms, we also consider an ablation
where the robot is not rendered in the camera image. For
the simulation we used Robosuite [24].

Baselines: We compare our data collection method against
two baselines: the first is a fixed random policy which
samples actions uniformly from the action space of the robot.
The second is a vanilla RND approach: we trained a TD3
agent that maximizes intrinsic reward calculated as novelty
by RND. We emphasize that the same RND architecture and
training schedule was used for the baseline and our method,
with the only difference being how the RND novelty is used
by the RL algorithm.

Data collection and organization: For data collection,
we used the TD3 implementation in RL Coach [25]. An

Low
Novelty

High
Novelty

Fig. 4: Simulation environment. Top: a simulated Franka
Panda setup on a table and a rigid cube object. Bottom:
examples of the observations that the RL agent and RND
network get as input. The bottom row is ordered from left
to right by the novelty of that state as given by the RND at
the end of training.

episode in our domain is set to 200 transitions. For each
method, we collect 5 separate data-sets, where each data-set
contains M ·T = 300K transitions (1500 episodes), and the
RND network and TD3 agent are reset between collecting
the data-sets. After each episode, the cube is reset to a fixed
initial position with the yellow face up.

Network architecture: In this work we wish to disentan-
gle the questions of training algorithm and architecture from
exploration. Therefore, we chose popular neural network
architectures, and used the same architectures for all methods
we evaluated. Specifically, we used convolutional network
architectures similar to [26] for the agent and [15] for the
RND network. For the goal-conditioned agent, we condition
the network on a goal image by concatenating it with the state
image in the channel dimension. More details on specific
parameters can be found in the appendix.

1) Data-Set Collection Analysis: As mentioned above,
one of our objectives is to collect data that is diversified and
evenly distributed. In Figure 5 we visualize the collected
data-sets by plotting the x, y position of the cube on the
table for every state in the data. We group the plots by the
color of the upper face of the cube (recall that the cube
is initialized with the yellow face up). The goal-conditioned
exploration covers a significantly larger part of cube positions
on the table, and does so more uniformly compared to
baselines. Additionally, the distribution of top face color
of the cube is more evenly distributed among the different
colors, resulting in a less imbalanced data distribution, which
is known to greatly effect learning in downstream tasks, as
we demonstrate in our subsequent experiments.

It is important to note that even though the robot covers a
significantly larger region of the input image than the cube
(see Figure 4), our method was able to identify novelty in

(a) Random Agent

(b) Intrinsic Reward Agent

(c) Goal-Conditioned Agent

Fig. 5: Visualization of the data-sets collected using each
method. The dots represent a position of the cube on the
table as seen in the data-set, and the color corresponds to
the color of the face at the top. The number at the top
signifies that number of dots a plot contains for a certain
color. Note that our goal-conditioned approach produces data
that is significantly more diverse and evenly distributed than
the baselines.

the cube position and orientation.
2) Supervised Learning Tasks: A common downstream

task is supervised learning – learn to predict some property
of the scene such as the pose of an object. To evaluate the
effect of the collected data on learning quality, we train a NN
on two different prediction tasks, for which training labels
can easily be extracted from the simulator:
• Classification: predict the upper face color of the cube.
• Regression: predict the position of the cube on the table.
Since it’s difficult to produce test data that is independent

of all three methods, in order to keep our testing criteria as
fair as possible, we produce a train/test split by randomly
sampling 5% of the examples from each data-set of each
method to create a single test set for all the methods. The
remaining 95% samples constitute the training set. This
procedure results in 5 training sets for each method and a
single test set for all the methods.

The results are presented in Figure 6. For both classifi-
cation and regression, the goal-conditioned exploration data-
sets produced a higher median accuracy and lower MSE with
little variance. Also note that the ablation of removing the
robot from the image had a positive yet minor effect, showing
the robustness of our approach.

3) Offline Reinforcement Learning Tasks: We next eval-
uate our data collection method for training offline (a.k.a.
Batch) RL agents. Specifically, we evaluate the performance
of training a policy using Batch Constrained Q-Learning
(BCQ1) [27], with the data-sets collected using different
collection policies.

We consider three different tasks of varying difficulty:
• Flip the cube to have a specific color facing up. This

task is specified by a binary reward of 1 when the

1The BCQ implementation we used can be found here.

https://github.com/sfujim/BCQ/tree/master/continuous_BCQ

Fig. 6: Supervised learning experiments. The upper row
shows the classification accuracy of predicting the color of
the upper face of the cube. The lower row shows the mean
squared error of predicting the x, y, z position of the cube
on the table.

correct color is on the upper face and 0 otherwise.
• Push the cube to the rightmost region of the table. The

reward is proportional to horizontal distance between
the goal region and the cube, specifically, r = 1 −
tanh(ρ(cubey − Ty)), where ρ is a scaling constant,
and Ty is the threshold in the y direction of the region
we want to push the cube into.

• Push the cube to the rightmost region of the table and
flip it to a specific color. The reward is the sum of the
two previous reward functions.

We emphasize that the rewards are not related to the
behaviour of the robot during the data collection. In reality,
defining rewards can be difficult. To focus our evaluation on
data quality, however, we chose tasks for which rewards are
easily constructed using data extracted from the simulator.

The results of the offline learning can be seen in Figure 7.
Similarly to the supervised learning experiments, the goal-
conditioned exploration data-sets produced a higher success
rate with lower variance. We also performed an ablation of
hiding the robot in the images, which gave similar results;
we omit it due to space constraints.

VI. CONCLUSIONS

We proposed a simple-yet-effective method for generating
diverse data-sets for offline robot learning. Our approach
combines intrinsic motivation with goal-conditioned RL, to
produce an agent that can quickly cover novel states.

In simulated robotic manipulation domains, our method
produced significantly more diverse data-sets than common
baseline methods, and led to improved performance on var-
ious downstream tasks. In future work we will evaluate our

Fig. 7: Offline learning experiments for the different tasks
of pushing, flipping and their combination. The numbers
indicate the percentage of the times the learned policy was
successful at performing the task. For the pushing tasks,
success indicates that the cube is in the target region.

approach on real robot data collection, and on combinations
of simulated and real data using sim-to-real methods.

APPENDIX

For all the algorithms we use the default hyper-parameters,
with exception to those detailed in Table I. Additional details
and implementation can be found here.

TABLE I: Parameter Changes

Symbol Usage Value
N training cycles 150
M # episodes each training cycle 10

probability of sampling self goal 0.04
K RND training epochs 4

TD3 actor architecture DQN + Dense[300, 200]
TD3 critic architecture DQN + Dense[400, 300]

TD3 learning rate 0.0001
TD3 policy additive noise linear schedule 1.5→0.5

supervised learning architecture DQN
supervised learning batch size 128
supervised learning # epochs 25
supervised learning optimizer ADAM(0.0001)
supervised learning # seeds 5

BCQ # training steps 50K
BCQ # seeds 3

rho BCQ # push reward scaling 10.0
Ty BCQ # push reward threshold 18cm

ACKNOWLEDGMENT

Aviv Tamar is partly funded by the Israel Science Foun-
dation (ISF-759/19) and a grant from Intel Corporation.

https://sites.google.com/view/efficientself-superviseddataco

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[3] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation,” CoRR, vol. abs/1806.10293, 2018. [Online].
Available: http://arxiv.org/abs/1806.10293

[4] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,”
in Reinforcement learning. Springer, 2012, pp. 45–73.

[5] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[6] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in
Advances in neural information processing systems, 2016, pp. 5074–
5082.

[7] A. Wang, T. Kurutach, K. Liu, P. Abbeel, and A. Tamar, “Learn-
ing robotic manipulation through visual planning and acting,” arXiv
preprint arXiv:1905.04411, 2019.

[8] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 2786–2793.

[9] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, 2020.

[10] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul,
D. Saxton, and R. Munos, “Unifying count-based exploration
and intrinsic motivation.” in NIPS, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp.
1471–1479. [Online]. Available: http://dblp.uni-trier.de/db/conf/nips/
nips2016.html#BellemareSOSSM16

[11] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a
typology of computational approaches,” Frontiers in Neurorobotics,
vol. 1, p. 6, 2009. [Online]. Available: https://www.frontiersin.org/
article/10.3389/neuro.12.006.2007

[12] A. G. Barto, “Intrinsic motivation and reinforcement learning,” in
Intrinsically Motivated Learning in Natural and Artificial Systems,
G. Baldassarre and M. Mirolli, Eds. Springer, 2013, pp. 17–47.
[Online]. Available: https://doi.org/10.1007/978-3-642-32375-1 2

[13] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, 2017, pp. 2778–2787. [Online].
Available: http://proceedings.mlr.press/v70/pathak17a.html

[14] Y. Burda, H. Edwards, D. Pathak, A. J. Storkey, T. Darrell, and A. A.
Efros, “Large-scale study of curiosity-driven learning,” CoRR, vol.
abs/1808.04355, 2018. [Online]. Available: http://arxiv.org/abs/1808.
04355

[15] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration
by random network distillation,” CoRR, vol. abs/1810.12894, 2018.
[Online]. Available: http://arxiv.org/abs/1810.12894

[16] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing
function approximation error in actor-critic methods,” CoRR,
vol. abs/1802.09477, 2018. [Online]. Available: http://arxiv.org/abs/
1802.09477

[17] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos,
“Count-based exploration with neural density models,” CoRR, vol.
abs/1703.01310, 2017. [Online]. Available: http://arxiv.org/abs/1703.
01310

[18] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, 2015, pp. 1312–1320. [Online]. Available: http:
//jmlr.org/proceedings/papers/v37/schaul15.html

[19] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba,
“Hindsight experience replay,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, 2017, pp. 5055–5065. [Online]. Available: http://papers.nips.
cc/paper/7090-hindsight-experience-replay

[20] S. Forestier, Y. Mollard, and P. Oudeyer, “Intrinsically motivated goal
exploration processes with automatic curriculum learning,” CoRR,
vol. abs/1708.02190, 2017. [Online]. Available: http://arxiv.org/abs/
1708.02190

[21] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune,
“Go-explore: a new approach for hard-exploration problems,” CoRR,
vol. abs/1901.10995, 2019. [Online]. Available: http://arxiv.org/abs/
1901.10995

[22] Z. D. Guo and E. Brunskill, “Directed exploration for reinforcement
learning,” CoRR, vol. abs/1906.07805, 2019. [Online]. Available:
http://arxiv.org/abs/1906.07805

[23] M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine learning, vol. 49, no. 2, pp. 209–232, 2002.

[24] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n, “robosuite: A
modular simulation framework and benchmark for robot learning,” in
arXiv preprint arXiv:2009.12293, 2020.

[25] I. Caspi, G. Leibovich, G. Novik, and S. Endrawis, “Reinforcement
learning coach,” Dec. 2017. [Online]. Available: https://doi.org/10.
5281/zenodo.1134899

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available:
http://dx.doi.org/10.1038/nature14236

[27] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” CoRR, vol. abs/1812.02900, 2018.
[Online]. Available: http://arxiv.org/abs/1812.02900

http://arxiv.org/abs/1806.10293
http://dblp.uni-trier.de/db/conf/nips/nips2016.html#BellemareSOSSM16
http://dblp.uni-trier.de/db/conf/nips/nips2016.html#BellemareSOSSM16
https://www.frontiersin.org/article/10.3389/neuro.12.006.2007
https://www.frontiersin.org/article/10.3389/neuro.12.006.2007
https://doi.org/10.1007/978-3-642-32375-1_2
http://proceedings.mlr.press/v70/pathak17a.html
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1703.01310
http://arxiv.org/abs/1703.01310
http://jmlr.org/proceedings/papers/v37/schaul15.html
http://jmlr.org/proceedings/papers/v37/schaul15.html
http://papers.nips.cc/paper/7090-hindsight-experience-replay
http://papers.nips.cc/paper/7090-hindsight-experience-replay
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1906.07805
https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.5281/zenodo.1134899
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1812.02900

