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Abstract— In Human-Robot Collaboration, the robot oper-
ates in a highly dynamic environment. Thus, it is pivotal
to guarantee the robust stability of the system during the
interaction but also a high flexibility of the robot behavior in
order to ensure safety and reactivity to the variable conditions
of the collaborative scenario.
In this paper we propose a control architecture capable of
maximizing the flexibility of the robot while guaranteeing a
stable behavior when physically interacting with the environ-
ment. This is achieved by combining an energy tank based
variable admittance architecture with control barrier functions.
The proposed architecture is experimentally validated on a
collaborative robot.

I. INTRODUCTION

In order to implement an effective human robot collabora-
tion, it is fundamental to guarantee that the robot can adapt
online its behavior in a stable and efficient way. A lot of work
in this direction has been done using different techniques
such as task redundancy [1], [2], adaptive physical interaction
[3], [4] and coaching [5], [6] to name a few. Nevertheless,
at the best of the authors’ knowledge, a control architecture
that allows to address the problems of robust stability and
flexibility both in free motion and during the interaction is
still missing.

The behavior of a robot can be defined by specifying
the way it physically interacts with the environment and
the set of (dynamic) constraints it has to satisfy. Adapting
the interaction implies to dynamically vary the parameters
(e.g. stiffness, inertia) that determine the way forces are
exchanged with the environment. Dynamically constraining
the motion of the robot allows to dynamically shape its
behavior.

Admittance control [7] is a very popular strategy for
controlling the interaction, and it has been widely used in
collaborative scenarios (see, e.g., [4], [3], [8]). It enforces the
robot to reproduce a desired passive physical behavior (e.g.
mass-spring-damper), i.e. the admittance dynamics. Because
of the passivity of the admittance dynamics, the behavior of
the robot is robustly stable, i.e. stable both in free motion
and when interacting with a poorly known environment (see
e.g.[9]).

When using admittance control, the interaction dynamics
is determined by the choice of the parameters of the admit-
tance dynamics (e.g. inertia and stiffness) and a specific set
of parameters may not be suitable for all stages of a given
application [4].
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This severely limits the flexibility of the controller, as
changing online the dynamic parameters can lead to the loss
of passivity [10] and, consequently, to a possibly unstable
behavior in human robot collaboration as shown in [3].

Several strategies for implementing a variable admittance
control have been proposed (see e.g. [3], [11]) but they allow
only a limited variation of the interaction dynamics while
significantly complicating the overall control architecture

In [12], an optimization framework has been proposed
in order to implement a variable admittance controller in
a robust and flexible way. Here, energy tanks [10], [13]
have been exploited for disembodying passivity from a
specific physical behavior. The energy stored in the tank
has been exploited as a constraint to be satisfied for pas-
sively implementing any desired admittance dynamics. This
allows to achieve the maximal flexibility while satisfying
the passivity constraints, i.e. robust stability. Yet [12] does
not differentiate between the interaction phase and the free
motion of the robot, and the admittance control is active in
both situations. In a collaborative scenario, the robot often
switches between free motion and interaction and constantly
requiring the satisfaction of both the passivity constraint
and the continuous implementation of a specific admittance
dynamics may affect the performance of the robot in free
motion.

Moreover, robust stability is not enough to guarantee
the complete safety and the flexibility of a robot in a
shared workspace: additional time-varying constraints, such
as obstacle and human avoidance, self collision and bounding
the joint position, need to be satisfied for ensuring a safe
and flexible behavior. Control barrier functions (CBFs) [14],
[15] have been successfully exploited in many robotics
applications for forcing the robot to remain in a desired
subset of the state space, i.e. to dynamically constrain the
behavior of the robot (see e.g. [16], [17], [18]). Time Varying
CBFs [19] allow to consider time-varying constraints and
they have been successfully exploited for enforcing safety
in human robot collaboration [20], [21]. Furthermore, tasks
to be executed can be encoded as CBFs as shown in [22].
The control input for satisfying the dynamic constraints
modeled by the CBFs can be found by solving a convex
optimization problem, which makes the CBFs amenable to
real-time implementation.

Passivity can be encoded using Control Barrier Functions
[23] but no interaction controllers are available yet.

In this paper we propose a novel control architecture
that merges energy tanks, for implementing a flexible and
passive interactive behavior, and control barrier functions,
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Fig. 1. The admittance control architecture. The input Fc represent the
control force of the low level controller actuating the robot.

for dynamically constraining the behavior of the robot. The
proposed architecture leverages control barrier functions to
encode a series of constraints to be satisfied and energy tanks
for passively implementing a variable admittance controller.
The control input is the solution of a single convex opti-
mization problem that considers both the passivity constraint
and the constraints due to the control barrier functions.
Using the proposed architecture it will be possible to make
a collaborative robot extremely flexible both during free
motion and during the interaction with possibly unknown
environments.

The contributions of this paper are:
• A convex optimization problem merging the passivity

constraint and control barrier functions constraints;
• A control architecture capable of maximizing the flexi-

bility of the robot both during the interaction and during
free motion;

• An experimental validation of the proposed architecture
on a collaborative robot.

This paper is organized as follows: in Sec. II the main
problem addressed in this paper is formulated. In Sec. III
energy tanks, their usage in passivity preservation and the
overall tank-based architecture is presented. In Sec. IV the
CBF-based architecture for flexible task execution is de-
scribed, while in Sec. V the collaborative constraint-oriented
control architecture is shown. In Sec. VI the proposed
architecture is validated onto a robotic setup, and finally in
Sec. VII conclusions are drawn and future work is addressed.

II. PROBLEM FORMULATION

Consider a velocity controlled fully actuated n-DOFs
manipulator. The model of the robot can be described by:

ẋ = J(q)u (1)

where x ∈ Rm is the pose of the end-effector and q ∈ Rn is
the vector of joint variables. J(q) ∈ Rm×n is the Jacobian
of the robot and u ∈ Rn is the joint velocity input.

Thanks to the low-level velocity controller, a desired
velocity profile ẋdes ∈ Rm can be reproduced by simply
setting u = J+(q)ẋdes, where J+(q) denotes the pseudo-
inverse of the Jacobian J(q), such that ẋ(t) ≈ ẋdes.

The interaction with the environment is regulated by the
admittance control architecture reported in Fig. 1. In order
to enforce a desired dynamic behavior for the robot, the
interaction force Fe(t) ∈ Rm is integrated by the admittance

dynamics that produces a desired velocity ẋa. By setting
ẋdes(t) = ẋa ≈ ẋ, the robot exactly reproduces the
admittance dynamics. Thus, if the admittance dynamics is
passive, the controlled robot behaves as a passive system
and, therefore, it is stable both in free motion and in contact
with the environment, i.e. robustly stable.

Admittance dynamics model mechanical systems and they
can be represented by the following Euler-Lagrange model

M(xa)ẍa + C(xa, ẋa)ẋa +D(xa)ẋa +
∂P

∂xa
= Fe (2)

where xa ∈ Rm is the pose and M(xa) = MT (xa) > 0 is
the inertia matrix, C(xa, ẋa) represents the Coriolis effects,
D(xa) ≥ 0 is a damping matrix and P : Rm → R is a
potential field active on the system (e.g. elastic potential).
As well known (see, e.g., [9]), (2) is passive with respect to
the pair (ẋa(t), Fe(t)), using the following storage function:

Ha(xa, ẋa) = P (xa) +
1

2
ẋTaM(xa)ẋa (3)

Unfortunately, when considering a variable admittance, i.e.
such that the physical parameters characterizing the desired
dynamics are time-varying, passivity can be lost. In fact,
considering the time-varying version of (2)

M(xa, t)ẍa + C(xa, ẋa, t)ẋa +D(xa, t)ẋa +
∂P

∂xa
(t) = Fe

(4)
we have that (3) becomes then

Ha(xa, ẋa, t) = P (xa, t) +
1

2
ẋTaM(xa, t)ẋa (5)

whence, using (4), we can write

Ḣa(xa, ẋa, t) = FTe ẋa − ẋTaD(xa, t)ẋa +
∂Ha

∂t
(6)

where the last term is sign indefinite and can introduce
energy into the system and, therefore, lead to a loss of
passivity.

Thus, standard admittance control is not suitable for im-
plementing an interaction that is flexible and passive at the
same time.

Besides passivity, various dynamic and time-varying con-
straints are necessary for establishing safety and other desired
behaviors for the robot. These constraint cannot be simply
embedded in the standard admittance control architecture.

We aim at developing a control architecture that allows to
passively implementing a time varying admittance dynamics
as the one in (4) and to enforce a set of dynamic and time-
varying constraints on the robot.

III. ENERGY TANK ARCHITECTURE

In this section we show how to exploit energy tanks
[10],[13] for reproducing a variable admittance dynamics (4)
on the robot (1) following the approach presented in [12].

Energy tanks are energy storing elements which can be
represented by: {

ẋt = ut

yt =
∂T
∂xt

= xt(t)
(7)



where xt ∈ R is the state of the tank, while the pair (ut, yt) ∈
R×R represents the power port the tank can exchange energy
through and

T (xt) =
1

2
x2t (8)

is the function representing the energy stored in the tank.
Energy tanks are completely disconnected from a specific

physical dynamics. Thus, the energy stored in the tank can
be exploited for implementing any desired behavior. This can
be achieved by interconnecting the power port of the tank
(ut, yt) with the power port (Fe, ẋdes) of the implemented
admittance dynamics as:{

ut(t) = AT (t)Fe(t)

ẋdes(t) = A(t)yt(t)
(9)

where A(t) ∈ Rn is defined as

A(t) =
γ(t)

xt(t)
(10)

and γ(t) ∈ Rn is the desired value for the output ẋdes(t), i.e.
the velocity implementing the desired admittance. In fact, if
we plug (9) into (7) we get{

ẋt = AT (t)Fe(t)

ẋdes = A(t)yt(t) = γ(t)
(11)

which implies that any desired port behavior can be obtained
by an appropriate modulation of the energy exchanged with
the tank. From (7),(8) and (11) it follows that

Ṫ = utyt = AT (t)Feyt = γTFe (12)

which clearly shows that the energy needed for imple-
menting the desired behavior is extracted from/injected into
the tank.

The modulated tank (11) faces a singularity whenever
xt(t) = 0 because of the definition of the modulation factor
in (11). The singularity happens when the tank is empty and
no behavior can be implemented using the energy stored in
the tank [10]. In order to avoid this condition, it is necessary
to initialize xt such that T (xt(0)) ≥ ε > 0 and to ensure
that T (xt(t)) ≥ ε ∀t > 0. As shown in [12], the following
result holds:

Proposition 1. If T (xt) ≥ ε for all t ≥ 0, then the
modulated tank (11) remains passive independently of the
desired output γ(t).

Thus, as long as the tank is not depleted, any desired port
behavior can be passively implemented by modulating the
energy stored in the tank. Furthermore, as shown in [24] for
the single port case and in [25] for the multi-port case, any
passive dynamics can be reproduced without depleting the
energy tank. Thus, modulated energy tanks can be used as a
generalized admittance control since they allow to reproduce
any physical dynamics.

In case we aim at reproducing a non passive admittance
dynamics, i.e. the time varying dynamics in (4), we can
exploit Prop. 1 for enforcing a passive implementation of

the desired behavior. In fact, it is possible to guarantee the
passivity of the modulated tank by enforcing the following
constraint:

T (xt) ≥ ε ∀t ≥ 0 (13)

Thus, as shown in [12], it is possible to find the best
passive implementation of any desired admittance dynamics
by solving the following optimization problem

minimize
ẋdes

||ẋdes − ẋa||2

subject to
∫ t

0

FTe (τ)ẋdes(τ)dτ ≥ −T (xt(0)) + ε
(14)

The problem (14) allows to find the best passive approxi-
mation of the desired behavior ẋa, taking into account the
amount of energy stored in the tank. The solution ẋdes is
then utilized to correctly tune the modulation matrix A(t)
in (11). In this way, a passive energy balance is guaranteed
even if the admittance parameters change online.
In [12], a discrete time version of the problem was in-
troduced, which turns the integral constraint in (14) into
a linear one. The resulting optimization problem is then
convex, which makes it computationally fast and simple in
formulation, thus suitable for being executed in real time and
embedded into a larger optimization-based framework.

IV. CONTROL BARRIER FUNCTIONS BASED
ARCHITECTURE

In this section we show how to exploit CBFs for enforc-
ing multiple time-varying dynamic constraints on a robot
described by (1). The presented framework leverages the
techniques exposed in [26], [27], where both kinematic
limits and desired tasks to be executed by the robot can be
represented as time-varying constraints on the control input.
Thus, it is possible to model tasks and physical limitations
as constraints to be fulfilled by the controlled system and
CBFs are exploited for formulating an optimization problem
for finding the best input that satisfies all the constraints, e.g.
that can lead to the optimal execution of all the tasks.

We consider tasks whose execution can be expressed as
the minimization of a non negative, possibly time-varying,
continuously-differentiable cost function C : Rn × R → R.
Using the robot model in (1) and considering as an output
variable the time-varying task variable σ ∈ Rn, this can be
described by the following optimization problem:

minimize
u

C(σ, t)

subject to ẋ = J(q)u

σ = k(x, t)

(15)

The optimization problem can be reformulated and made
computationally simple using Control Barrier Functions. Let
C ⊂ Rn be the subset where the task is considered executed,
i.e. where C(σ, t) = 0. Consider the a control barrier
function h : Rn × R → R defined as h(σ, t) = −C(σ, t).
By construction h is non negative only in the region of



satisfaction of the task, i.e. when C(σ, t) = 0. Thus,
enforcing the non negativity of h is equivalent to enforcing
the execution of the task σ. This can be encoded in the
following convex optimization problem [26]:

minimize
q̇

||q̇||2

subject to
∂h

∂t
+
∂h

∂σ

∂σ

∂x
J(q)q̇ + α(h(σ, t)) ≥ 0

(16)

where α(·) is an extended class K function1 and where
we have considered that the input of (1) is u = q̇. The
formulation can easily be extended in order to enable the
simultaneous execution of multiple tasks. Let us consider
a set of M different tasks T1, . . . , TM which have to be
executed, each encoded respectively by the cost functions
C1, . . . , CM . The execution of these tasks can then be
accomplished by solving the following convex optimization
problem:

minimize
q̇,δ

||q̇||2 + l||δ||2

subject to
∂hm
∂t

+
∂hm
∂σ

∂σ

∂x
J(q)q̇

+ α(hm(σ, t)) ≥ −δm m ∈ {1, . . . ,M}
(17)

in which hm(σ, t) = −Cm(σ, t) and δ = [δ1, . . . , δM ]T is
the vector of slack variables corresponding to each constraint,
while l ≥ 0 is a scaling factor. Each δi indicates how much
the constraint corresponding to the i−th task can be relaxed,
in order to guarantee the feasibility of the problem even if
conflicting constraints are active at the same time.

V. COLLABORATIVE CONSTRAINT-ORIENTED CONTROL
ARCHITECTURE

In this section we propose a collaborative constraint-
oriented control architecture that merges the flexible energy
management architecture illustrated in Sec. V with the CBFs
based architecture for task execution shown in Sec. IV in
order to obtain a control strategy that guarantees a maximally
flexible and robustly stable behavior of the robot. We will
keep the exposition of the algorithm in continuous time, but
the overall discussion can be easily extended to discrete time
(see [12] in particular for the constraint on passivity).

It is possible to enforce a passive behavior of the robot
controlled using control barrier functions by inserting the
passivity constraint of (14) in (17) and by using the output
of the optimization problem for modulating the matrix A(t)
in (11). This leads to:

minimize
q̇,δ

||q̇||2 + l||δ||2

subject to
∂hm
∂t

+
∂hm
∂σ

∂σ

∂x
J(q)q̇

+ α(hm(σ, t)) ≥ −δm m ∈ {1, . . . ,M}∫ t

0

FTe (τ)J(q)q̇(τ)dτ ≥ −T (xt(0)) + ε

(18)

1An extended class K is a function φ : R → R such that φ is strictly
increasing and φ(0) = 0

Fig. 2. The final collaborative constrained-control architecture.

and the tank is modulated by setting γ = J(q)q̇.
Notice that, since the passivity constraint is linear, the

overall optimization problem maintains its convexity. Fur-
thermore, the passivity constraint in (18) does not present a
dedicated slack variable to relax it. This is due to the fact
that the preservation of passivity is of top priority as it is
connected to robust stability. At the same time, this choice
does not over-constrain the system during free motion, as
demonstrated in the following proposition.

Proposition 2. If T (xt(t)) ≥ ε during the interaction, then
the passivity constraint in (18) is automatically satisfied also
in free motion.

Proof. Assume that free motion starts at time t > 0. We can
then subdivide the integral term of the passivity constraint
in (18) in two parts:∫ t

0

FTe (τ)J(q)q̇(τ)dτ +

∫ t

t

FTe (τ)J(q)q̇(τ)dτ ≥

≥ −T (xt(0)) + ε (19)

Since F = 0 after t, (19) reduces to∫ t

0

FTe (τ)J(q)q̇(τ)dτ ≥ −T (xt(0)) + ε (20)

which is equivalent to the constraint active during the inter-
action phase, thus concluding the proof.

Hence, the passivity constraint is automatically satisfied
during free motion, meaning that the optimizer disregards
it completely during this phase, focusing on satisfying the
remaining M constraints in the stack.
Following this procedure, we have therefore obtained a con-
trol architecture which is capable not only of accomplishing
concurrent constraints in a flexible way but also to guarantee
a robust behavior while interacting with a poorly known
environment, thanks to the preservation of passivity. The
developed framework acts as a sort of ”armor”, protecting
the robot against unstable behaviors during the interaction,
while still allowing it to implement all the encoded tasks at
the best of its dexterity. Finally, everything is encompassed



into a single convex optimization problem, for a fast and
efficient resolution.

In the same fashion, we can insert the desired admittance
into our own optimization problem, by properly modifying
the previous objective function in (18) as follows:

minimize
q̇,δ

||q̇ − q̇a||2 + l||δ||2

subject to
∂hm
∂t

+
∂hm
∂σ

∂σ

∂x
J(q)q̇

+ α(hm(σ, t)) ≥ −δm m ∈ {1, . . . ,M}∫ t

0

FTe (τ)J(q)q̇(τ)dτ ≥ −T (xt(0)) + ε

(21)
in which q̇a = J(q)+ẋa is the desired admittance expressed
in the joint space. In this way, we have encompassed the
whole variable admittance control scheme into our task
execution architecture, allowing for a flexible interaction with
the environment, while still ensuring the overall passivity via
the energetic constraint, as well as satisfying the other time-
varying constraints in the stack.

The implementation of the desired admittance can be
enforced at the price of relaxing the tasks encoded by the
CBFs. A possible strategy for achieving this goal is to
dynamically weight the first term in the function to optimize
in (21). A possible solution is to use the following metric
matrix W (t) = (1 + κ‖Fe(t)‖2)In, where In is the identity
matrix of order n and κ > 0 that can be used for tuning the
effect of the external force. Thus, replacing ‖q̇− q̇a‖2 in (21)
with

‖q̇ − q̇a‖2W (t) = (q̇ − q̇a)TW (t)(q̇ − q̇a) (22)

allows to penalize the deviation from the desired admittance
dynamics the more, the higher the interaction force is. In free
motion (22) reduces to the standard euclidean norm used in
(21).

The final formulation of the optimization problem is as
follows:

minimize
q̇,δ

||q̇ − q̇adm||2W + l||δ||2

subject to
∂hm
∂t

+
∂hm
∂σ

∂σ

∂x
J(q)q̇

+ α(hm(σ, t)) ≥ −δm m ∈ {1, . . . ,M}∫ t

0

FTe (τ)J(q)q̇(τ)dτ ≥ −T (xt(0)) + ε

(23)
The overall control architecture is reported in Fig. 2, in which
we defined ẋopt = J(q)q̇ as the optimal velocity in the task
space.

The velocity controlled robot is wrapped by the modulated
tank that is exploited for ensuring the passivity of the
controlled system. The CBF-based optimizer receives as an
input the desired admittance velocity ẋa and, by solving (23)
determines the best value ẋopt for passively implementing
the desired admittance behavior and all the tasks that are
encoded by the CBFs. The matrix A(t) is modulated by
setting γ = ẋopt.

VI. EXPERIMENTS

The framework proposed in this paper has been validated
on a Universal Robot 10e manipulator, equipped with an on-
board 6-axis force/torque (F/T) sensor. Both the robot and
the sensor run with a sampling time of 2ms.
The robot is employed to accomplish a set of tasks, including
obstacle avoidance, joint control and position control of the
end effector, as well as the satisfaction of the passivity
constraint and the implementation of a variable admittance
dynamics. Each task is encoded using a specific CBF, fol-
lowing the formulations exposed in Sec. IV.
The obstacle avoidance task is encoded by the following
CBF:

hsafe = −ξs(d2 −D2
min) (24)

in which ξs = 10 and Dmin is the minimum distance value
between the obstacle and the tip of the end-effector, while
d = d(x, t) is defined as

d = ||x− xobs||2 (25)

in which xobs is the Cartesian position of the closest obstacle.
Following the optimization-based formulation (23), for each
CBF the correspondent gain ξ(.) is tuned and, after sim-
ple computations, the resulting constraint is obtained and
inserted into the optimization problem. For the sake of sim-
plicity, we chose the function α to be the identity function,
such that α(hm(σ, t)) = hm(σ, t)∀m ∈ {1, . . . ,M}. In the
case of (24), for example, the resulting constraint is

2(d−Dmin)J(q)q̇ ≥ −(hsafe(x, t)) + δs (26)

in which δs is the dedicated slack variable. The joint control
task consists in maintaining the joint variables within an
upper and lower limit. For each i−th joint, a dedicated CBF
has been implemented as:

hlimi
= ξl

(q+i − qi)(qi − q
−
i )

(q+i − q
−
i )

i ∈ {1, . . . , n} (27)

in which ξl = 1, while q+i and q−i represent the real joint
limits of the i-th joint, in the joint space. Observe how
ensuring that hlimi

≥ 0 is equivalent to keeping the value
of qi ∈ [q+i , q

−
i ].

Finally, the position control task is encoded through the
following CBF:

hpos = −ξp||x− xgoal||2 (28)

in which ξp = 5 and xgoal is the desired Cartesian position
of the end effector.
Additionally, the desired admittance dynamics presents a
time-varying repulsive potential P (x, t) which is centered
in the current position of the obstacle. The generated force
∂P
∂x (t) grows as the robot approaches the obstacle, such
that the human can perceive an hazardous area during the
interaction. The formulation of the resulting force is as
follows

∂P

∂x
(t) =

{
Krep

(
1

d(p,t) −
1
D∗

)
p(t)−pobs(t)
d3(p,t) if d(p, t) < D∗

0 otherwise
(29)



in which D∗ > Dmin is the activation distance for the
potential. As seen before, such a behavior is non-passive, and
energy needs to be extracted from the tank for preserving a
passive energy balance.
A series of experiments have been conducted, in order to
concurrently validate each component of the architecture.
First, the robot is moved to a desired goal using (28). Along
the way, the operator interacts with it, moving it around in
the workspace. As soon as the interaction stops, the robot
switches to free-motion and resumes its motion towards the
goal, unaffected by the previous interaction. Fig. 3 shows the
evolution of (28) over time, together with the intensity of the
force acting on the system.
Secondly, the same position control task is implemented, this
time with the presence of a time-varying obstacle moving in
the workspace. As visible in Fig. 4, as soon as the distance
d approaches the minimum value Dmin = 0.25m, the
constraint forces the robot to move away from the obstacle,
preserving the overall safety. Once the obstacle is removed,
the robot resumes its motion towards the goal.
Finally, the passivity of the interaction is validated using
a variable admittance control. The admittance model en-
compasses a constant mass and damping term M(xa) and
D(xa), as well as the time-varying potential in (29). In
particular, the desired inertia is chosen as a diagonal matrix
with elements equal to 0.75kg and 0.25kg for translations
and rotations respectively, while the damping is a diagonal
matrix with constant elements equal to 0.05Nsm (translations)
and 0.025Nsm (rotations).
During the experiment, the operator tries to guide the robot
towards the obstacle. As the value of d drops below D∗ =
0.5m, the operator feels the repulsive force (29) generated by
the potential. Fig. 5 shows the evolution of the energy in the
tank: as soon as the current value of T (xt(t)) approaches
ε = 0.1, the constraint (13) ensures that the tank is never
depleted by implementing a passive approximation of the
desired behaviour.
Additional graphs are shown in the accompanying video, in
which the three experiments are portrayed.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an optimization-based
framework which combines CBFs and energy tanks for
achieving a robust and flexible interaction, while respecting
a set of time-varying constraints, thus guaranteeing the
complete safety of the robotic application in a HRC scenario.
We have formulated passivity as a constraint and inserted it,
along other safety-relevant constraints, into a single convex
optimization problem. Future work aims at establishing pri-
orities among the different constraints in an optimal fashion
and predicting the evolution of the energy in the tank.
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R. Gassert, R. Muradore, P. Fiorini, and C. Secchi, “An energy tank-
based interactive control architecture for autonomous and teleoperated
robotic surgery,” IEEE Transactions on Robotics, vol. 31, no. 5, pp.
1073–1088, 2015.

[11] S. Grafakos, F. Dimeas, and N. Aspragathos, “Variable admittance
control in phri using emg-based arm muscles co-activation,” in 2016
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2016, pp. 001 900–001 905.

[12] C. Secchi and F. Ferraguti, “Energy optimization for a robust and
flexible interaction control,” in ICRA 2019, 05 2019, pp. 1919–1925.

[13] M. Franken, S. Stramigioli, S. Misra, C. Secchi, and A. Macchelli, “Bi-
lateral telemanipulation with time delays: A two-layer approach com-
bining passivity and transparency,” IEEE Transactions on Robotics,
vol. 27, no. 4, pp. 741–756, 2011.

[14] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[15] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European Control Conference (ECC), 2019, pp. 3420–
3431.

[16] G. Notomista, S. F. Ruf, and M. Egerstedt, “Persistification of robotic
tasks using control barrier functions,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 758–763, 2018.

[17] D. Zhang, G. Yang, and R. P. Khurshid, “Haptic teleoperation of
uavs through control barrier functions,” IEEE Transactions on Haptics,
vol. 13, no. 1, pp. 109–115, 2020.

[18] J. Fu, Y. Lv, G. Wen, X. Yu, and T. Huang, “Velocity and input
constrained coordination of second-order multi-agent systems with
relative output information,” IEEE Transactions on Network Science
and Engineering, vol. 7, no. 3, pp. 1925–1938, 2020.

[19] G. Notomista and M. Egerstedt, “Persistification of robotic tasks,”
IEEE Transactions on Control Systems Technology, pp. 1–12, 2020.

[20] F. Ferraguti, M. Bertuletti, C. T. Landi, M. Bonfè, C. Fantuzzi, and
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