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Efficient solution method based on inverse dynamics for
optimal control problems of rigid body systems

Sotaro Katayama1 and Toshiyuki Ohtsuka1

Abstract— We propose an efficient way of solving optimal
control problems for rigid-body systems on the basis of in-
verse dynamics and the multiple-shooting method. We treat
all variables, including the state, acceleration, and control
input torques, as optimization variables and treat the inverse
dynamics as an equality constraint. We eliminate the update of
the control input torques from the linear equation of Newton’s
method by applying condensing for inverse dynamics. The size
of the resultant linear equation is the same as that of the
multiple-shooting method based on forward dynamics except
for the variables related to the passive joints and contacts.
Compared with the conventional methods based on forward
dynamics, the proposed method reduces the computational cost
of the dynamics and their sensitivities by utilizing the recursive
Newton-Euler algorithm (RNEA) and its partial derivatives.
In addition, it increases the sparsity of the Hessian of the
Karush–Kuhn–Tucker conditions, which reduces the compu-
tational cost, e.g., of Riccati recursion. Numerical experiments
show that the proposed method outperforms state-of-the-art
implementations of differential dynamic programming based
on forward dynamics in terms of computational time and
numerical robustness.

I. INTRODUCTION

Optimal control plays a significant role in motion planning
and control such as trajectory optimization (TO) and model
predictive control (MPC) [1] for rigid-body systems. TO
can generate dynamically consistent motion under versatile
control objectives and constraints even for highly nonlin-
ear systems such as underactuated systems by solving the
optimal control problem (OCP). MPC leverages the same
advantages as TO for real-time control by solving the OCP
at each sampling time. However, we still have to improve
the computational efficiency and numerical robustness of the
OCP for rigid-body systems whose dynamics are compli-
cated and highly nonlinear.

The computational time of the OCP for rigid-body systems
depends substantially on the computational time of the
dynamics and their sensitivities. Most previous researches
on the OCP for rigid-body systems (e.g., [2], [3], [4]) have
been based on forward dynamics, which is a calculation
of the generalized acceleration for the given configuration,
generalized velocity, and generalized torques. These studies
incorporate forward dynamics into the state equation, which
is a natural representation, especially for single-shooting
methods such as differential dynamic programming (DDP)
[5] and the iterative linear quadratic regulator (iLQR) [6].
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They utilize the articulated body algorithm (ABA) [7], an
efficient recursive algorithm to compute forward dynamics,
or directly compute the inverse of the joint inertia matrix,
in solving the OCP. In contrast, our previous work [8]
proposed basing the OCP on inverse dynamics to reduce the
computational time compared with that of the OCP based
on forward dynamics. Inverse dynamics are calculations of
the generalized torques for a given configuration, generalized
velocity, and generalized acceleration. We can compute the
inverse dynamics with a smaller computational time than
with forward dynamics because the recursive Newton-Euler
algorithm (RNEA) is faster than ABA [9]. Moreover, we
can compute the sensitivities of inverse dynamics faster
than those of forward dynamics [10], [11]. Therefore, we
can reduce the computational cost of the OCP for rigid-
body systems by using inverse dynamics instead of forward
dynamics, as illustrated numerically in [8]. However, our
previous approach of [8] has a potential drawback when it
is utilized for MPC because it is a single-shooting method;
i.e., it regards only the acceleration as the decision variable,
which means it cannot leverage parallel computing and can
lack numerical robustness.

The single-shooting method regards only the control input
as decision variables and computes the state on the horizon
by simulating the system’s dynamics based on the control in-
put at each iteration. Typical examples of the single-shooting
method are DDP and iLQR, which solve the linear equation
of Newton’s method by using Riccati recursion [12] and are
very popular in robotics applications [2], [3], [4]. In contrast,
the multiple-shooting method regards all variables (the state,
costate, and control inputs) as optimization variables and
can inherently leverage parallel computing by splitting the
computation of the residual of the Karush–Kuhn–Tucker
(KKT) conditions and the Hessian of the KKT condition into
each time stage, which is impossible for the single-shooting
methods due to their expensive serial computational parts,
such as the simulation of the system’s dynamics over the
horizon. Even in a single-thread computation, the compu-
tational cost of the multiple-shooting method is almost the
same as that of the single-shooting method even though it has
more optimization variables thanks to structure-exploiting
Newton-type methods [13], [14], [12]. Further, the multiple-
shooting method is empirically known to converge quickly
even if the initial guess of the solution is far from the (local)
optimal solution; In contrast, the single-shooting method
converges slowly or even diverges in such a situation.

In this paper, we propose an efficient solution method of
the OCP for rigid-body systems based on inverse dynamics



and the multiple-shooting method. We treat all variables,
including the state, acceleration, and control input torques,
as optimization variables, and treat the inverse dynamics
as an equality constraint. We eliminate the update of the
control input torques from the linear equation of Newton’s
method by applying condensing for inverse dynamics. The
size of the resultant linear equation is the same as that of the
multiple-shooting method based on forward dynamics except
for the variables related to the passive joints and contacts.
Compared with the conventional methods based on forward
dynamics, the proposed method reduces the computational
cost of the dynamics and their sensitivities by utilizing
RNEA and its partial derivatives. In addition, it increases the
sparsity of the Hessian of the KKT conditions, which reduces
the computational cost, e.g., of Riccati recursion. Note that
the inverse dynamics-based formulation is also utilized in a
contact-implicit TO [15], [16] to alleviate the numerical ill-
conditioning due to an approximation with smooth contact
model. In contrast to these studies, our method is not limited
to a specific contact-implicit TO, e.g., it can treat rigid
contacts, as illustrated in a numerical experiment.

This paper is organized as follows. In Section II, we
formulate the OCP based on inverse dynamics. Section III
introduces the proposed solution method with condensing
of inverse dynamics. Section IV compares the proposed
method with state-of-the-art implementations of DDP/iLQR
and demonstrates its effectiveness in terms of the computa-
tional time and numerical robustness. We conclude in Section
V with a brief summary and mention of future work.

Notation: We describe the partial derivatives of a differ-
entiable function by certain variables using a function with
subscripts; i.e., fx(x) denotes ∂f

∂x (x) and gxy(x, y) denotes
∂2g
∂x∂y (x, y). We denote a diagonal matrix whose elements
are a vector x by diag(x). Furthermore, we denote an n×n
identity matrix by In and an n×m zero matrix by On×m.

II. OPTIMAL CONTROL PROBLEM BASED ON INVERSE
DYNAMICS

A. Rigid-body systems

Let Q be the configuration manifold of the rigid-body
system. Let q ∈ Q, v ∈ Rn, a ∈ Rn, f ∈ Rnf , and u ∈ Rn

be the configuration, generalized velocity, acceleration, stack
of the contact forces, and input torques, respectively. The
equation of motion of the rigid-body system is given by

M(q)a+ h(q, v)− JT(q)f = u, (1)

where M(q) ∈ Rn×n denotes the inertia matrix, h(q, v) ∈
Rn encompasses Coriolis, centrifugal, and gravitational
terms, and J(q) ∈ Rnf×n denotes the stack of the contact
Jacobians. We write (1) as an equality constraint of the
inverse dynamics as follows:

ID(q, v, a, f)− u = 0, (2)

where ID(q, v, a, f) is defined by the left-hand side of (1)
in the formulation of the OCP. Note that we can efficiently

compute ID(q, v, a, f) by using RNEA and its partial deriva-
tives by using the partial derivatives of RNEA [10]. We also
assume that the input torques u are an n-dimensional vector
even when the system is underactuated, as RNEA and its
partial derivatives are well-defined only for fully actuated
systems. As stated in the next subsection, we treat the
underactuated systems by introducing an equality constraint
that zeros the elements of u corresponding to passive joints.

B. Optimal control problem

We consider an OCP with N time stages. The configura-
tion, velocity, acceleration, external forces, and input torques
for N stages are denoted as q0, ..., qN ∈ Q, v0, ..., vN ∈ Rn,
a0, ..., aN−1 ∈ Rn, f0, ..., fN−1 ∈ Rnf , u0, ..., uN−1 ∈
Rn, all of which are regarded as optimization variables to
formulate the OCP based on inverse dynamics. We assume
the initial state is given by q̄ and v̄, and then consider the
constraints on the initial state

δ(q̄, q0) = 0, v̄ − v0 = 0, q̄ ∈ Q, v̄ ∈ Rn, (3)

where δ(q1, q2) ∈ Rn denotes the subtraction operation of
the configurations q2 ∈ Q from q1 ∈ Q on the manifold Q.
The state equation discretized with the forward Euler method
is given by[

δ(qi, qi+1) + vi∆τ
vi − vi+1 + ai∆τ

]
= 0, i = 0, ..., N − 1, (4)

where ∆τ is the time step of the discretization given by
∆τ = T/N with the length of the horizon T . The state
equation (4) takes a simple form since we consider the
equation of the motion of the system (1) as an equality
constraint (2) in the OCP and regard the acceleration ai as
the optimization variables. In general, we can also assume
an mc-dimensional equality constraint,

C(qi, vi, ai, ui, fi)∆τ = 0, i = 0, ..., N − 1, (5)

and mg-dimensional inequality constraint,

g(qi, vi, ai, ui, fi)∆τ ≤ 0, i = 0, ..., N − 1. (6)

Note that we multiply C(·) and g(·) by ∆τ in (5) and
(6) so that the proposed formulation will correspond to the
continuous-time Euler-Lagrange equations discretized with a
time step ∆τ [17]. If the system is underactuated, (5) con-
tains the elements of the control input torques corresponding
to the passive joints. For example, if the system has a floating
base whose joint indices are 1 to 6, C(qi, vi, ai, ui, fi) in (5)
includes [u

(1)
i u

(2)
i u

(3)
i u

(4)
i u

(5)
i u

(6)
i ]T, where u(j)i is the j-th

element of ui.
For the above description of the rigid-body system and

constraints, the OCP is given by

min
qi,vi,ai,ui,fi

J = ϕ(qN , vN ) +

N−1∑
i=0

l(qi, vi, ai, ui, fi)∆τ,

subject to (2)–(6), where ϕ(qN , vN ) denotes the terminal cost
and l(qi, vi, ai, ui, fi)∆τ denotes the stage cost. We treat the
inequality constraints (6) by using the primal-dual interior



point method (PDIPM) [18], which can treat large-scale and
nonlinear constraints efficiently. The inequality constraint (6)
is then transformed into an equality constraint by introducing
slack variables si ∈ Rmg ,

g(qi, vi, ai, ui, fi)∆τ + si∆τ = 0, (7)

with an additional inequality constraint si ≥ 0.

C. KKT conditions

Next, we derive the KKT conditions, necessary condi-
tions for optimal control [17], [18]. Let the set of primal
variables at stage i be yi := {qi vi ai fi ui} and the
set of primal variables without the control input torques be
ỹi := {qi vi ai fi} for i = 0, ..., N − 1. We then introduce
the Lagrangian of this OCP with PDIPM,

L = ϕ(qN , vN ) +

N−1∑
i=0

l(yi)∆τ +

[
λ0
γ0

]T [
δ(q̄, q0)
v̄ − v0

]

+

N−1∑
i=0

[
λi+1

γi+1

]T [
δ(qi, qi+1) + vi∆τ
vi − vi+1 + ai∆τ

]

+

N−1∑
i=0

βT
i (ID(ỹi)− ui)∆τ +

N−1∑
i=0

µT
i C(yi)∆τ

+

N−1∑
i=0

νTi (g(yi)∆τ + si∆τ)−
N−1∑
i=0

ε ln si∆τ,

where λi, γi ∈ Rn, µi ∈ Rmc , and νi ∈ Rmg denote the
Lagrange multipliers with respect to the state equation (4),
the equality constraint (5), and the inequality constraints (6),
and ε > 0 denotes the barrier parameter. The KKT conditions
are then given by (2)–(5), (7),[
LT
qN

LT
vN

]
=

[
ϕT
qN (qN , vN )

ϕT
vN (qN , vN )

]
+

[
δTqN (qN−1, qN )λN

−γN

]
= 0, (8)

and the following equations for i = 0, ..., N − 1,[
LT
qi

LT
vi

]
=

[
lTqi(yi)∆τ
lTvi(yi)∆τ

]
+

[
δTqi(qi, qi+1) On×n

In∆τ In

] [
λi+1

γi+1

]
+

[
IDT

qi∆τ(ỹi)

IDT
vi∆τ(ỹi)

]
βi +

[
CT

qi∆τ(yi)
CT

vi∆τ(yi)

]
µi

+

[
gTqi∆τ(yi)
gTvi∆τ(yi)

]
νi +

[
δTqi(qi−1, qi)λi

−γi

]
= 0, (9)

[
LT
ai

LT
fi

]
=

[
lTai

(yi)∆τ
lTfi(yi)∆τ

]
+

[
On×1

γi+1∆τ

]
+

[
IDT

ai
(ỹi)∆τ

IDT
fi(ỹi)∆τ

]
βi

+

[
CT

ai
(yi)∆τ

CT
fi

(yi)∆τ

]
µi +

[
gTai

(yi)∆τ
gTfi(yi)∆τ

]
νi = 0, (10)

LT
ui

= lTui
(yi)∆τ−βi∆τ+CT

ui
(yi)µi∆τ+gTui

(yi)νi∆τ = 0,
(11)

and
diag(si)νi = ε1, (12)

where ε1 denotes an mg-dimensional vector, all of whose
elements are ε. The last equation (12) denotes the comple-
mentarity conditions between the slack variable si and the
Lagrange multiplier νi.

III. SOLUTION METHOD OF OPTIMAL CONTROL
PROBLEM

A. Linearization for Newton’s method

The above KKT conditions are linearized for Newton’s
method. We apply Gauss-Newton Hessian approximation
because the inverse dynamics constraint (2) is complicated
enough to make it impractical to compute the second-order
partial derivatives of (2). Accordingly, the Hessian of the La-
grangian at the terminal stage is approximated by the Gauss-
Newton-approximated Hessian of the terminal cost and that
at the intermediate stage by the Gauss-Newton-approximated
Hessian of the stage cost. For example, when the terminal
cost and the stage cost take a quadratic form, we have
LqNqN ' ϕqNqN and Lqiqi ' lqiqi . With the approximated
Hessian, (8) is linearized into a linear equation with respect
to the Newton directions ∆λN ,∆γN ,∆qN ,∆vN ∈ Rn as[

LT
qN

LT
vN

]
+

[
LqNqN LqNvN

LvNqN LvNvN

] [
∆qN
∆vN

]
+

[
δTqN (qN−1, qN )∆λN

−∆γN

]
= 0, (13)

As well, (9)–(11) are linearized into linear equations with
respect to the Newton directions ∆λi+1,∆γi+1,∆qi,∆vi,
∆ai,∆ui,∆βi ∈ Rn, ∆fi ∈ Rnf , and ∆µi ∈ Rmc . Note
that the directions related to the PDIPM, ∆si,∆νi ∈ Rmg ,
are eliminated explicitly from the linear equations by adding
certain terms related to the logarithmic barrier functions
to the Hessians (e.g., Lqiqi ) and residuals of the KKT
conditions (e.g., Lqi ) [19], [18]. By denoting such modified
Hessians as L̄qiqi and KKT residuals as L̄qi , we obtain[
L̄T
qi

L̄T
vi

]
+

[
L̄qi,yi

L̄vi,yi

]
∆yi +

[
δTqi(qi, qi+1) On×n

In∆τ In

] [
∆λi+1

∆γi+1

]
+

[
IDT

qi(ỹi)∆τ

IDT
vi(ỹi)∆τ

]
∆βi +

[
CT

qi(yi)∆τ
CT

vi(yi)∆τ

]
∆µi

+

[
δTqi(qi−1, qi)∆λi

−∆γi

]
= 0, (14)

[
L̄T
ai

L̄T
fi

]
+

[
L̄aiyi

L̄fiyi

]
∆yi +

[
On×1

∆γi+1∆τ

]
+

[
IDT

ai
(ỹi)∆τ

IDT
fi(ỹi)∆τ

]
∆βi +

[
CT

ai
(yi)∆τ

CT
fi

(yi)∆τ

]
∆µi = 0, (15)

and

L̄T
ui

+ L̄uiyi
∆yi −∆βi∆τ + CT

ui
(yi)∆µi∆τ = 0. (16)

The constraints, (2)–(5) and (7), are linearized as

δ(q̄, q0) + δq0(q̄, q0)∆q0 = 0, v̄ − v0 −∆v0 = 0, (17)[
δ(qi, qi+1) + vi∆τ
vi − vi+1 + ai∆τ

]
+

[
δqi(qi, qi+1) In∆τ
On×n In

] [
∆qi
∆vi

]
+

[
On×1

∆ai∆τ

]
+

[
δqi+1

(qi, qi+1) On×n

On×n −In

] [
∆qi+1

∆vi+1

]
= 0,

(18)

IDỹi(ỹ)∆ỹi −∆ui + ID(ỹ)− u = 0, (19)



and
Cỹi

(yi)∆ỹi + Cu(yi)∆ui + C(yi) = 0. (20)

Each Newton iteration consists of solving a linear equation
that finds Newton directions satisfying (13)–(20).

B. Condensing inverse dynamics

Next, we condense the inverse dynamics; i.e., we eliminate
∆ui and ∆βi from the linear equations (13)–(20). By substi-
tuting the expression of ∆ui and ∆βi with respect to other
Newton directions (19) and (16) into (14)–(16) and (20),
we can obtain a condensed linear equation. For notational
simplicity, we introduce the condensed Hessian,

L̃ziwi
:= L̄ziwi

+ IDT
zi(ỹi)L̄uiui

IDwi
(ỹi)

+ IDT
zi(ỹ)L̄uiwi + L̄ziuiIDwi(ỹ) (21)

for zi, wi ∈ {qi, vi, ai, fi} and the condensed KKT residual,

L̃T
zi := L̄T

zi + IDT
zi(ỹ)L̄T

ui

+ (L̄zi,ui
+ IDT

zi(ỹ)L̄uiui
)(ID(ỹ)− ui) (22)

for zi ∈ {qi, vi, ai, fi}. We also introduce the condensed
Jacobian of the equality constraint,

C̃zi := Czi + Cui
IDzi(qi, vi, ai, fi), (23)

for zi ∈ {qi, vi, ai, fi} and the condensed residual of the
equality constraint,

C̃ := C + Cui
(ID(qi, vi, ai, fi)− ui). (24)

Then, ∆ui and ∆βi are eliminated from (14)–(16) and (20):[
L̃T
qi

L̃T
vi

]
+

[
L̃qiyi

L̃viyi

]
∆yi +

[
δTqi(qi, qi+1) On×n

In∆τ In

] [
∆λi+1

∆γi+1

]
+

[
CT

qi(yi)
CT

vi(yi)

]
∆µi +

[
δTqi(qi−1, qi)∆λi

−∆γi

]
= 0, (25)

[
L̃T
ai

L̃T
fi

]
+

[
L̃aiyi

L̃fiyi

]
∆yi +

[
On×1

∆γi+1∆τ

]
+

[
CT

ai
(yi)

CT
fi

(yi)

]
∆µi = 0,

(26)
and

C̃ỹi
(yi)∆ỹi + C̃(yi) = 0. (27)

After condensing, the linear equation is reduced to find
the Newton directions ∆λi,∆γi,∆qi,∆vi,∆ai,∆fi,∆µi

satisfying (17), (18), (13), (25)–(27).
If the rigid-body system is fully actuated and there are no

contacts, the size of the condensed linear equation is the same
as that of the multiple-shooting method based on forward
dynamics. If it is underactuated and there are no contacts,
the size of the condensed linear equation at each time stage
is increased from that of the multiple-shooting method based
on forward dynamics by only twice the number of the passive
joints, since we assume the system is fully actuated and
add an equality constraint to zero the control input torques
corresponding to the passive joints. If there are contacts, the
size of the linear equation also increases depending on the
way to treat the contacts.

Algorithm 1 Single Newton iteration of primal-dual interior
point method with condensing of inverse dynamics
Input: Initial state q̄, v̄
Input and Output: λ0, ..., λN , γ0, ..., γN , y0, ..., yN−1,

qN , vN , µ0, ..., µN−1, β0, ..., βN−1, s0, ..., sN−1,
ν0, ..., νN−1

1: for i = 0, · · · , N do in parallel
2: Compute the condensed Hessian and KKT residual.
3: end for
4: for i = 0, · · · , N do in parallel or serial
5: Compute the Newton directions ∆λi, ∆γi, ∆ỹi, ∆µi

by solving the linear equation (17), (18), (13), (25)–(27).
6: end for
7: for i = 0, · · · , N − 1 do in parallel
8: Compute the condensed Newton directions ∆ui and

∆βi from (19), (16), and ∆si and ∆νi according to [19].
9: end for

10: Determine the step size α ∈ (0, 1].
11: for i = 0, · · · , N do in parallel
12: Update all variables λi, γi, yi, µi βi, si, νi by
13: λi ← λi +α∆λi, γi ← γi +α∆γi, yi ← yi +α∆yi,
14: µi ← µi + α∆µi, βi ← βi + α∆βi,
15: si ← si + α∆si, νi ← νi + α∆νi
16: end for

C. Algorithm

Algorithm 1 is the pseudocode of a single Newton iteration
of the proposed method. The first step (lines 1–3) forms the
linear equation consisting of (17), (18), (13), and (25)–(27)
by computing the condensed KKT residuals and Hessians,
such as L̃qi , L̃qiqi , C̃, and C̃q . This step is fully parallelizable
into each time stage. The second step (line 4–6) computes the
directions ∆λi, ∆γi, ∆ỹi, ∆µi by solving the linear equation
consisting of (17), (18), (13), and (25)–(27), i.e., inverting
the condensed Hessian. In this step, we can utilize various
efficient methods tailored for the OCP [20], e.g., Riccati
recursion [12] and a highly parallelizable method [21]. The
third step (lines 7–9) computes the condensed directions,
i.e., ∆ui and ∆βi from (19) and (16), and ∆si and ∆νi
according to the PDIPM [19], [18]. The fourth step (line
10) determines the step size, e.g., by using the fraction-to-
boundary rule [18], [19]. Finally, all variables are updated
according to the step size (lines 11–16).

The main advantage of the proposed method appears in
the first step (lines 1–3). It calls RNEA and the partial
derivatives of RNEA N − 1 times, whereas the forward
dynamics-based method computes ABA (or inverse of the
joint-inertia matrix) N − 1 times and the partial derivatives
of ABA N − 1 times. Moreover, the proposed method can
reduce the computational cost in the second step (lines 4–6),
as our formulation leads to sparsity in the partial derivatives
of the state equation. We will explain this point below with
the Riccati recursion for computing the Newton directions.
Riccati recursion [12] performs a recursive block elimination



to compute the Newton directions with the forward Euler dis-
cretization (4). In Riccati recursion, we regard [∆qTi ∆vTi ]T

as the state variable and [∆aTi ∆fTi ]T as the control input
of a linear quadratic regulator subproblem. We also introduce
matrices,

Ai :=

[
δqi(qi, qi+1) In∆τ
On×n In

]
, Bi :=

[
On×n On×nf

∆τIn On×nf

]
,

where Ai is composed of the partial derivatives of the state
equation with respect to q and v, and Bi is composed of the
partial derivatives with respect to a and f . Riccati recursion
serially computes AT

i Pi+1Ai, AT
i Pi+1Bi, BT

i Pi+1Bi for a
sequence of matrices Pi that represent the sensitivities of
∆λi and ∆γi with respect to ∆qi and ∆vi. Thanks to the
sparsity of Ai and Bi in the proposed formulation, several
matrix products reduce to sums of matrices, and this in turn
reduces the computational cost, especially the cost of the
serial computational part.

We have developed an open-source C++ software frame-
work for the OCP for rigid-body systems, idocp [22], that
utilizes the above Riccati recursion and ParNMPC, a highly
parallelizable method [21]. idocp uses Eigen1 for linear
algebra and pinocchio [23], an efficient C++ library for
rigid-body dynamics algorithms, to compute RNEA and its
partial derivatives. It also employs the parallel Newton-type
method [21] with backward Euler discretization method.

IV. NUMERICAL EXPERIMENTS

A. Experimental settings

To evaluate the computational efficiency and numerical
robustness of the proposed solution method of the OCP,
we compared our solver idocp with crocoddyl [4], a
highly efficient C++ implementation of DDP/iLQR for rigid-
body systems, and Ipopt [19], an off-the-shelf nonlinear
optimization solver. Both idocp and crocoddyl utilize
pinocchio for rigid-body dynamics algorithms, Eigen for
linear algebra, and OpenMP [24] for parallel computing.
Ipopt was customized to solve the OCP for rigid-body sys-
tems based on forward dynamics and the multiple-shooting
method with parallel computing by using pinocchio and
OpenMP. As the algorithm of idocp, we used Riccati recur-
sion to compute the Newton directions (we will refer to this
method as inverse dynamics-based Riccati recursion (IDRR)
hereafter). Furthermore, we utilized two algorithms from
crocoddyl: the standard DDP with a Gauss-Newton Hes-
sian approximation, which is identical to iLQR, and feasible-
prone DDP (FDDP) [4], a kind of iLQR that improves
numerical robustness by modifying the backward pass of
iLQR in a multiple-shooting fashion [25] and utilizes a line-
search method based on the Goldstein condition [18]. We will
refer to the former as iLQR and the latter as FDDP. In Ipopt,
we used the Broyden–Fletcher–Goldfarb–Shanno method for
the Hessian approximation and Harwell Subroutine Library
MA57 to solve the linear subproblems. All experiments were
conducted on a laptop with quad-core CPU Intel Core i7-
10510U @1.8GHz.

1http://eigen.tuxfamily.org
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Fig. 1. Average computational time per iteration [ms] of the proposed
method (IDRR), iLQR/FDDP, and Ipopt, for various degrees of freedom
(DOF ∈ {7, 14, 32}), numbers of time steps (N ∈ {50, 100}), and
numbers of threads (nproc ∈ {1, 4})

B. Computational time

First, we compared the computational time per iteration of
IDRR, iLQR/FDDP, and Ipopt. In particular, we computed
the average computational time over 10,000 trials for systems
with various degrees of freedom (DOF), various numbers of
time stages N , and various numbers of threads (nproc) with
the quadratic terminal cost,

ϕ(q, v) =
1

2
qTe Qqqe +

1

2
vTe Qvve, (28)

where Qq = In, Qv = In, qe := q− qref , and ve := v− vref
with qref , vref ∈ Rn, and the quadratic stage cost,

l(q, v, a, u) =
1

2
qTe Qqqe +

1

2
vTe Qvve +

1

2
uTe Quue, (29)

where Qu = 0.001× In and ue := u− uref with uref ∈ Rn.
Fig. 1 shows the computational time per iteration [ms] of
each solver. Note that the results of iLQR and FDDP are
shown as one because they had almost the same compu-
tational time. Moreover, the results of Ipopt are only for
the fastest case, i.e., the case with N = 50 and nproc = 4,
because Ipopt was much slower than the other solvers. As
shown in the figure, for all combinations of N and number
of threads (nproc), our IDRR was faster than iLQR/FDDP
and Ipopt. This demonstrates that the inverse dynamics-based
formulation can reduce the computational cost compared
with the forward dynamics-based formulation. We also found
that IDRR became faster as the number of the threads
increased, whereas iLQR/FDDP did so only moderately. This
is because the proposed method reduces the computational
burden of the serial calculation in the Riccati recursion,
thanks to its multiple-shooting and sparsity structure, as
stated in III-C.

C. Numerical robustness

Second, we investigated the numerical robustness, i.e., the
convergence, of the proposed method through the OCP for
KUKA iiwa14, a 7-DOF manipulator. We set the length of
the horizon to 1 s and divided it into N = 50 steps, i.e.,
∆τ = 0.02[s]. The objective of the OCP is to make the
configuration q converge to qref and the velocity v converge
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Fig. 2. log10 scaled KKT errors of the proposed method (IDRR), FDDP,
and iLQR over 20 random trials.

to zero given a random initial state q̄ and v̄. We used the
quadratic terminal cost (28) and stage cost (29) and set qref
to [0 π/2 0 π/2 0 π/2 0]T, vref to zero, and uref to the
gravity compensation torques at qref . We did not impose any
inequality constraints in this experiment. iLQR and FDDP
used a line search and did not use regularization. IDRR did
not use either, while Ipopt used both of them. We initialized
qi and vi in the solution of IDRR, FDDP, and Ipopt by q̄
and v̄. We randomly selected each element of q̄ from [−1, 1]
and each element of v̄ from [−10, 10]. We ran 20 trials for
each solver and computed the l2-norm of the residual of the
KKT conditions, which we will refer to as the KKT error
hereafter, and the total cost to be minimized. Note that the
KKT conditions of IDRR are given by (2)–(5), (7), and (8)–
(12), while those of iLQR/FDDP and Ipopt are composed of
different equations based on forward dynamics and/or single-
shooting. Figure 2 shows the log10-scaled KKT errors of
IDRR, FDDP, and iLQR. Results for Ipopt are not shown
because it converged rather slowly (over 1000 iterations
were needed to reduce the KKT error to under 10−10 in
most cases) due to the quasi-Newton Hessian approximation.
Note as well that, as the equations representing the KKT
conditions differ between IDRR and FDDP/iLQR, we cannot
directly compare their KKT errors. However, from the graph
of FDDP, we can clearly see that FDDP diverged in two
trials. In addition, from the graph of iLQR, we can see that
in many trials the KKT error could not be completely reduced
because the iLQR did not produce a descent direction and
the step size became zero. On the other hand, IDRR reduced
the KKT error at each iteration in all cases, including those
in which FDDP and iLQR failed to converge. This indicates
that the proposed method is more robust than single-shooting
methods such as iLQR and FDDP.

D. MPC for floating base systems

Finally, we investigated the applicability of the proposed
method to floating base systems, which are a kind of underac-
tuated system, by simulating MPC implemented by IDRR for
the whole-body control of a quadruped ANYmal. To take the
rigid contacts into account, we treated the contact forces as
the optimization variables and imposed an equality constraint
in the form of Baumgarte’s stabilization method [26] for
each contact, i.e., a 12-dimensional equality constraint for
four contacts. We used a quadratic cost function to track the

0 [s] 1 [s] 3 [s]

5 [s] 7 [s] 8 [s]

Fig. 3. Posture control of ANYmal by whole-body MPC controller.

desired configuration. We also imposed inequality constraints
on the joint angle limits, angular velocity limits, and torque
limits and linearized friction cones using the PDIPM. We set
the length of the horizon to 1 s and divided it into N = 20
equal steps. We set the sampling time to 2.5 ms, and the MPC
controller updated the solution once per sampling period. We
utilized RaiSim [27], an articulated-body simulator with
contacts. Figure 3 shows the various postures of ANYmal
controlled by MPC. As can be seen, the proposed method
was able to control the underactuated system. Each control
update took around 2.1 ms with four threads on the same
laptop as in IV-B and achieved real-time MPC.

V. CONCLUSIONS

We proposed an efficient method of solving the OCP for
rigid-body systems on the basis of inverse dynamics and
the multiple-shooting method. In this method, we regard
all variables, including the state, acceleration, and control
input torques, as optimization variables and treat the inverse
dynamics as an equality constraint. We eliminated the up-
date in the control input torques from the linear equation
of Newton’s method by applying condensing for inverse
dynamics. The size of the resultant linear equation was
the same as that of the multiple-shooting method based on
forward dynamics except for the variables related to the
passive joints and contacts. The proposed method reduces
the computational cost of the dynamics and their sensitivities
by utilizing RNEA and its partial derivatives. In addition, it
increases the sparsity of the Hessian of the KKT conditions,
which further reduces the computational cost, e.g., of Riccati
recursion. Numerical experiments showed that the proposed
method is more than twice as fast as iLQR and a DDP variant
based on forward dynamics. They also showed that it is more
numerically robust than these conventional methods.

Our future work will include incorporating changes in
contact status by means of the hybrid optimal control
approach [28] or the contact-implicit approach [16], [29]
with an eye toward developing applications for manipulation
and locomotion. Both methods can be combined with the
proposed method because the contact forces are included in
the optimization variables.
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