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RetinaGAN: An Object-aware Approach to Sim-to-Real Transfer
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Abstract— The success of deep reinforcement learning (RL)
and imitation learning (IL) in vision-based robotic manipulation
typically hinges on the expense of large scale data collection.
With simulation, data to train a policy can be collected
efficiently at scale, but the visual gap between sim and real
makes deployment in the real world difficult. We introduce
RetinaGAN, a generative adversarial network (GAN) approach
to adapt simulated images to realistic ones with object-detection
consistency. RetinaGAN is trained in an unsupervised manner
without task loss dependencies, and preserves general object
structure and texture in adapted images. We evaluate our
method on three real world tasks: grasping, pushing, and
door opening. RetinaGAN improves upon the performance
of prior sim-to-real methods for RL-based object instance
grasping and continues to be effective even in the limited data
regime. When applied to a pushing task in a similar visual
domain, RetinaGAN demonstrates transfer with no additional
real data requirements. We also show our method bridges
the visual gap for a novel door opening task using imitation
learning in a new visual domain. Visit the project website at
retinagan.github.io

I. INTRODUCTION
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Fig. 1. Overview of RetinaGAN pipeline. Left: Train RetinaGAN using
pre-trained perception model to create a sim-to-real model. Right: Train the
behavior policy model using the sim-to-real generated images. This policy
can later be deployed in real.

Vision-based reinforcement learning and imitation learn-
ing methods incorporating deep neural network structure can
express complex behaviors, and they solve robotics manip-
ulation tasks in an end-to-end fashion [1], [2], [3]. These
methods are able to generalize and scale on complicated
robot manipulation tasks, though they require many hundreds
of thousands of real world episodes which are costly to
collect.

Some of this data collection effort can be mitigated by
collecting these required episodes in simulation and applying
sim-to-real transfer methods. Simulation provides a safe,
controlled platform for policy training and development with
known ground truth labels. Such simulated data can be
cheaply scaled. However, directly executing such a policy
in the real world typically performs poorly, even if the
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simulation configuration is carefully controlled, because of
visual and physical differences between the domains known
as the reality gap. In practice, we find the visual difference
to be the bottleneck in our learning algorithms and focus
further discussion solely on this.

One strategy to overcome the visual reality gap is pixel-
level domain adaptation; such methods may employ genera-
tive adversarial networks to translate the synthetic images to
the real world domain [4]. However, a GAN may arbitrarily
change the image, including removing information necessary
for a given task. More broadly for robotic manipulation, it
is important to preserve scene features that directly interact
with the robot, like object-level structure and textures.

To address this, we propose RetinaGAN, a domain adapta-
tion technique which requires strong object semantic aware-
ness through an object detection consistency loss. Retina-
GAN involves a CycleGAN [5] that adapts simulated images
to look more realistic while also resulting in consistent
objects predictions. We leverage an object detector trained
on both simulated and real domains to make predictions on
original and translated images, and we enforce the invariant
of the predictions with respect to the GAN translation.

RetinaGAN is a general approach to adaptation which
provides reliable sim-to-real transfer for tasks in diverse
visual environments (Fig. [I). In a specific scenario, we show
how RetinaGAN may be reused for a novel pushing task. We
evaluate the performance of our method on three real world
robotics tasks and demonstrate the following:

1) RetinaGAN, when trained on robotic grasping data,
allows for grasping RL task models that outperform
prior sim-to-real methods on real world grasping by
12%.

2) With limited (5-10%) data, our method continues to
work effectively for grasping, only suffering a 14%
drop in performance.

3) The RetinaGAN trained with grasping data may be
reused for another similar task, 3D object pushing,
without any additional real data. It achieves 90%
success.

4) We train RetinaGAN for a door opening imitation
learning task in a drastically different environment, and
we introduce an Ensemble-RetinaGAN method that
adds more visual diversity to achieve 97% success rate.

5) We utilize the same pre-trained object detector in all
experiments.

II. RELATED WORK

To address the visual sim-to-reality gap, prior work com-
monly apply domain randomization and domain adaptation
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techniques.

With domain randomization, a policy is trained with
randomized simulation parameters and scene configurations
which produce differences in visual appearance [6], [7], [8],
[9], [10], [11]. The policy may learn to generalize across
the parameter distribution and takes actions likely to work
in all situations. Policy performance relies heavily on the
kind of randomizations applied and whether they are close
to or cover reality. The recently proposed method, Automatic
Domain Randomization [12], automates the hyperparameter
tuning process for Rubik’s Cube manipulation. But, domain
randomization still requires manual, task-specific selection
of visual parameters like the scene, textures, and rendering.

Domain adaptation bridges the reality gap by directly re-
solving differences between the domains [13]. Images from a
source domain can be modified at the pixel-level to resemble
a target domain [4], [14]. Or, feature-level adaptation aligns
intermediate network features between the domains [15],
[16], [17]. GANs are a commonly applied method for pixel-
level transfer which only require unpaired images from both
domains [18], [19], [5], [20], [21]. Our method employs such
pixel-level adaptation to address the sim-to-real gap.

Action Image [22] is another approach to bridge the sim-
to-real gap through learning a domain invariant representa-
tion for the task of grasping. Our work is complementary to
this work and can help to further reduce this gap.

Among prior work that apply semantic consistency to
GAN training, CyCADA [23] introduces a pixel-level per-
ception consistency loss (semantic segmentation) as a di-
rect task loss, and applies the learned generator to other
semantic segmentation and perception tasks. Comparatively,
RetinaGAN uses object detection where labels on real data
is much easier to obtain and demonstrates that feature
understanding from object detection is sufficient to preserve
object semantics for robotics applications.

Recently, RL-CycleGAN [24] extends vanilla CycleGAN
[5] with an additional reinforcement learning task loss. RL-
CycleGAN enforces consistency of task policy Q-values
between the original and transferred images to preserve
information important to a given task. RL-CycleGAN is
trained jointly with the RL model and requires task-specific
real world episodes collected via some preexisting policy.
Comparatively, RetinaGAN works for supervised and imita-
tion learning, as it uses object detection as a task-decoupled
surrogate for object-level visual domain differences. This
requires additional real-world bounding box labels, but the
detector can be reused across robotics tasks. In practice, we
find the RetinaGAN easier to train since the additional object
detector is pre-trained and not jointly optimized.

III. PRELIMINARIES
A. Object Detection

We leverage an object detection perception model to
provide object awareness for the sim-to-real CycleGAN. We
train the model by mixing simulated and real world datasets
which contain ground-truth bounding box labels (illustrated
in Fig. [2). The real world object detection dataset includes

Fig. 2. Sim and real perception data used to train EfficientDet focuses
on scenes of disposable objects encountered in recycling stations. The real
dataset includes 44,000 such labeled images and 37,000 images of objects
on desks. The simulated dataset includes 625,000 total images.

robot images collected in general robot operation; labeling
granularity is based on general object type — all brands of
soda will be part of the “can” class. Simulation data is
generated with the PyBullet physics engine [25].

Object detection models are object-aware but task-
agnostic, and thus, they do not require task-specific data. We
use this single detection network as a multi-domain model
for all tasks, and we suspect in-domain detection training
data is not crucial to the success of our method. Notably, the
door opening domain is very different from the perception
training data domain, and we demonstrate successful transfer
in Section [V=Cl

While the initial dataset required for object detection can
be a significant expense, leveraging off-the-shelf models is a
promising direction, especially given our experimental results
with door opening. Furthermore, detection is a generally
useful robot capability, so roboticists may create detection
datasets for use cases beyond sim-to-real.

We select the EfficientDet-D1 [26] model architecture
(using the same losses as RetinaNet [27]) for the object
detector. EfficientDet passes an input RGB image through
a backbone feedforward EfficientNet [28] architecture, and
fuses features at multiple scales within a feature pyramid
network. From the result, network heads predict class logit
and bounding box regression targets.

B. CycleGAN

The RetinaGAN training process builds on top of Cy-
cleGAN [5]: an approach to learn a bidirectional mapping
between unpaired datasets of images from two domains, X
and Y, with generators G: X —Y and F :Y — X. These
generators are trained alongside adversarial discriminators
Dy, Dy, which classify images to the correct domain, and with
the cycle consistency loss capturing F(G(x)) = x,G(F(y) =y
for x € X,y € Y. We can summarize the training process with
the CycleGAN loss (described in detail in [5], [24]):

gCycleGAN(GJ:aDmDy) = fGAN(G,Dy,X,Y)
+$GAN(FaDX7Y7X) (1)
+;Lcycle-’%ycle(G7F)



Algorithm 1 Summary of RetinaGAN training pipeline.

1: Given: EfficientDet, Det, trained with simulation and

real robot data

Collect simulation (X) and real (Y) task episodes

while train G: X — Y and F : Y — X generators do
Iterate over batch of simulation (x) and real (y) data
Compute G(x) =x, F(X)=x"F(y)=y,G() ="
for pairs py,p; in {x, x’, X"}, {y, y’, y”} do

Compute Det(p1) = Det(p>) 10ss, ZLpep(p1,p2)

end for
Compute CycleGAN losses, £CycleGAN

10:  Take optimization step using losses

11: end while
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IV. RETINAGAN

RetinaGAN trains with a frozen object detector, Efficient-
Det, that provides object consistency loss. Once trained, the
RetinaGAN model adapts simulated images for training the
task policy model. Similarly to CycleGAN, we use unpaired
data without labels. The overall framework is described in
Algorithm [I] and illustrated in Fig. 3] and the details are
described below.

Real-to-Sim
Generator

Cycle Consistency Loss

Fig. 3. Diagram of RetinaGAN stages. The simulated image (top left) is
transformed by the sim-to-real generator and subsequently by the real-to-
sim generator. The perception loss enforces consistency on object detections
from each image. The same pipeline occurs for the real image branch at
the bottom.

From CycleGAN, we have six images: sim, transferred
sim, cycled sim, real, transferred real, and cycled real.
Because of object invariance with respect to transfer, an
oracle domain adapter would produce identical predictions
between the former three images, as well as the latter three.
To capture this invariance, we run inference using a pre-
trained and frozen EfficientDet model on each image; for

Focal
Similarity
Loss

Huber
Regression
Loss.

Fig. 4. Diagram of perception consistency loss computation. An Efficient-
Det object detector predicts boxes and classes. Consistency of predictions
between images is captured by losses similar to those in object detection
training.

each of these pairs, we compute a perception consistency
loss.

A. Perception Consistency Loss

The perception consistency loss penalizes the generator
for discrepancies in object detections between translations.
Given an image [, EfficientDet predicts a series of anchor-
based bounding box regressions and class logits at several
levels in its Feature Pyramid Network [29].

We compute the perception consistency loss (Zrep) given
a pair of images similarly to the box and class losses in
typical RetinaNet/EfficientDet training. However, because
the Focal Loss [27], used as the class loss, assumes one-
hot vector ground truth labels, we propose a variation called
Focal Consistency Loss (FCL) which is compatible with
logit/probability labels (explained below in Section [[V-B).

Without loss of generality, consider an image pair to be
x and G(x). This loss can be computed with a pre-trained
EfficientDet network as:

boxy, cls, = EfficientDet(x) 2)
boxg(x)clsg(y) = EfficientDet(G(x)) 3)
Lorep (%, G(x)) = Liguber (bOXy, bOX (1)) 4)

+FCL(clsy, clsg(y))

Luber 1s the Huber Loss [30] used as the box regression
loss. This process is visualized in Fig. [

The Perception Consistency Loss on a batch of simulated
images x and real images y, using the sim-to-real generator
G and the real-to-sim generator F, is:

iy (5.3 F,§) = Lo (5,G(0) + 3 Zorey (. F(G()
+ %fpmp(G(x)vF(G(x)) &)
+ Ly F ) + 5 Zonep (0 GF ()

n % Lo (F(7),G(F(y))

We halve the losses involving the cycled F(G(x)) and
G(F(x)) images because they are compared twice (against
the orginal and transferred images), but find that this weight
has little effect in practice.

We arrive at the overall RetinaGAN loss:

gRetinaGAN(GvFa Dany) = gCycleGAN(G7F7Dany) (6)
+ A«prcpfprcp (-xvya F7 G)



B. Focal Consistency Loss (FCL)

We introduce and derive a novel, interpolated version of
the Focal Loss (FL) called Focal Consistency Loss (FCL),
which extends support to a ground truth confidence proba-
bility y € [0,1] from a binary y € {0,1}. Focal losses handle
class imbalances in one-stage object detectors, improving
upon Cross Entropy (CE) and Balanced Cross Entropy (BCE)
losses (Section 3, [27]).

We begin from CE loss, which can be defined as:

CE(y,p) = ylogp— (1 —y)log(1 —p) @)

where p is the predicted probability.

BCE loss handles class imbalance by including a weight-
ing term o € [0,1] if y=1 and 1 — « if y = 0. Interpolation
between these two terms yields:

BCE(y,p) =[(2a0 = 1)p+ (1 — a)]CE(y, p) (8)

Focal Loss weights BCE by a focusing factor of (1 — p,)?,
where Yy >0 and p; is pif y=0and | —p if y=1 to
addresses foreground-background imbalance. FCL is derived
through interpolation between the binary cases of p;:

FCL(y,p) = [y — p|"BCE(y, p) 9)

FCL is equivalent to FL when the class targets are one-
hot labels, but interpolates the loss for probability targets.
Finally, FL is normalized by the number of anchors assigned
to ground-truth boxes (Section 4, [27]). Instead, FCL is
normalized by the total probability attributed to anchors in
the class tensor. This weights each anchor by its inferred
probability of being a ground-truth box.

C. Hyperparameters

We follow the hyperparameter selection of Acycle = 10
from RL-CycleGAN without tuning. Aup trades focus on
object reconstruction quality with overall image realism.
We find 0.1 to 1.0 to be stable, and selected 0.1 for all
experiments, as objects were well-preserved at this value. We
find relative weights between %, terms not important.

V. TASK POLICY MODELS AND EXPERIMENTS

We aim to understand the following scenarios: 1) the value
of sim-to-real at various data sizes by comparing robotics
models trained with RetinaGAN vs without RetinaGAN 2)
with purely sim-to-real data, how models trained with various
GANSs perform 3) transfer to other tasks.

We begin with training and evaluating RetinaGAN for RL
grasping. We then proceed by applying the same RetinaGAN
model to RL pushing and finally re-train on an IL door
opening task. See the Appendix for further details on training
and model architecture.

A. Reinforcement Learning: Grasping

We use the distributed reinforcement learning method Q2-
Opt [31], an extension to QT-Opt [3], to train a vision based
task model for instance grasping. In the grasping task, a
robot is positioned in front of one of three bins within a
trash sorting station and attempts to grasp targeted object

instances. The RGB image and a binary mask for the grasp
target is input into the network. Real world object classes
are focused on cups, cans, and bottles, although real training
data is exposed to a long tail of discarded objects. Grasps
in simulation are performed with the PyBullet [25] physics
engine, with 9 to 18 spawned objects per scene. Example
images are visualized in Fig. [5]

When using real data, we train RetinaGAN on 135,000
off-policy real grasping episodes and the Q2-Opt task model
on 211,000 real episodes. We also run a low data experiment
using 10,000 real episodes for training both RetinaGAN and
Q2-Opt. We run distributed simulation to generate one-half
to one million on-policy training episodes for RetinaGAN
and one to two million for Q2-Opt.

We evaluate with six robots and sorting stations. Two
robots are positioned in front of each of the three waste
bins, and a human manually selects a cup, can, or bottle
to grasp. Each evaluation includes thirty grasp attempts for
each class, for ninety total. By assuming each success-failure
experience is an independent Bernouili trial, we can estimate
the sample standard deviation as /q(1—¢)/(n—1), where
q is the average failure rate and n is the number of trials.

TABLE I
Instance grasping success mean and estimated standard deviation (est. std.)
of Q2-Opt compared between different training data sources across 90

trials. Results are organized by the number of real grasping episodes used.

Model Grasp Success  Est. Std.
Sim-Only 18.9% 4.1%
Randomized Sim 41.1% 5.2%
GAN: 10K Real, Q2-Opt: 10K Real

Real 22.2% 4.4%
RetinaGAN 47.4% 5.3%
RetinaGAN+Real 65.6% 5.0%
GAN: 135K Real, Q2-Opt: 211K Real

Real 30.0% 4.9%
Sim+Real 54.4% 5.3%
RetinaGAN+Real 80.0% 4.2%
GAN: 135K Real, Q2-Opt: 0 Real

CycleGAN [5] 67.8% 5.0%
RL-CycleGAN [24] 68.9% 4.9%
RetinaGAN 80.0% 4.2%

We use the RL grasping task to measure the sim-to-real
gap and compare methods in the following scenarios, which
are displayed in Table

¢ Train by mixing 10K real episodes with simulation to
gauge data efficiency in the limited data regime.

e Train by mixing 135K+ real grasping episodes with
simulation to investigate scalability with data, data
efficiency, and performance against real data baselines.

¢ Train Q2-Opt with only simulation to compare between
RetinaGAN and other sim-to-real methods.

In the sim-only setup, we train with fixed light position

and object textures, though we apply photometric distortions
including brightness, saturation, hue, contrast, and noise.



RetinaGAN
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Fig.5. Sampled, unpaired images for the grasping task at various scales translated with either the sim-to-real (left) or real-to-sim (right) generator. Compared
to other methods, the sim-to-real RetinaGAN consistently preserves object textures and better reconstructs real features. The real-to-sim RetinaGAN is
able to preserve all object structure in cluttered scenes, and it correctly translates details of the robot gripper and floor.

In simulation evaluation, a Q2-Opt model achieves 92%
instance grasping success on cups, cans, and bottles. A
performance of 18.9% on the real object equivalents indicates
a significant sim-to-real gap from training in simulation
alone.

We compare against baselines in domain randomization
and domain adaptation techniques. Domain randomization
includes variations in texture and light positioning.

On the limited 10K episode dataset, RetinaGAN+Real
achieves 65.6%, showing significant performance improve-
ment compared to Real-only. When training on the large real
dataset, RetinaGAN achieves 80%, demonstrating scalability
with more data. Additionally, we find that RetinaGAN+Real
with 10K examples outperforms Sim+Real with 135K+
episodes, showing more than 10X data efficiency.

We proceed to compare our method with other domain
adaptation methods; here, we train Q2-Opt solely on sim-to-
real translated data for a clear comparison. RL-CycleGAN
is trained with the same indiscriminate grasping task loss as
in [24], but used to adapt on instance grasping. This could
explain its relatively lower improvement from results in [24].
RetinaGAN achieves 80%, outperforming other methods by
over two standard deviations, and interestingly, is on par with
RetinaGAN+Real. We hypothesize that the knowledge of the
real data was largely captured during RetinaGAN training,
and the near on-policy simulation data is enough to train a
high performing model.

B. Reinforcement Learning: 3D Object Pushing

We investigate the transfer capability of RetinaGAN
within the same sorting station environment by solving a
3D object pushing task. We test the same RetinaGAN model
with this visually similar but distinct robotic pushing task
and show that it may be reused without fine-tuning. No

Simulation RetinaGAN

Z LY

Fig. 6.
the robot needs to push an upright object to the goal position, the red dot,
without knocking it over.

Example unpaired images from the object pushing task, where

additional real data is required for both the pushing task and
RetinaGAN.

The pushing task trains purely in simulation, using a scene
with a single bottle placed within the center bin of the sorting
station and the same Q2-Opt RL framework (Fig.[6). Success
is achieved when the object remains upright and is pushed
to within 5 centimeters of the goal location indicated by
a red marker. We stack the initial image (with the goal
marker) and current RGB image as input. For both sim and
real world evaluation, the robot needs to push a randomly
placed tea bottle to a target location in the bin without
knocking it over. Further details are described in [32], a
concurrent submission. Evaluation results are displayed in
Table [l We train a Q2-Opt policy to perform the pushing
task in simulation only and achieve 90% sim success. When
deploying the sim-only RL policy to real, we get 0% success,
revealing a large sim-to-real gap. By applying RetinaGAN
to the RL training data, we create a policy achieving 90%
success, demonstrating strong transfer and understanding of
the real domain.



TABLE II
Success rate mean and estimated standard deviation (est. std.) of pushing
an upright tea bottle to goal position across 10 attempts.

Model Push Success  Est. Std.
Sim-Only 0.0% 0.0%
RetinaGAN 90.0% 10.0%

C. Imitation Learning: Door Opening

We investigate RetinaGAN with a mis-matched object
detector (trained on recycling objects) on an door opening
task using a supervised learning form of behavioral cloning
and imitation learning (IL). This task is set in a dramatically
different visual domain, policy learning framework and al-
gorithm, and neural network architecture. It involves a fixed,
extended robot arm with a policy controlling the wheels of
the robot base to open the doors of, and enter, conference
rooms (Fig. [7).

The supervised learning policy is represented by a ResNet-
FiLM architecture with 18 layers [33]. Both the RetinaGAN
model and the supervised learning policy are trained on 1,500
human demonstrations in simulation and 29,000 human
demonstrations on real conference doors. We evaluate on
three conference rooms seen within the training demonstra-
tions. We train and evaluate on three conference rooms with
both left and right-swinging doors, for ten trials each and
thirty total trials.

RetinaGAN RetinaGAN 2

Simulated Images

Real Images

Fig. 7. Images sampled from the door opening task in simulation (red
border) and real (blue border). Generated images from two separately trained
RetinaGAN models highlight prediction diversity in features like lighting
or background; this diversity is also present in the real world dataset.

With the door opening task, we explore how our domain
adapation method performs in an entirely novel domain,
training method, and action space, with a relatively low
amount of real data. We train the RetinaGAN model using
the same object detector trained on recycling objects. This
demonstrates the capacity to re-use labeled robot bounding
box data across environments, eliminating further human

TABLE III
Success rate mean and estimated standard deviation (est. std.) of door
opening across 30 trials. RetinaGAN+Real result was selected from best
of three models used in Multi-RetinaGAN+Real.

Model Seen Doors  Est. Std.
Sim-only 0.0% 0.0%
Real 36.6% 8.9%
Sim+Real 75.0% 8.0%
RetinaGAN+Real 76.7% 7.9%
Ensemble-RetinaGAN+Real 93.3% 4.6%
Ensemble-RetinaGAN 96.6 % 3.4%

labeling effort. Within door opening images, the perception
model produces confident detections only for the the robot
arm, but we hypothesize that structures like door frames
could be maintained by consistency in low-probability pre-
diction regimes.

Compared to baselines without consistency loss, Retina-
GAN strongly preserves room structures and door locations,
while baseline methods lose this consistency (see Appendix).
This semantic inconsistency in GAN baselines presents a
safety risk in real world deployment, so we did not attempt
evaluations with these models.

We then evaluate IL models trained with different data
sources and domain adaptors, and displayed the results
in Table [l An IL model trained on demonstrations in
simulation and evaluated in simulation achieves 98% success.
The same model fails in real with no success cases - showing
a large sim-to-real gap.

By mixing real world demonstrations in IL model training,
we achieve 75% success on conference room doors seen in
training time. We achieve a comparable success rate, 76.7%,
when applying RetinaGAN.

By training on data from three separate RetinaGAN mod-
els with different random seeds and consistency loss weights
(called Ensemble-RetinaGAN), we are able to achieve 93.3%
success rate. In the low data regime, RetinaGAN can oscillate
between various reconstructed semantics and ambiguity in
lighting and colors as shown in Fig. We hypothesize
that mixing data from multiple GANs adds diversity and
robustness, aiding in generalization. Finally, we attempt
Ensemble-RetinaGAN without any real data for training the
IL model. We achieve 96.6%, within margin of error of the
Ensemble-RetinaGAN+Real result.

VI. CONCLUSIONS

RetinaGAN is an object-aware sim-to-real adaptation tech-
nique which transfers robustly across environments and
tasks, even with limited real data. We evaluate on three tasks
and show 80% success on instance grasping, a 12 percentage-
point improvement upon baselines. Further extensions may
look into pixel-level perception consistency or other modali-
ties like depth. Another direction of work in task and domain-
agnostic transfer could extend RetinaGAN to perform well
in a visual environment unseen at training time.



APPENDIX
A. Alternative Perception Losses

We note that it is also possible to train separate perception
networks for each domain. However, this adds complexity
and requires that the object sets between synthetic and real
data be close to bijective, because both models would have
to produce consistent predictions on perfectly paired images.

Providing perception consistency with off-the-shelf, pre-
trained models is a promising future direction that eliminates
the costs of perception model creation. Future work may in-
vestigate whether such models can be successfully leveraged
to train RetinaGAN. As they are likely trained solely on real
data, the relatively unbalanced predictions between the sim
and real domains may destablize training.

While segmentation models like Mask-RCNN [34] and
ShapeMask [35] provide dense, pixel-level object super-
vision, it is practically easier and more efficient to label
object detection data. However, it may provide a stronger
supervision signal, and semantic segmentation models may
provide stronger consistency for background objects and
structures.

B. Door Opening Figure

See Fig. [8] for example of semantic structure distortions
when training the door opening task with CycleGAN.

Simulated Images

CycleGAN

Fig. 8. CycleGAN can distort semantic structure when trained on door
opening images, in the low data regime. Images on the right are transfered
results of the simulated image on the left.

C. Perception Model Training

Hyperparameters used in object detection model training
are listed in Table [V] We use default augmentation pa-
rameters from [27], including a scale range of 0.8 to 1.2.
Among the 59 classes, the following are frequently used:

robot, bottle, bowl, can, cup, bag/wrapper, bowl, and plate.
Other classes appear sparesely or not at all.

TABLE IV
Hyperparameters used for EfficientDet Training.

Value

4 x Google TPUV3 Pods
EfficientNet-D1 [26]

Hyperparameter

Training Hardware
Network Architecture

Precision bfloatl6
Input Resolution 512x640 pixels
Preprocessing Crop, scale, Horizontal flipping

Pad to 640x640
90,000
tf.train.MomentumOptimizier
0.08, stepped two times with 10% decay

Training Step Count
Optimizer
Learning Rate

Momentum 0.08
Batch Size 256
Weight Decay le-5
Classes 59

D. RetinaGAN Model Training

We train RetinaGAN following the hyper-parameters de-
scribed in Appendix A of [24]. We did not tune any Cycle-
GAN hyper-parameters, and we primarily searched between
0.1 and 1 for .Zp. We did not run any hyper-parameter
search on relative weights between %}, terms. We generate
simulation images with the following object set (and counts):
paper bags (1), bottles (9), bowls (1), napkins (1), cans (12),
cups (6), containers (2), plates (1), and wrappers (10). Each
training batch includes 256 simulation and 256 real images.
Photometric distortions are defined in the Tensor2Robot
framework]

TABLE V
Hyperparameters used for GAN Training.

Value

4 x Google TPUV3 Pods
U-Net [36], Fig. 5 in [24]
bfloatlé
512x640 pixels
Crop to 472x472 pixels
Apply photometric distortions
50,000-100,000
tf.train.AdamOptimizer
B1 =0.1,5,=0.999

Hyperparameter

Training Hardware
Network Architecture
Precision

Input Resolution
Preprocessing

Training Step Count
Optimizer

Learning Rate 0.0001

Batch Size 512

Weight Decay Te-5

Additional Normalization Spectral Normalization [37]
ZGAN 1 weight (Agan), updates G, F, Dy, Dy
Leyele 10 weight (Acycre). updates G,F
Lorep 0.1 weight (Aprcp), updates G, F

E. 02-Opt RL Model Training

We use the Q2R-Opt [31] model and training pipeline for
both the grasping and pushing tasks. We use the same hyper-
parameters as in this prior work, without any tuning. We train
on the same simulated object set as in the RetinaGAN setup.

Ihttps://github.com/google-research/tensor2robot/
blob/master/preprocessors/image_transformations.py
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When using the full real dataset, we sample each mini-
batch from simulation episodes with a 50% weight and real
episodes with a 50% weight. With the restricted 10K episode
dataset, we sample from simulation with 20% weight and
real with 80% weight, as to not overfit on the smaller real
dataset. We did not tune these ratios, as in prior experiments,
we found that careful tuning was not required.

F. ResNet-FiLM IL Model Training

We train IL with the ResNet-FiLM [33] model with a
ResNet-18 architecture defined in the Tensor2Robot frame-
workﬁ For training RetinaGAN and Multi-RetinaGAN, we
mix real demonstrations, simulated demonstrations, and
RetinaGAN-adapted simulated demonstrations. We use a
lower 20% weight for real data (because of the small dataset
size) and evenly weight simulated and adapted demonstra-
tions. The action space is the 2D movement of the robot base.
Additional details will be provided in an as-yet unreleased
paper; this work focuses on the benefits of CycleGAN-
adapted data independently of whether policies are trained
with IL or RL. We used the same hyper-parameters for all
experiments.

G. Evaluation

For grasping, we evaluate with the station setup in Fig. [0
Each setup is replicated three times (with potentially different
object brands/instances, but the same classes), and one robot
positioned in front of each bin. We target the robot to only
grasp the cup, can, and bottle, for a total of eighteen grasps.
This is repeated five times for ninety total grasps.

e ——
— . Tv] &

Fig. 9. The two evaluation station setups displaying the object classes
present in each bin.

For pushing, we evaluate with a single Ito En Green Tea
Bottle filled 25% full of water.

Zhttps://github.com/google-research/tensor2robot/
blob/master/layers/film_resnet_model.py

For door opening, we evaluate on three real world confer-
ence room doors. Two doors swing rightwards and one door
swings leftwards. The episode is judged as successful if the
robot autonomously pushes the door open and the robot base
enters the room.
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