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Abstract— The widely-used Extended Kalman Filter (EKF)
provides a straightforward recipe to estimate the mean and
covariance of the state given all past measurements in a causal
and recursive fashion. For a wide variety of applications, the
EKF is known to produce accurate estimates of the mean and
typically inaccurate estimates of the covariance. For applica-
tions in visual inertial localization, we show that inaccuracies
in the covariance estimates are systematic, i.e. it is possible to
learn a nonlinear map from the empirical ground truth to the
estimated one. This is demonstrated on both a standard EKF
in simulation and a Visual Inertial Odometry system on real-
world data.

I. INTRODUCTION

While deep learning has dominated much of the computer
vision literature in recent years, “traditional” filtering meth-
ods still perform better in localization problems that use one
or more cameras, such as Visual Odometry (VO) and Visual
Inertial Odometry (VIO). This is because the filters hard-
code known nonlinear kinematic models that are difficult to
learn from data, although deep neural networks are often
used to learn feature representations of measured data. The
Extended Kalman Filter (EKF) is the most common because
it is so simple, even though complex non-linearities in the
rotational dynamics and patent violation of the Gaussian
assumption in the visual measurements remove all guarantees
of convergence and accuracy. In practice, the EKF provides
accurate state estimates x̂ and overconfident covariance esti-
mates P̂ [1]. To improve the covariance estimates of VO
problems, [2] and [3] learn time-dependent measurement
noise covariances Q while [4] uses a deep convolutional
network to correct x̂ and P̂ directly from images. On the
other hand, [5], [6], [7], [8], [9], [10], [11] improve VIO
covariance estimation by using filters specific to VIO. The
accuracy of covariance estimates are evaluated by tabulating
the percentage of timesteps where the estimation error is
within the 1,2,3-σ bounds dictated by the estimated covari-
ance P̂ .

Our approach is most similar to [4] in that we use super-
vised machine learning to improve the covariance estimates,
but the input to our models only consist of P̂ and x̂ instead
of the entire input image; having only P̂ and x̂ as inputs
allows us to use much smaller networks. We also create a
statistical test similar to that used in [5], [11] to evaluate the
calibration of estimates from a state estimator, except without
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the need for Monte-Carlo experiments (Sect. II). Using
that statistical test, we show that ground-truth covariance
can be computed assuming ergodicity when Monte-Carlo
experiments are impractical (Section II-D) and also count
the number of timesteps that are within 1,2,3-σ bounds
given by P̂ . In Section IV, we test our method on two
simple examples as a quick validation. Section V contains
our main experiment, where we test our method on a VIO
system processing real-world data. We achieved significant
calibration using both a state-independent model φ(P̂ ) and
a state-dependent model φ(x̂), which implies that the state
x̂ contains very little information about the miscalibration of
P̂ – most of the miscalibration of P̂ can be computed from
P̂ itself.

II. EVALUATING CALIBRATION OF KALMAN FILTERS

A. Background: Sources of Error in EKFs

Consider a nonlinear discrete-time dynamical system and
measurement model with state x ∈ Rn and measurement
y ∈ Rm:

xk = f(xk−1, uk−1) + νk

yk = h(xk) + wk
(1)

Assume that νk ∼ N (0, R) and wk ∼ N (0, Q) are white
Gaussian noise processes, and the input uk is known, along
with the dynamics f and nominal measurement model h.
An Extended Kalman Filter (EKF) recursively computes
an estimate of xk, x̂k, along with its covariance P̂k =
E
[
(xk − x̂k)(xk − x̂k)T

]
whenever it receives a new mea-

surement yk by computing the quantities:

x̂k|k−1 = f(x̂k−1, uk−1)

P̂k|k−1 = AkP̂k−1A
>
k +R

K = P̂k|k−1C
>
k (CP̂k|k−1C

> +Q)−1

x̂k = x̂k|k−1 +K(yk − h(x̂k|k−1))

P̂k = (I −KC)P̂k|k−1(I −KC)> +KQK>.

(2)

The matrices Ak and Ck are the Jacobians of f(x, u) and
h(x) with respect to x evaluated at x̂k−1 and uk−1. Estimates
x̂k and P̂k represent a posterior Gaussian distribution. If
f(x, u) and h(x) are both linear, then as k increases, x̂k
is guaranteed to converge to xk and the computation of the
P̂k are completely separate from the computation of the x̂k.
Moreover, the innovation zk = yk − h(x̂k|k−1) should be
zero-mean and white in both components and time. These
same guarantees do not apply when either f(x, u) or h(x)
are nonlinear. In the nonlinear case, the mean and innovation
are computed using the original nonlinear model f and
the covariance is updated using linearized models. These
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unaccounted linearization errors mean that P̂k is usually
underestimated [1]. Finally, most implementations of VO and
VIO treat Q and R as constants, though they may be state
and time-dependent.

B. 1,2,3-σ Intervals in Multiple Dimensions

For a set of discrete samples φk, k = 1, . . . , N drawn
from a 1-D Gaussian distribution N (µk, σk), about 68%
lie in the interval µk ± σk, 95% in µk ± 2σk, and 99.7%
in µk ± 3σk. The same can be done for a set of points
vk ∈ Rd, each from a potentially different multivariate
Gaussian distribution N (uk,Σk). First, diagonalize each Σk
with eigenvalue decomposition: Σk = XkΛkX

>
k . Then, the

columns of the matrix XkΛ
1/2
k form an orthogonal, but not

orthonormal, basis and

νk = (XkΛ
1/2
k )−1(vk − uk) (3)

contains the coordinates of vk in the new coordinate system.
Then, for each dimension 1, . . . , d of νk, 68% of samples
are in the interval [−1, 1], 95% in [−2, 2] and 99.7% in
[−3, 3]. By counting the value of νk for each dimension at
each timestep, we can evaluate the filter’s calibration for each
individual dimension, but not overall.

C. Overall Calibration with Monte-Carlo Simulations

Let ek = xk − x̂k be the estimation error and ρ̂k be the
normalized estimation error squared (NEES), or square of
the Mahalanobis distance at each timestep k:

ρ̂k = e>k P̂
−1
k ek (4)

ρ̂k ∼ χ2
n, i.e. ρ̂k is a χ2 variable with n degrees of

freedom. If we run M Monte-Carlo simulations and compute
a value of ρk,i for every timestep k in each run i, then
their sum ˆ̄ρk =

∑M
i=1 ρ̂k,i is a χ2 variable with M × n

degrees of freedom. Then, over the Monte-Carlo runs, we
can compute confidence intervals for values of ˆ̄ρk. Values
for ˆ̄ρk should remain within the confidence interval for all k
if the P̂k are well-calibrated. If ˆ̄ρk is consistently too high,
then the covariance estimates P̂k are too optimistic. If ˆ̄ρk
is consistently too low, then the P̂k are conservative. This
approach was used in [5], [11] to measure the accuracy of
their covariance estimates.

Unfortunately, Monte-Carlo approximations are not scal-
able, and not practical in a real-world scenario where one
would have to carefully place the sensor platform in the
same precise position and orientation at every run to conduct
repeated trials. Also, to perform repeated and sufficiently
exciting motions required for VIO, one would need a precise
actuation system, like a robot arm and not a quadcopter.
Therefore, we need another approach to evaluate the covari-
ance calibration.

D. Exploiting Residual Independence for Calibration

Here, we present a finer-grained method for evaluating
calibration in a multiple dimensions with a goodness-of-fit

test for unbiased estimators that does not require Monte-
Carlo simulations. First, we assume that the ek are ap-
proximately independent. While not strictly satisfied, this
assumption enables a practical procedure, which we will
then validate empirically. Next, let pρ̂k be the approximate
probability density function of ρ̂k, which can be computed
with a normalized histogram of the ρ̂k. Next, since each
ρ̂k ∼ χ2

n if the system is well-calibrated, we can then use
pρ̂k(x) in a goodness-of-fit test with the χ2

n distribution.
For this work, we use the L2 divergence [12] between this
approximate density and the density of χ2

n as a comparison
metric, pχ2

n
(x):

DL2
(ρ̂k‖χ2

n) =

(∫ ∞
0

(pρ̂k(x)− pχ2
n
(x))2dx

)1/2

(5)

DL2 is easy to compute and useful for comparing goodness-
of-fit of multiple sets of ρ̂k on the same dataset, but not as an
absolute measure as one would use a p-value. We will use it
to compare methods of calibration to ground truth covariance
in the rest of the paper.

III. COMPUTING A CALIBRATED COVARIANCE

Our hypothesis is that the covariance estimates provided
by an EKF present systematic errors and because of that,
there exists a learnable map from the estimated value to a
more calibrated value that can be executed in real-time. We
consider maps of the following forms, in order of complexity:

1) A multiplicative scalar: All components of the esti-
mated covariance are offset by a single scaling factor,
Pk = sP̂k.

2) Pk = AP̂kA
>, i.e. the map is a constant transformation

of the covariance.
3) Qk = φ(P̂k) and Pk = QkQ

>
k , i.e. the map is an arbi-

trary function of the estimated covariance. This map,
and the next, can be implemented by a feedforward
neural network.

4) Qk = φ(x̂k, P̂k) and Pk = QkQ
>
k , i.e. the map is

an arbitrary function of the estimated state and the
estimated covariance.

An even more general model would be a map represented
with a recurrent neural network. Our experiments show,
however, that the memoryless maps of hypotheses 3 and 4
are sufficient for uncertainty calibration.

A. Finding Ground-Truth Covariance

Validating any of the hypotheses above requires a “ground-
truth” value of covariance. In a Monte-Carlo experiment, we
can use the unbiased sample covariance at a given timestep
k given measurements ek,i:

P̃k =
1

M − 1

M∑
i=1

ek,ie
>
k,i (6)

However, running many nearly identical tests on real-
world equipment to measure ground-truth covariance is
costly and time-consuming. For real-world experiments, we
can compute a pseudo-ground-truth covariance with only one



test if we additionally assume that that the motion state
is approximately ergodic, i.e. that the population statistics
match the temporal statistics. Practically, assuming ergod-
icity means assuming that errors in the motion state vary
slowly over time, which is often true for converged filters.
For an odd-sized time window K, we define pseudo-ground-
truth as

P̃k =
1

K − 1

k+bK/2c∑
k−bK/2c

eke
>
k . (7)

We can then use P̃k instead of P̂k in (4) to compute a
new set of ρ̃k and a new value for DL2

. For simplicity, we
discard timesteps for which we cannot compute a sample
covariance, k ≤ bK/2c and k ≥ N − bK/2c, where N is
the total number of timesteps, from further analysis. Using
these ρ̃k, we can verify the ergodic assumption: if the ergodic
assumption is true, then DL2

(ρ̃k‖χ2
n) should be small. In the

experiments section, we visualize typical “small” and “large”
values of DL2

.
The authors of [3] and [4] trained neural networks to

predict covariances by training them with negative log-
likelihood (NLL) losses. Unlike the typical maximum like-
lihood problem in which a few parameters are estimated
from many data, in their NLL loss every datum is potentially
drawn from a different distribution. We believe that they were
nevertheless able to train a neural network to predict covari-
ances because their training data was approximately ergodic
and therefore not drawn from many different distributions.

B. Hypothesis 1: Constant Multiplicative Scalar

We solve for a constant factor over all M sequences in a
training dataset using the following optimization problem:

minimize
s

M∑
q=1

N∑
k=0

n∑
i=0

n∑
j=i

(sP̂ i,jq,k|k − P
i,j
q,k)2

subject to s ≥ 0

(8)

where P i,jq,k denotes the i, jth entry of the covariance matrix
from the kth timestep of the qth sequence. This hypothesis
is simplistic and not powerful enough, but it is an easily
solvable quadratic program.

C. Hypothesis 2: Constant Linear Transformation

The second hypothesis is expressed as the optimization
problem with decision variable A ∈ Rn×n

minimize
A

M∑
q=1

N∑
k=0

n∑
i=0

n∑
j=i

((AP̂q,k|kA
> − Pq,k)i,j)2 (9)

This quartic and nonconvex optimization problem is the nat-
ural next step from Hypothesis 1. We implement Hypothesis
2 using IPOPT [13]. Theoretically, this adjustment should
be at least as effective as the constant multiplicative scalar,
since A = sI , where s is the solution to (8), is a feasible
solution to (9). However, because local nonconvex optimizers
are sensitive to the initial guess and are not guaranteed to

return the correct solution, the calibration of Hypothesis 2 is
not uniformly better than that of Hypothesis 1. In Sections
IV and V, it is always worse than Hypothesis 1.

D. Hypothesis 3 and 4: Fully-Connected Neural Networks

Let Q ∈ Rn×n be the output of the neural network and
let the adjusted covariance be QQ>. We use a weighted
elementwise difference between the upper triangles of QQ>

and P as the loss function:

L =

n∑
i=0

n∑
j=i

wij((QQ
>)i,j − P i,j)2 (10)

Each timestep of each sequence serves as a training point.
The inputs to the network are the upper triangle of a
covariance matrix. In each of our experiments, we trained
many simple feedforward neural networks using the Adam
Optimizer in Tensorflow with varying architectures, L2 reg-
ularization weights, and epochs; very little thought was
given to the architectures we tested. The outputs of these
neural networks are well-calibrated and the best performing
architecture for each experiment is detailed in Sections IV
and V.

IV. TWO CONTRASTING ILLUSTRATIONS

Before presenting our main experiment in Section V, we
illustrate concepts from the previous two sections with a
couple of easy-to-visualize examples.

A. Illustration 1: Linear Kalman Filter

A system that should have perfectly calibrated state esti-
mates is a spring-mass damper system with mass m = 1,
spring constant k = 4, and damping coefficient c = 0.1.
After discretizing time into timesteps of length δt = 0.01s,
the discrete-time dynamics and measurement equations are:[

x1
x2

]
k+1

=

[
1 δt

− k
mδt 1− c

mδt

] [
x1
x2

]
k

+

[
0
δt

]
uk + νk

yk =
[
1 0

] [x1
x2

]
k

+ wk

(11)
where x1 is the horizontal position, x2 is the horizontal
velocity, and u is a forcing input. In our experiment, u(t)
is the discretized version of sin(π2 t). In both the simulation
and the Kalman Filter, νk ∼ N (0, 0.0032) and each element
of wk ∼ N (0, 0.0052). Results for a single run from a set of
50 Monte-Carlo trials are shown in Figure 1. The overlay of
the χ2

2 density and the normalized histogram of the ρ̂k are a
near-perfect fit. Additionally, using the transformation in (3),
we find that in the first dimension 68.20, 95.42, and 99.74%
of points are within ±1, 2, 3, respectively. In the second
dimension, the percentages are 68.12, 95.45, and 99.73%.

B. Illustration 2: EKF for 2D Localization

We repeat the same process above for an extended
Kalman Filter for a 2D localization problem. The system
is a Dubin’s car with state [x, y, v, θ] and acceleration
a and angular velocity ω inputs. It receives range and



(a) State Errors (b) Innovation

(c) χ2
2 Overlay with pρ̂k (d) χ2

2 Overlay with pρk

Fig. 1. The state estimation and innovation of the linear Kalman Filter for a
single run are shown in (a) and (b) - the state estimation is accurate and the
innovation is essentially white noise. (c) plots pρ̄k against the χ2

2 density
for a single run. Visually, the histogram and the χ2

2 density are very close,
showing that the independence assumption holds and that the covariance
estimates are well-calibrated. This is further verified in (d), which is the
same plot as (c), except that the normalized histogram is computed using a
ground-truth covariance from Monte-Carlo trials. (6).

bearing measurements from a set of four known beacons
located at (3.5,−1.1), (10, 10), (−5, 15), and (−10,−8.2).
The discrete-time dynamics with discretization δt = 0.1s
are:

xk = xk−1 +

∫ tk

tk−1

v(τ) cos(θ(τ))dτ

yk = yk−1 +

∫ tk

tk−1

v(τ) sin(θ(τ))dτ

vk = aδt

θk = ωδt

(12)

and the measurement equations for beacon i located at
[xi, yi] are:

ri,k = ((xi − xk)2 − (yi − yk)2)1/2

φi,k = arctan(yi − yk, xi − xk)− θ
(13)

In these experiments, we generate 11 training sequences and
one test sequence of ak and ωk. In all 12 sequences ak is a
sinusoid with frequency 0.5Hz and ωk is a constant. Figure
2 is the corresponding figure to Figure 1 for this localization
problem. It is clear that although the state estimation errors
are small, the covariance estimates are inaccurate, and we
test Hypotheses 1-4 on this problem. The neural network
in Hypothesis 3 is a fully connected network with hidden
layers that have 512, 512, 256, 256, 128, and 64 nodes. The
L2 regularization weight was 1e-4 and it was trained for 50
epochs. The network for Hypothesis 4 is fully connected
with five hidden layers that all have 128 nodes. Its L2
regularization weight was 1e-3 and was trained for 150
epochs. Both networks use ReLU activations, wij = 5 on
the diagonals, and wij = 1 on the off-diagonals.

(a) State Errors (b) Innovation

(c) χ2
4 Overlay with pρ̂k (d) χ2

4 Overlay with pρk

Fig. 2. Calibration results for the EKF’s test sequence. The EKF has small
estimation error (a) and poor covariance calibration. The innovation for this
2D localization problem (b) is clearly not white. In (c), the approximate
density of ρk is far from the χ2

4 density that we did not plot the χ2
4 pdf.

Finally, in (d), the overlay is much closer to the ground-truth covariance
computed using Monte-Carlo simulations, although still not a perfect fit
because independence of the ek is only an approximation.

Divergences for the unadjusted covariances, ground-truth,
and the four hypotheses are shown in Table I with corre-
sponding overlays are in Figures 2 and 3. In Table I, the third
column contains the mean and standard deviation of the di-
vergences of 50 Monte-Carlo runs. Ground-truth covariances
are computed using (6) and the divergences in Table I are the
mean and standard deviation of divergences of the 50 runs.
The second column contains the reduction in divergence of
the means in the second column as a percentage of the
reduction from the unadjusted covariances to the ground-
truth covariances. We observe that the calibration of the
ground-truth covariances are within one standard deviations
of the calibrations of both Hypothesis 3 and 4. The main
conclusion of the results is that both Hypotheses 3 and
4 can achieve calibration, but that the state-dependence in
Hypothesis 4 only yields a modest benefit. Note that in
Figures 2 and 3, we did not plot the χ2 density over the
histogram when there was very little overlap between the
two.

V. CALIBRATION OF VISUAL INERTIAL ODOMETRY

In the VIO problem, the state x consists of the orientation,
position, velocity, the map states, and any autocalibration
states. Since we often do not have ground truth for the map,
alignment, and autocalibration states, we will only analyze
the localization states. Orientation is represented as a rotation
vector, so in this work, the state dimension is n = 9. A
detailed description and derivation of the equations of motion
for a VIO system can be found in [14].

We evaluated XIVO, a reimplementation of the EKF
SLAM system described in [14], on the TUM Visual Inertial



TABLE I
CALCULATED DIVERGENCES FOR THE 2D LOCALIZATION PROBLEM.

% Dec. Test Set Sampling % 1-σ % 2-σ % 3-σ
Original Estimated 0% 0.3394 ± 0.0145 16.2, 17.6, 8.9, 58.5 30.0, 34.1, 17.1, 86.8 42.5, 48.3, 27.3, 94.8
MC Ground-Truth 100% 0.1839 ± 0.0547 60.8, 67.5, 68.5, 68.5 98.7, 96.1, 95.4, 95.9 99.7, 99.9, 99.5, 99.7

Global Scalar 31.6% 0.2902 ± 0.0510 30.2, 34.3, 17.3, 87.0 53.3, 60.3, 39.2, 96.7 69.3, 75.9, 60.8, 97.5
Global Matrix -9.1% 0.3535 ± 2.4e-06 5.6, 2.1, 0.7, 0.4 11.2, 4.1, 1.0, 0.5 16.2, 6.1, 1.4, 0.5

Neural Network 75.4% 0.2222 ± 0.0884 89.6, 62.0, 64.1, 45.6 98.0, 88.3, 88.0, 75.2 99.8, 96.3, 94.4, 89.0
State-Dependent NN 90.9% 0.1981 ± 0.0553 95.7, 56.4, 51.1, 64.8 100.0, 95.3, 80.7, 91.4 100.0, 99.8, 92.7, 98.0

TABLE II
TABLE OF COMPUTED DIVERGENCES FOR THE VIO EXPERIMENT.

% Dec. Test Set Sampling % 1-σ % 2-σ % 3-σ

No Adjustment 0% 0.2697 ± 5.61e-08 11.4, 9.5, 10.2, 6.2,
5.1, 6.0, 3.3, 2.4, 2.1

21.8, 19.1, 20.5, 12.0,
9.6, 12.9, 6.2, 4.7, 4.7

32.6, 29.1, 30.4, 18.2,
14.5, 19.2, 9.2, 7.3, 7.0

“Ground-Truth” 100% 0.1103 ± 0.0223 60.4, 65.3, 67.4, 70.9,
71.7, 70.5, 67.1, 67.3, 70.3

98.2, 95.1, 96.1, 96.7,
96.9, 95.6, 95.8, 95.4, 95.1

99.9, 99.5, 99.5, 99.6,
99.7, 99.8, 99.7, 99.6, 99.4

Global Scalar 42.7% 0.1937 ± 0.0088 96.7, 93.4, 90.8, 74.7,
62.5, 79.7, 42.9, 30.1, 30.3

100.0, 97.8, 97.6, 95.5,
90.6, 96.8, 72.8, 50.3, 50.8

100.0, 98.6, 99.0, 98.8,
96.9, 99.0, 86.3, 65.1, 64.4

Global Matrix 16.1% 0.2433 ± 0.0037 98.1, 92.9, 78.1, 60.9,
66.5, 71.1, 60.0, 56.0, 74.2

99.7, 98.1, 83.0, 69.9,
77.0, 85.2, 71.1, 70.6, 90.3

99.9, 98.3, 83.9, 74.9,
82.8, 88.2, 75.3, 75.9, 94.9

Neural Network 97.8% 0.0987 ± 0.0159 76.4, 64.7, 72.8, 70.6,
70.6, 70.9, 69.8, 67.8, 65.7

96.5, 91.0, 93.3, 93.8,
94.0, 94.8, 93.2, 90.6, 90.1

99.6, 99.6, 98.5, 98.5,
98.8, 99.3, 98.4, 98.3, 98.1

NN with State 105.6% 0.1028 ± 0.0219 69.9, 65.4, 70.5, 70.2,
71.7, 71.3, 71.1, 70.6, 71.3

95.8, 91.2, 94.9, 95.0,
95.9, 95.6, 94.2, 94.2, 94.8

99.1, 99.2, 99.6, 99.3,
99.2, 99.4, 99.0, 99.2, 99.3

(a) Scalar Adj. Overlay (b) Matrix Adj. Overlay

(c) NN Adj. Overlay (d) NN w/State Overlay

Fig. 3. Overlays of χ2
4 with pρ̂k computed with adjusted covariances for

the 2D localization problem. These overlays visualize the trends seen in
Table I.

Dataset [15], a benchmark that features sequences of large,
fast, and aggressive motions of a rig containing a stereo
camera pair and an IMU. The dataset includes six se-
quences, named room1-room6, with “ground-truth” position
and orientation collected using a motion capture system.
Since XIVO’s algorithm only uses monocular images, and
not stereo images, we effectively have twelve sequences,
totalling 32,470 timesteps. XIVO’s estimate of the position
and orientation is comparable with other state-of-the-art VIO

(a) 3D Trajectory (b) Innovation

(c) χ2
9 Overlay (d) Ground-Truth Overlay

Fig. 4. The 3D trajectory, innovation, and overlays for the VIO test
sequence. As with the EKF experiments, the state estimation error is small,
but the innovation is clearly not white noise. In (c), there is very little overlap
between the histogram approximation of ρ̂k the χ2

9 distribution. (d) contains
the same plot, except with ρ̂k generated using ground-truth covariances
computed using ergodicity from the test set. A visual comparison of (c) and
(d) shows that the ergodic assumption and the independence assumption are
both approximately true.

systems.1

Since the motion capture system did not measure velocity,
we backdifferenced the position ground truth in order to
compute a velocity ground truth as well. Next, we used

1See the table at https://github.com/ucla-vision/xivo/
blob/devel/wiki.md for XIVO’s absolute trajectory error (ATE) and
relative pose error (RPE). Note that these errors are not the same as the
mean error in Section V-A.

https://github.com/ucla-vision/xivo/blob/devel/wiki.md
https://github.com/ucla-vision/xivo/blob/devel/wiki.md


the method of Horn [16] to compute the transformation (a
rotation and a translation) between the ground-truth points
and the estimated points, since the two sets of points were
not recorded in the same coordinate frame. The two room6
sequences were set aside as a test set while the other ten
sequences were used for training. The trajectory of the test
set, the innovation of the translation states, and overlay with
the χ2

9 distribution are shown in Figure 4.

A. Validating the Zero-Mean Assumption

The analysis in Section II-C assumes that the errors are
zero-mean. We compute the errors for all timesteps of the
twelve sequences in the TUM VI dataset and find the mean of
all of them. After interpolation and alignment of the ground-
truth data, the mean translation, rotation, and velocity errors
are 5.18e-17m, 0.0064rad, and 0.0017m/s, respectively while
the mean Euclidean norms of ground-truth translation, rota-
tion, and velocity across all 12 sequences in the dataset are
1.15m, 1.50rad, and 0.902m/s. The translation error is zero
because the method of Horn optimizes translation error when
computing the alignment between the coordinate frames
from the ground-truth measurements and the estimated states.
Although technically nonzero, the rotation and velocity errors
are small when compared to the motions in the dataset.
Therefore, we will consider them negligible and consider
the mean of the errors to be zero.

B. Validating the Ergodicity Assumption

The sample covariance in (7) is computed for each
timestep k using a window of states centered around k.
In order to find the best possible window size for each
state of interest, we computed DL2(ρ̃k‖χ2) using odd-
numbered window sizes between 27 and 601 for the ten
training sequences. A window size of 275 produced low
divergences for both the ten training sequences and the two
test sequences. The divergence on the test set was 0.1105.
The overlay with the χ2

9 distribution is in Figure 4. Because
these numbers are relatively small when compared to the
divergences computed with the sampled covariances, and
because of the relative visual fit compared to the overlay
generated with the unadjusted covariance, we consider the
ergodicity assumption validated.

C. Experimental Results

We run our ten sequences of training data through Hy-
potheses 1-4. For Hypotheses 3 and 4, we use ReLU activa-
tions, a L2 regularization weight of 0.001 in the loss function,
and set wij = 10 along the diagonals, 2.5 for off-diagonals
in the same state’s 3 x 3 block, and 0.5 otherwise. The neural
network for Hypothesis 3 had hidden layers with widths
1024, 512, 256, 128, 64 and was trained for 25 epochs. The
best network for Hypothesis 4 had hidden layers with widths
256, 256, 256, 128, 128 and was trained for 50 epochs.

Divergences for the combined two test sequences are
shown in Table II and visualized in Figure 5. The “% Dec.”
column in Table II displays the total decrease in divergence
from the unadjusted covariances as a percentage of the

(a) Scalar Adjustment (b) Matrix Adjustmnet

(c) Neural Network Adjustment (d) State-Dependent NN Adjust-
ment

Fig. 5. Overlays of the test set’s ρ̂k computed with adjusted covariances
- a visualization of the results in Table II.

reduction achieved using ergodic ground-truth. Numbers in
the “Test Set Sampling” column are means and standard
deviations of divergences computed from 50 groups of 200
points each from the test sequences. In the interest of space,
the last three columns contain percentages for the position
and orientations only. The trends are the same as those shown
for the 2D localization experiment despite using ergodicity
rather than Monte-Carlo simulations to compute ground-truth
covariances: the calibration of the ground-truth covariance
is within one standard deviation of the calibration of both
neural networks and the calibrations of Hypotheses 1 and
2 are inadequate. Once again, when there was very little
overlap between a histogram and the χ2 density, we did not
plot the χ2 density.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that there exists a learnable map between
the uncalibrated estimates of a typical Extended Kalman
Filter for VIO and the true, calibrated values. Another
conclusion is that the ergodicity assumption is a reasonable
way to compute a “ground-truth” value for covariance for
suitable ground-truth motion when Monte-Carlo trials are
not possible. Our next step will be to investigate how
generalizable these results are. The datasets in this work
consisted of several sequences all collected using the same
sensor in the same environment. We suspect that the cali-
bration described in this work can be performed once for
each sensor and VIO implementation, but generalize across
multiple environments. A second direction of research would
include using information from a neural network to modify
an EKF in the loop in an end-to-end fashion instead of simply
adjusting the covariances post-hoc. In other words, the final
line of equation (2) would take the form:

P̂k+1 = φw(Pk, x̂k) (14)



where φw is a recurrent network. This raises questions not
only of prediction accuracy, but of stability, since the online
optimization would create closed-loop dependencies.
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