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Abstract— Robot interfaces often only use the visual channel.
Inspired by Wickens’ Multiple Resource Theory, we investi-
gated if the addition of audio elements would reduce cognitive
workload and improve performance. Specifically, we designed
a search and threat-defusal task (primary) with a memory
test task (secondary). Eleven participants — predominantly first
responders — were recruited to control a robot to clear all
threats in a combination of four conditions of primary and
secondary tasks in visual and auditory channels. While we did
not find any statistically significant differences in performance
or workload across subjects, making it questionable that Multi-
ple Resource Theory could shorten longer-term task completion
time and reduce workload. Our results suggest that considering
individual differences for splitting interface modalities across
multiple channels requires further investigation.

I. INTRODUCTION

Many robot control interfaces available to first respon-
ders for urban search and rescue (USAR) and counter-IED
(improvised explosive device) scenarios (e.g., [1], [2], [3])
exclusively use the operators’ visual channel to convey task-
relevant information. Such interfaces often require operators
to prioritize their visual attention carefully, where informa-
tion may be overloaded [4]. By splitting the output of an
interface across multiple sensory channels, the human-robot
interface of a system could potentially foster appropriate
attention management, thereby reducing cognitive workload,
and improving situation awareness [5] and performance.

To investigate this theory, we performed a within-subjects
experiment in which participants, predominantly first respon-
ders, performed a search and (simulated) threat-defusal task
(primary task) while simultaneously performing a periodic
working memory task (secondary task). Each participant
performed this task using an interface with four conditions of
variable output modalities that were conveyed in the visual
channel and/or the auditory channel.

II. RELATED WORK

Wickens” Multiple Resource Theory [7] states that a cross-
modal interface (using modalities that reside in two different
channels) has advantages over an intra-modal interface (using
modalities that reside in the same channel), as they use
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Fig. 1.
communication channels reduce workload and improve performance, we
set up a test course and had a graphical interface (top left; also see Fig. 5)
for robot operators to control a robot for a search and threat-defusal task
(red block as threat, see bottom left). For this full run, please watch the
accompanying video [6].

To investigate whether a combination of audio and visual

different resources in the brain. However, they can com-
pete for common resources if both use the same “code of
processing,” meaning each either conveys spatial data or
verbal/linguistic data, taxing spatial versus verbal working
memory, respectively.

We designed our interfaces based on experimentally-
informed modifications of interfaces from similar user stud-
ies [8], [9], [10]. Design guidelines for robot control inter-
faces were also leveraged, such as the use of sensor fusion
to reduce cognitive load on the operator [4].

Krausman et al. [11] conducted an experiment to deter-
mine, of visual, auditory, and tactile cues, which was a more
effective channel through which to alert platoon leaders for
decision-making. By comparing the amount of time it took to
react to an alert, results showed that auditory alerts resulted
in the fastest response time. Visual alerts were the slowest.
Other researchers had similar findings [12], [13], [14]. Given
that the majority of an interface’s output modalities are in the
visual channel, it suggests that we should offload some visual
information to the audio channel. For the combination of the
three cues, Benz and Nitsch [15] found that using all of them
deteriorates performance. In this work, we use only visual
and auditory cues, focusing on overall task performance
instead of short-term response times.

In the field of adaptive automation, there have been studies
related to the performance and workload implications of
varying the modality of cues to indicate dynamic-automation
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Fig. 2. Left: The Adept MobileRobots Pioneer remote-controlled by
participants. Right: A “threat” in the test course. The threat is removed
if the correct direction of the Landolt C is read (left in this example).
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Fig. 3. The game controller used by participants to control the robot in
both the primary and secondary tasks.

state changes [16]. In a simulated mine-disposal task, Kaber
et al. found that bimodal cueing of autonomy state changes
significantly reduced task completion time, but did not find
a significant effect on workload between visual and multi-
modal cueing conditions.

III. EXPERIMENT DESIGN
A. Robot Platform

An Adept MobileRobots Pioneer, equipped with a Hokuyo
URG laser rangefinder and a Microsoft Kinect RGBD camera
mounted to a pair of Dynamixel RX-28 servos acting as the
robot’s camera and pan-tilt unit (Fig. 2, left) was used in
the experiments. Participants were told that the robot was
equipped with a chemical sensor to locate threats in the area
that would be conveyed through a targeting system; however,
this sensor was simulated using the robot’s knowledge of
where the threats were located on the map. ROS (Robot
Operating System) [17] was used to control the robot,
communicate between the robot and the interface, and log
performance metrics during task execution.

B. Tasks

This experiment sought to verify the relationships between
information modalities and cognitive workload as presented
in Multiple Resource Theory. A targeting system (more in
Section III-C), to aid in the execution of the primary task and
the secondary task instructions, was varied between visual
and auditory channels.

1) Primary Task: The primary task is a search and threat-
defusal task where participants need to drive the robot to
clear all of the threats. We set up a ~ 92m? test course (Fig.
1) that consisted of rooms, hallways, and occlusions, with
four threats hidden throughout.

The occlusions were designed such that the participant
could only see a threat in the robot’s camera after having
driven behind the occlusion. This was done to ensure that

Map C

Map D

Fig. 4. The four maps used for the search and threat-defusal task. Maps
A and B were of similar shape, as were Maps C and D. The initial position
of the robot is indicated with a yellow arrow and threat locations are the
four red boxes in each map.

rooms and occlusions had to be investigated by participants,
rather than allowing the participant to see a threat from the
hallway. It was also aimed to influence participants to rely
on the targeting system to search for threats, otherwise they
risk wasting time investigating empty occlusions.

Participants drove the robot by controlling its linear and
rotational velocities with the left joystick of a Microsoft
Xbox 360 controller (Fig. 3). The right joystick was used
to pan/tilt the robot’s camera for different views.

2) Secondary Task: While the targeting system could
affect an operator’s workload, participants could ignore the
system and, for example, perform a right-hand wall fol-
low! — a common practice of first responders — while still
performing the primary task effectively. For this reason,
we implemented a secondary task, to induce an additional
cognitive workload on participants in a way that would not
vary with the individual participant’s primary task strategy.

The secondary task is a periodic working memory task,
consisting of a random sequence of five commands selected
from four choices (up, down, left, and right) that the system
would convey to the operator (see Fig. 5 for an example).
Once the system completed the sequence with the word
“over”, the participant would repeat the five commands using
the game controller’s directional pad (Fig. 3). Essentially, the
task was a linguistic casting of Milton Bradley’s Simon?.

Each input by the operator elicited feedback from the
system. If a direction was pressed before “over” occurred,
“early” was indicated. Correct and incorrect individual steps
were indicated with either positive or negative feedback.
Once the entire sequence was correctly repeated, the system
would indicate “done”. If incorrect, the operator needed
to correctly enter it before entering the next direction in
the sequence. Tasks with unresponded steps were counted
as incomplete when the next task’s instructions began, 30

'https://en.wikipedia.org/wiki/Maze_solving_
algorithm#Wall_follower
2http://en.wikipedia.org/wiki/Simon_ (game)
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Fig. 5. The graphical control interface showing the camera view (left)

and local distance display (right). A directional command in the secondary
task is shown at bottom; The direction text is hidden when conveyed with
audio. In the visual targeting system, when a threat is sensed, a yellow line
connects the red robot avatar in the top right to the threat.

seconds from the beginning of the previous instructions.

C. Control Interface

The interface consisted of two main output modalities:
a camera view with crosshair and a local distance display
(Fig. 5). The crosshair represents the pan-tilt position of the
camera. The local distance display shows a two-dimensional
top-down view of the boundaries within 270 degrees around
a local avatar of the robot; no local distance data was
available directly behind the robot. Input was provided using
a gamepad (Fig. 3). The position, size, and behavior of the
main output modalities were constant across all conditions.

To help participants find threats, a simulated targeting
system was integrated either into the graphical interface
or through sound. To clear a threat, participants needed to
correctly read the direction of a Landolt C that was on its
side (Fig. 2 right). After a threat was removed, the targeting
system would no longer detect it.

The targeting system sensed the closest threat within 2.4
meters and 180 degrees in front of the robot. It presented the
detected threat’s position two-dimensionally. This distance
threshold was intentionally chosen to require participants to
enter a room to determine if a threat was present.

The visual targeting system took the form of a yellow line
overlaid on the local distance display, connecting the robot
avatar to the sensed threat. The visual targeting system was
the only information that was colocated with other visual
information. Like the local distance display, the visual tar-
geting information was presented as a top-down orthographic
projection, and both shared a rotational origin. To prevent the
visual targeting from being interpreted as communicating an
absolute distance, which the auditory targeting system could
not provide, the visual targeting system’s line length was
constant. Its thickness varied with distance to the threat.

The auditory targeting system was heard through stereo
headphones worn by participants, and was implemented
using OpenAL’s 3D spacialization capability. The sound
sources were restricted to the horizontal plane through the
origin. This audio signal presented a threat’s location as a
periodic ping in the direction of the threat from the robot’s
front, at a distance directly related to the threat’s distance.

The visual secondary task conveyed commands to the
operator by displaying the directions in word form, centered
below the main visual modalities. Visual secondary task
feedback was presented instructions in the same region, but
on a line below. The words “Yes” and “No” were presented
as feedback for correct and non-early incorrect responses.

The auditory modality in the secondary task conveyed
commands and all responses to the operator with text-to-
speech. Correct and non-early incorrect response feedback
was presented as a positive ding and a negative buzzer sound,
respectively. The sounds and their meaning were presented
to participants in the secondary task introduction. “Early”
feedback was presented at a lower volume and faster speech
rate than instructions, so that the instruction timing would
not be changed by feedback for an early response.

D. Procedure

For this within-subjects experiment, the search task was
performed four times by each participant, covering all four
combinations of the two independent variables — the modality
in which the targeting system conveyed proximal threat
locations (visual or auditory) and the modality in which the
secondary task instruction was conveyed (visual or auditory)
— counterbalanced to mitigate any learning effects.

Each run was performed in one of four maps (Fig. 4);
ordering was also counterbalanced to mitigate any learning
effects. Every map contained five rooms (shown with thick
lines), a hallway that connected them (center, 1.2m tall
walls), and six occlusions (thin lines, 0.6m tall walls). Four
of the occlusions had a threat (red square) behind them.

Participants were not told how many threats were on each
map. They were instructed to announce the end of their
run if they felt they had completed their search and found
all possible threats. Otherwise, they had a time limit of 15
minutes. They were also not told how often the secondary
task would occur during each run.

Based on real-world search and threat-defusal scenarios,
participants were told their priorities for task execution were:

1) Finding all of the threats

2) Clearing the area as quickly as possible

3) Minimizing damage to the robot and the environment
4) Performing the secondary task

First, the primary and secondary tasks were described to
participants. We also printed annotated photos and placed
them on the desk as a reminder (Fig. 1 upper left). After a
task was described, participants used each of the modalities
for that task, separately, to ensure that participants were
familiar with each of the variable modalities without the
interference of another modality. The primary task modalities
were introduced on a simplified map. The secondary task
modalities were used on a simplified interface. Participants
were allowed to continue learning each task until they
reported feeling comfortable with it.

This study was approved by the Institutional Review Board
(IRB) at the University of Massachusetts Lowell.



TABLE I
ADAPTED NASA-TASK LOAD INDEX [18] QUESTIONS

Stress: How stressful the task was

Mental Demand: How taxing the task was on you mentally

Physical Demand: How taxing the task was on you physically

Effort: How much effort you think you applied to complete the task

Frustration: How frustrated you were while completing the task
* Likert items are coded from 1 (Very Low) to 7 (Very High).

E. Conditions

Each combination of auditory and visual modalities pro-
duced four interface conditions, one used for each partici-
pant’s four runs (abbreviated, PrimarySecondary):

1) AV: auditory targeting and visual secondary task

2) VA: visual targeting and auditory secondary task

3) AA: auditory targeting and auditory secondary task

4) VV: visual targeting and visual secondary task

F. Hypotheses

According to Multiple Resource Theory, heterogeneous
modalities (AV and VA) should have a lower workload
and higher performance than conditions with homogeneous
modalities (AA and VV). Therefore, we hypothesized:

Hypothesis 1 (H1). Conditions with heterogeneous
modalities (AV and VA) should result in a lower cognitive
workload than conditions with homogeneous modalities (AA
and VV). Lower cognitive workload is measured by subjec-
tive measures in Table I and data in the secondary memory
task: more fully correct command sequences inputted; lower
percentage of incorrect inputs; and subjective measures such
as stress and mental demand.

Hypothesis 2 (H2). Conditions with heterogeneous
modalities (AV and VA) should result in higher performance
than conditions with homogeneous modalities (AA and VV).
Higher performance is measured by the primary task data:
less time to clear the area; less time to find each threat; more
threats found; and fewer bumps and collisions.

Because the visual targeting system and local distance
display were fused, which should reduce operator workload
[4], two additional hypotheses were formed:

Hypothesis 3 (H3). Condition VA should result in lower
cognitive workload than AV, using the same measures as HI.

Hypothesis 4 (H4). Condition VA should result in higher
performance than AV, measured the same way as H2.

G. Data Collection and Questionnaire

We were able to collect and compute most data directly
from the robot and the control interface. However, to count
the number of times the robot bumped into the environment,
we set up a multi-angle camera system so experimenters
could record the collisions during the experiment. Another
camera recorded the operator with the interface.

After each run, participants were given 7-point Likert
scale questions to get workload estimates, adapted from the
NASA-Task Load Index [18]. Table I lists the questions.
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Fig. 6. Left: Secondary task completion count for each condition (p =

0.05). Right: Secondary task correct input ratio (n.s.).

H. Participants

Thirteen participants were recruited. Two were involved
in pilot testing, so 11 participants contributed valid data
(1 Female, 10 Male); eight were first responders (73%; 1
Female, 7 Male). Each participant was compensated US
$75 for participation and travel. Age ranged from 20 to 55
(M = 40, SD = 10). All participants reported no hearing
problems and their primary language was English.

In terms of game controller usage, 2 rated disagree, 2
reported neutral, and 7 agreed; we had a similar report for
playing first-person perspective video games (2 vs. 3 vs. 6).
When asked whether they have experience with operating
robots, 4 disagreed, 2 rated neutral, and 5 agreed.

IV. RESULTS
A. No detectable workload difference (HI & H3 rejected)

1) Correct command sequences: We first performed a chi-
square goodness-of-fit test on the frequency of correct com-
mand sequences in the secondary task across 4 conditions.
The test did not reveal a statistical significance (p = 0.05),
thus we did not run a post-hoc pairwise comparison. The
frequency data for each condition is in Fig. 6 (left).

2) Incorrect inputs: We then conducted a repeated-
measures ANOVA on the correct input ratio from the sec-
ondary task. A box plot is shown in Fig. 6 (right). Prior to
the test, we ran 2 tests to assess the underlying assumptions
of repeated-measures ANOVA: normality and sphericity. We
ran the Shapiro-Wilk normality test; the result showed that
the data is normally distributed (W = 1,p = 0.8). We ran
Mauchly’s test for sphericity when showed that sphericity
is violated (x2(3) = 0.12,p < 0.005). We thus used
a Greenhouse-Geisser correction. There was a significant
difference across conditions (F(1.756, 17.562) = 3.907,p =
0.044). However, after we conducted a Bonferroni-corrected
pairwise comparison with paired-samples t-tests, we did not
find any statistically significant differences, partially because
the p-value 0.044 is very close to 0.05.

3) NASA-Task Load Index responses: We analyzed par-
ticipants’ responses to the NASA-Task Load Index question-
naire (Table I). From the bar plot in Fig. 7, there seemed
to be no differences across questions and conditions. This
is further confirmed by a non-parametric Friedman’s test on
each metric: Stress (x?(3) = 0.27,p = 1), Mental Demand
(x%(3) = 4.1,p = 0.2), Physical Demand (x?(3) = 7.1,p =
0.07), Performance (x%(3) = 1.7, p = 0.6), Effort (x*(3) =
1.6,p = 0.7), and Frustration (x2(3) = 0.46,p = 0.9).
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Fig. 8. Time to clear the area (n.s.)

B. No detectable performance difference (H2 & H4 rejected)

1) Clearing the arena: As shown in Fig. 8, participants
that experienced each condition finished clearing the threats
in approximately 8 minutes on average.

We ran a repeated-measures ANOVA. Again, we ran tests
for the underlying assumptions of ANOVA. The Shapiro-
Wilk normality test only showed a slight violation of nor-
mality (W = 0.84,p = 0.043), and ANOVA is generally
considered robust against normality moderate violations [19].
Mauchly’s test showed no violation for sphericity (x?(3) =
0.456,n.s.). There were no statistically significant results
found (F(3,11) = 0.228, n.s.).

2) Finding each threat: As seen in Fig. 9, there were no
statistically significant differences across conditions on time
to find each threat, revealed by repeated-measures ANOVA
with Greenhouse-Geisser correction (F'(1.83,18.28) =
0.86,n.s.). The Shapiro-Wilk test did not reveal a normality
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Fig. 9. Time to find each threat (n.s.). A density plot with rug plot is
used due to more similar distributions across conditions.
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violation (W = 0.90,n.s.), but Mauchly’s test showed a
violation of sphericity (x?(3) = 0.25,p < 0.05).

3) Total threats found: We ran Friedman’s test for the
number of threats found across conditions. No statistically
significant differences were found (x2(3) = 5.4,p = 0.14).
The median values for all conditions are 4 threats, indicating
that most participants found all of the threats (Fig. 10).

4) Bumps and collisions: We also ran Friedman’s test to
determine if there were any statistically significant differ-
ences for the number of bumps across conditions; it did not
show any significance (x2(3) = 1,p = 0.7). Fig. 11 shows
the data in bar plots.

C. Individual Differences

Inspired by the lower-body exoskeleton work by Blake et
al. [20] on physical and cognitive load effects, we investi-
gated the differences in performance within individuals. A
better understanding of individual variability helps under-
stand a wider set of the population [20], so we treated the
participant as a factor and explored the data. We excluded the
data with only 1 data point per participant. Because the time
to find a threat is not a balanced factor, for its test, where
the normality violation was significant, Friedman’s test could
not be conducted.

We found that there are statistically significant differences
between most participants in the time to input a correct
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Fig. 12. Time to input a correct command sequence.
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command sequence during the secondary task (Fig. 12). Due
to a significant violation of normality by Shapiro-Wilk test
(W = 0.93,p < 0.0005), this is determined by Kruskal-
Wallis H tests (x2(10) = 188.49,p < 0.0005) and pairwise
Wilcoxon tests with adjusted p-values using Benjamini and
Hochberg (BH) methods [21] (see [22] for the full list; as a
rule of thumb, p < 0.05 in Fig. 12 if no significant overlap).
Upon further exploration for each participant, we found
there were effects within participants p3, p6, and p7 across
condition ordering in the time to input a correct command
sequence (Fig. 13). When there is significant violation of
normality by Shapiro-Wilk test, we ran Kruskal-Wallis H
tests; otherwise one-way ANOVA was used. The 3 statisti-
cally significant results were determined by Kruskal-Wallis H
tests (p3: x2(3) = 8.595, p < 0.05; p6: x?(3) = 11.132,p <
0.05; p7: x%(3) = 10.619,p < 0.05). However, pairwise
Wilcoxon tests with adjusted p-values using Benjamini and
Hochberg (BH) methods [21] only revealed one statisti-
cally significant difference (p < 0.05) between p6’s run 1
(Median=5.46s) and run 2 (Median=10.28s). This variability
within and between operators suggests that there may be
benefits to the development of adaptable interfaces, which
could adjust to individual capabilities and preferences.

V. DISCUSSION

Surprisingly, no detectable differences between conditions
were found for all 7 measures. We did not find statistical
evidence showing that heterogeneous modalities (AV, VA)
have lower workload and higher performance than conditions
with homogeneous modalities (AA, VV).

Our study casts doubt on using Multiple Resource Theory
as a design principle to improve performance by splitting
information into multiple channels, when utilized for more
regularly occurring information in a longer-term interaction
scenario. If only utilized for the presentation of less frequent
alerts, as supported by the findings of previous research (e.g.,
[11], [12], [13], [14]) that audio cues make response time
faster, it may prove to be a more fruitful design principle,
but further investigation is needed.

We did find statistically significant evidence of individual
differences (Fig. 12). The impact of individual differences on
performance when using robot interfaces has been studied
in similar domains (e.g., [23], [24], [25], which typically
involve comparing an operator’s performance on pre-test
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attentional and spatial ability tasks to those involving control
of one or more robots. Such characterizations of individual
differences can predict the performance of operators when
using robots with interfaces using only visual modalities.

Some participants showed general improvements in sec-
ondary task performance when it was deployed in a particular
modality (Fig. 13). For example, p3, p6, and pl0 typically
performed the secondary task faster when it was presented
in the audio channel (VA, AA) and p5 didn’t respond to
the secondary task at all during the VV condition, possibly
because they were overloaded. One participant, p11, typically
performed better when the secondary task was presented in
the visual channel (AV, VV). Participants such as p4, p8, p9,
pl2, and pl13 appeared to perform similarly regardless of
how the secondary task was presented. Further investigation
is needed to determine if these individual differences are
worth characterizing to tailor interface presentation per each
operator’s capabilities and preferences.

The effect of individual differences should be further
investigated as to its implications on how and when to
implement Multiple Resource Theory design principles on
a robot control interface. Pre-test characterizations could be
used to tailor an interface before usage. Performance also
may degrade over time throughout task duration, which could
call for an adaptive interface that recognizes this degradation
and augments how the interface modalities function. For
example, if an interface begins in the VV condition, but
secondary task performance degrades, it would adapt to
the VA condition. This would follow Multiple Resource
Theory as a means to improve performance when necessary
rather than as an overarching design principle which, as
demonstrated by this study, may not be the appropriate
method of implementation for the search and rescue domain
or more broadly for longer-term interaction scenarios.
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