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Abstract— This work focuses on learning useful and robust
deep world models using multiple, possibly unreliable, sensors.
We find that current methods do not sufficiently encourage a
shared representation between modalities; this can cause poor
performance on downstream tasks and over-reliance on specific
sensors. As a solution, we contribute a new multi-modal deep
latent state-space model, trained using a mutual information
lower-bound. The key innovation is a specially-designed density
ratio estimator that encourages consistency between the latent
codes of each modality. We tasked our method to learn policies
(in a self-supervised manner) on multi-modal Natural MuJoCo
benchmarks and a challenging Table Wiping task. Experiments
show our method significantly outperforms state-of-the-art deep
reinforcement learning methods, particularly in the presence of
missing observations.

I. INTRODUCTION

We live in a rich complex world. To make sense of
it, humans (and other biological organisms) integrate in-
formation from a variety of senses. Our sensory apparatus
(e.g., eyes, ears, skin) are often complementary, but also
provide redundant information. This redundancy promotes
robustness; biological agents display the incredible ability to
cope under the temporary, or even permanent, loss of any
given sense.

One might expect that artificial agents and robots can reap
similar benefits from multiple sensory modalities. Indeed,
many modern-day robots are equipped with a variety of
sensors—e.g., cameras, microphones, tactile and proprio-
ception sensors—that enable them to better perceive their
environment. When combined with powerful representation
learners (such as deep neural networks), these different
sources of information can be used to learn world models
for more robust decision-making and policy learning.

Unfortunately, learning robust world models from mul-
tiple raw sensory inputs remains challenging. Rather than
improving performance, our preliminary deep reinforcement
learning (RL) experiments revealed that including additional
modalities can cause performance to deteriorate. The learned
policies often failed to match the performance of a single-
modality model, and were not robust to missing data.

In this work, we address the issue above and answer the
question: how can we learn complex world models from mul-
tiple, but possibly unreliable, sensors? We develop a modular
multi-modal deep latent state-space model (MSSM) that can
be used for various robot tasks, including model-based RL
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Fig. 1: A simple illustrative example of a robot in a 2D world with
two sensory modalities: laser rangers that give its (x,y) position
and a ceiling camera provides a scene image. A Deep Latent Space
Model (SSM) trained using Product-of-Experts (PoE) fusion and a
reconstruction-based loss did nor learn a robust latent space from
gathered data (left plots, colors indicate ground-truth position): the
overlap between the two modality-specific latent spaces is small
and model is over-reliant on the position sensor. The experts were
“miscalibrated” in that the camera expert predicts a much higher
variance relative to the position expert and thus, has little influence
during PoE fusion. In contrast, our proposed MuMMI training
encourages a consistent latent space across the different modalities
(right plots) with calibrated experts.

and planning. Compared to deep models that “concatenate”
different modalities [1], [2], structural modularity in our
probabilistic graphical model provides a principled technique
for dealing with missing data (rather than masking) with
fewer parameters.

Our key contribution is a mutual-information (MI) driven
training method. Prior works have trained multimodal deep
models by maximizing a reconstruction-based variational
evidence lower-bound (ELBO) of the log data likelihood [3],
[4], [5]. Our insight is that the standard ELBO does not
sufficiently enforce a shared latent space between the dif-
ferent modalities. As a result, the learned world models do
not well-integrate information from multiple sensors and the
learned space is poorly structured (see Fig. |1| and additional
plots in the online appendix [6]). As a remedy, we derive a
Ml-based lower-bound that is optimized via the InfoNCE
loss [7]. Within this contrastive framework, we explicitly
encourage the different modality networks to be consistent
with one another via a specially-designed density ratio esti-
mator. Unlike prior work on self-supervised RL with multiple



modalities [2], [8], our methodology is task-independent
and alleviates the need to craft task/sensor-specific semi-
supervised losses.

Experiments show that our Multi-Modal Mutual Informa-
tion (MuMMI) approach significantly outperforms existing
state-of-the-art techniques for self-supervised RL [5], [9] on
Natural MuJoCo tasks [9] augmented with additional modali-
ties. A further preliminary experiment on the challenging Ro-
bosuite Table Wiping task [10] shows that MuMMI is able to
learn policies that are robust to a missing sensor. Specifically,
inputs from two RGB cameras (one workspace camera and
another mounted on the robot) were provided during training.
During testing, we observed policy performance remained
comparable even when completely removing the workspace
camera.

In summary, this paper presents three key contributions:

o The Multi-Modal State-space model (MSSM), which
can represent complex dynamics and multi-modal ob-
servations;

o The MuMMI training loss that encourages modalities to
share a common latent space, which promotes robust-
ness to missing observations;

o Empirical results showing that the MSSM trained with
MuMMI outperforms competing methods and ablated
variants, which indicate the importance of a modular
structure and a shared latent space.

II. PRELIMINARIES: LATENT STATE-SPACE MODELS

Latent state-space models (SSMs) have been a long-
standing staple of robotics. For example, the popular Kalman
filter [11] comprises Gaussian latent (hidden) random vari-
ables with linear transitions between time-steps and linear
observation functions. Other example SSMs include Hidden
Markov Models [12] for discrete latent spaces, and proba-
bilistic SLAM models [13]. This section assumes familiarity
with probabilistic graphical models (PGMs); please refer to
[14] for an excellent introduction.

Modern-day SSMs that leverage deep neural networks are
able to capture complex nonlinear transitions and rich high-
dimensional observations (e.g., camera images). Figure 2] A.
illustrates a prototypical SSM where the z;’s are latent states
from which the observations x;’s are generated. Transitions
between time-steps t are Markovian and conditioned upon
actions a; taken by the robot. In reinforcement learning
(RL) settings, we also include a reward per time-step 7;;
here, we consider state-dependent reward distributions. Given
the probabilistic graphical model in Fig. PJA., the joint
distribution of the model factorizes as:

P9(1B1:T77”1:T,Z1:T\a1:T) =
T

Hpe(ﬂft|Zt)p9(7”t|2t)Pe(Zt|Zt—17at—l) (D
t=1

where 6 are model parameters, x1.7 denotes all observations
fromt =1,...,T, and likewise for 1.7 ,z1.7 and a;.p. The

three distributions in the factorization above correspond to:

Observations:  pg(2¢|2t) )
Rewards:  pg(r¢|z:) 3)
Transitions:  pg(z¢|2ze—1, at—1) )

and can be modelled using nonlinear function approximators
such as deep neural networks.

One can view the model above as a Partially-Observable
Markov Decision Process (POMDP) [15], [16] that is speci-
fied up to the unknown parameters . We would like to learn
0 from observed data, D = {xt,at,rt}thl, but maximum
likelihood estimation is generally intractable as we need to
marginalize out the latent z;’s. As such, we optimize the
evidence lower bound (ELBO) under the data distribution
pa, ie., Ep,[Le] < Ky [log po(z1.7, 71.7|a1.7)], where
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using a variational distribution ¢4, which is typically an
inference network parameterized by ¢. For simplicity, we
denote the inference network as g,(z;), but keep in mind
the distribution is often conditioned on observations, e.g.,
¢4 (zt|z,). In the ELBO, the first two reconstruction terms
encourage encoding of information of x; and 7; in the latent
state z;. The third Kullback-Leibler (KL) divergence term
enforces consistency between the variational distribution g
and the transition dynamics pg(z¢|zi—1, at—1)-

III. MULTI-MODAL DEEP LATENT STATE-SPACE MODEL

In this section, we describe our Multi-modal state-space
model (MSSM), which extends the aforementioned SSM
to multiple sensory modalities. We first describe the model
structure, and then proceed to detail our MI-based training
methodology.

Model Structure. As a guide, Fig. 2]B. illustrates a two-
time-slice view of our model. Compared to the vanilla
variant in Fig. 2JA., MSSM generates multiple observations
corresponding to the M different modalities (z;* in the
plates) and employs a modified Recurrent SSM (RSSM)
structure [17] — we decompose the latent state z; into
three variables z; = ht,sg,sf . This splits the latent
state into deterministic and stochastic parts; the transition
governing h; is deterministic, which helps the model better
remember previous states. Unlike prior work [17], we further
decompose the stochastic variable: s{ encodes information
about the current observations across modalities, whilst the
“combined” stochastic variable s; also encodes past infor-
mation. We find that this decomposition, when combined
with appropriate inference networks, enables faster and more
stable training. The joint distribution of the model factorizes
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Fig. 2: Probabilistic Graphical Models (PGMs) for (A.) the basic latent state-space model (SSM) used in reinforcement learning/planning
contexts and (B.) our Multi-Modal State-Space Model (MSSM). Circle nodes represent random variables and shaded nodes are observed.
The square nodes indicate a deterministic function mapping. The MSSM generalizes the basic model to M modalities and decomposes

the latent variables z¢ = [hy, s, stf ]. Inference networks g, are shown using blue double-lined arrows; we see that q( |}

# M) fuses

information across the modalities, whilst q(sﬂs{ , ht) encodes information from the latent dynamics and the fused observatlons. Please

see main text in Secs. El and @l for additional details.

in a similar manner to eq. (I):

pe(x%iqMJ‘LT, Z1:T\a1:T) =
T M
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where 1’ M denotes all the M observations at every time

step t = 1,...,T, and
Observations:  pg(z7*|2:) = po(x}*|s§, ht) 7
Rewards:  pg(ri|ze) = po(re|ss, he) (8)
Transitions: pg(z¢|zi—1,ai-1) = pg(st |s$)

po(silhe)go(helsi 1, hi—1,ai-1) (9)

Note that the function g above is deterministic (indicated by
squares in Fig. 2IB.).

Model Training via Standard ELBO. As in the single
modality case, a possible training option is to maximize the
ELBO,

10%]90(33%?7]\“4, rrler) > ﬁéw

T M
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using the variational distribution,

T
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where ¢(sf|z™), q(s¢|s], hs) and p(s¢|hy) are Gaussians,
and the different modalities are fused via a Product-of-
Experts (PoE) [18]. If modality m is missing, we can simply
drop corresponding expert q(s{ |z).

Q¢(21:T|xi§§bjaal:T at—l)
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One key problem with maximizing the ELBO above is
that the objective is under-constrained: the different modality
experts need not share the same latent space. Prior work has
primarily resorted to randomly dropping modalities during
training to force consistency, but our experiments showed
this approach may not be robust (Fig. [I).

Model Training via MuMMI. In this work, we pursue
an alternative information-theoretic approach, which turns
out to be equivalent to maximizing £ under specific
assumptions. Let us define v}? = (x}f;,zl:T) where x}%
denotes observations from all the modalities except modality
m. To reduce clutter, we will drop the explicit dependence
on ai.7. Assume that the data is generated from the MSSM

and consider the mutual information between x7;. and v}Zﬁ:

p(alp, v)7)

I[[xlTﬂ]lT Zp xlTv’UlT 1 0g m \m
p(zp)p(vy.7)
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where O = E,(;m ) [p(#7!7)], and we have leveraged the
conditional independence assumptions in the MSSM when
dropping the dependence on % in p(27 |\, z1.7). Intu-
itively, I[z7"p; v}?] captures the mutual dependence between
a given modality m and the remaining observations together
with the latent state. If we assume that ¢(z1. T 5”1 ) =
p(z1.7|21M), we can combine eq. (10) and eq. to yield

Ep,|

(T 0, 7] + C™) 4 By g, (20) 108 Do (4]24)]
1

pags(z—1) DKL [qe(20) P (2¢|2¢ -1, a:-1)]] (13)

which relates I[z}"; v}n%] to the ELBO. For the purposes of

learning, > C™ is a constant that does not depend on the
parameters ¢, and can be dropped.
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Fig. 3: MuMMI training uses a density ratio estimator fg"
(eq. (T4)) that acts to minimize the squared distances between the
mean of each modality expert and a transformed fused latent code.
This encourages the experts to project to points in a shared latent
space.

To optimize ]I[a:’f}T;v}Zﬁ}, we use the InfoNCE loss [7].
Let us define the density ratio estimator,
migm my  PEfzlol) _ pletlar)
fG (xl:T7vl:T) x m - m
p(atir) p(afir)
where we have again exploited the conditional independence
between modalities given zj.p. As such, we can specify
M density ratio estimators independently for each modality,
which simplifies our setup and eases computational burden.
Abusing notation, we let f (27, z1.7) = I (a7, v ).
From [7], we can show that,

(14)
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where 2" and z] )" are “positive” and “negative” samples,
respectively. We obtain the positive sample by drawing
" ~ po(x¥ip|z1r) and N — 1 negative samples from
the proposal distribution pg(z7’7).

Although the InfoNCE is a looser bound of the log
marginal likelihood, it affords us additional design freedom
in the density ratio estimator fz". We propose a design that
encourages each modality expert to map data to points close
to a (fused) latent state:

Iz 0] > E |log (15)

T
T (@, 21.7) = exp (— S @) - mmn%)
t=1
(16)

where dgl and g, are also neural networks. We set dg”‘ to
share parameters with gg(s! [27) = N (g (@), v (7)),
ie., dgL = pigy'. Here, f can be seen as a squared exponential

kernel and maximizing the numerator in eq. (I5) across
modalities encourages consistent projections (see Fig. [3).

Final Loss and In-Practice. Training the MSSM via
MuMMI entails optimizing E,,[£] where:

S R ym fi (@ zur)
Ep,[L] = ) A"E 1ogZ s ) (17)
m=1 e Jo T 5 AT

+ EPdQ(j)(Zt) [1ng9 (Tt|2t)]
= Epygp(zem) DKL (06 (20) [P0 (2¢|20—1, ar—1)]]

and the A\™’s are hyperparameters, which can be set equal
or tuned using prior knowledge of which modality is more
informative. To compute f;*, we use a strategy simi-
lar to prior work [9]: we sample a batch of sequences
{zy 307 a7l 2} B | from a replay buffer, where B is the
batch size. For each state-observation pair, we treat the other
(B x T) — 1 observations in the same batch as negative
samples.

IV. RELATED WORK

Our work builds upon recent advances in probabilistic
multi-modal models and deep reinforcement learning. Specif-
ically, MuMMI uses PoE fusion [18], which was previously
used in a multi-modal variational autoencoder [3] that was
later extended to sequential settings [4]. Multi-modal models
have also been adopted in robotics applications, where fea-
ture vectors from different modalities are concatenated into a
single latent representation [1], [2]. Lately, PoE-based fusion
has been applied to multi-modal self-supervised training [8],
but unlike MuMMI, the method relies on hand-crafted task-
dependent losses. In a related research thread, very recent
work has explored event-driven multi-modal representations
using Spiking Neural Networks [19]. Here, we use deep
artificial neural networks but MuMMI can potentially be
extended to event-driven learning.

MuMMI is also related to recent self-supervised model-
based RL methods, e.g., PIlaNET [17] and Dreamer [5],
which learn latent dynamics models via interactions with
the environment. The backbone of these methods is the
RSSM model, on which our MSSM is based. However, these
techniques rely the standard reconstruction-based ELBO,
which is not robust to irrelevant noise. Our approach is
closely related to the recently proposed CVRL [9], which
learns using the InfoNCE loss. However, CVRL (and other
self-supervised RL methods) have largely focused on single-
modality learning with reliable sensors. Unlike the works
above, MuMMI trains a multi-modal world model (the
MSSM) that is demonstrably robust to missing data.

V. EXPERIMENT: MULTI-MODAL NATURAL MuJoCo

In this section, we describe experiments designed to eval-
vate the MSSM and MuMMI on the task of self-supervised
RL; for simplicity, we will refer to the MSSM with MuMMI
training as MuMMI. Our goal was to ascertain whether
MuMMI led to better performance and robustness to missing
data, compared to competing state-of-the-art methods.



TABLE I: Multi-Modal Natural Mujoco Experiment. Performance measured by Mean Total Episode Reward (averaged over 30 episodes,

with standard deviations). Highest average reward in bold.

Task Missing Data MuMMI MuMMI-b CVRL Dreamer
None 466.7 +25.5 116.4+13.6 311.7+£30.2 71.3+124
walker run Medium 438.7£33.1 119.14+12.1 277.5+£22.4 70.7£9.70
High 382.4+385 105.2+14.6 255.8+31.4 70.9 £37.3
None 9545+21.5 870.4+44.1 732.7+£61.7 1829 £37.7
walker walk Medium 939.9 £ 26.1 813.1+65.1 703.4+489 163.1£31.8
High 890.0 +50.1 760.3+61.5 607.5+58.3 172.8£39.2
None 966.8 +£24.6 959.8£34.5 955.6 £27.6 307.0+54.40
walker stand Medium 952.4 +£28.7 946.5+24.1 940.1 £34.3 334.3£122.6
High 922.0+59.7 918.2+584 91824319 280.4+72.70
None 965.6 +10.9 679.1£38.7 705.9+32.1 342.7£37.3
finger spin Medium 956.7+17.0 661.4+427 685.2+36.4 303.6%30.7
High 929.1 +20.8 620.4+£582 623.84+39.1 271.2+£35.1
None 949.5 £ 34.3 725.8£249.2 922.0+48.1 124.0£290.3
cup catch Medium 948.0 = 32.9 637.8£335.3 904.2+ 787 47.71+147.3
High 9273+ 38.0 540.5+£317.7 922.3+479 73.5+225.3

Cup Catch

Depth Modality

0 10 20 30 40 50
Time Steps

Fig. 4: Natural Mujuco environments and modalities used in our
experiments (top) RGB images for walker stand/walk/run, finger
spin and cup catch. The background images are continuously
changing. (bottom) Additional two modalities for the walker, i.e.,
depth image and tactile sensor. The tactile sensors were placed on
the soles of the feet and activated when it came into contact with
the ground. For the other two environments, the tactile sensor was
placed on the finger-tip and inside the cup, respectively.

Methods. We compare MuMMI against two representative
state-of-the-art model-based deep RL methods: Dreamer [5]
and CVRL [9]. Dreamer uses a reconstruction-based ELBO,
whilst CVRL is trained using a contrastive loss (but with-
out a product-of-experts fusion layer). For both models,
feature vectors extracted from modality-specific deep net-
works are fused via concatenation and missing observa-
tions are masked with zeros (similar to prior work [4],
[1]). We also tested MuMMI-b; a variant of MuMMI
with a modified density ratio estimator: fj,(z33 21.7) =
exp (= S0 105 (@) = gp(20)[3), where by(af™) is
set to the mean of the fused PoE distribution. Compared
to eq. (T6), f, promotes consistency between the PoE-fused
latent vectors and the learned dynamics. It does not directly
constrain individual modalities have similar latent codes, but
may work well if given sufficient data (and trained using

random drops [3]). All methods used latent imagination, an
actor-critic RL method [5] and latent-guided MPC [9].

Multi-Modal Tasks. We used the MuJoCo-powered Deep-
Mind Control Suite [20], but augmented to have complex
backgrounds (Natural MuJoCo [9]) and additional modalities
(Fig. @). The standard benchmarks already pose challenges
common to robot learning: sparse rewards, high-dimensional
3D scenes, many degrees of freedom, and contact dy-
namics. The complex backgrounds—videos from ILSVRC
dataset [21]—add a degree of realism and difficulty as the
robot needs to separate useful information from irrelevant
noise. We selected 5 benchmark tasks based on available
computational budget. The modalities for all tasks comprise
RGB and depth images, and tactile feedback. The back-
grounds are assumed far and do not appear in the depth
images; this tests if the models are able to use this “clean”
modality to improve performance, yet not become overly
reliant on it. The tactile modality has significantly different
properties compared to the images; it is a sparse signal that
occurs when certain parts (i.e., the walker feet, finger tip,
and inside-cup) come into contact with the ground or other
objects.

Methodology. For each task-method pair, we conducted
3 training sessions where each session was initialized with
a different random seed and trained for 2 million episodes.
Each session took =~ 1 day to complete on a workstation with
a Nvidia 2080Ti GPU. During training, data was randomly
dropped to simulate data loss (e.g., from faulty sensors or
occlusions); for each modality, we dropped segments of
varying lengths (the start and length of missing segments are
uniformly random, but constrained so that the missing rate
was 37.5% of the complete data). In the testing stage, we
compared each method’s accumulated rewards per-episode
(averaged over the 3 trained policies). Each policy was tested
over 3 batches of 10 episodes, where each batch with a
different missing rate (None: 0%; Medium: 37.5%; High:
75%). Complete model architecture details and source code
is available in the online appendix.
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Fig. 5: Model performance across training episodes (moving average smoothing with weight 0.9). The performance curves are steeper for
MuMMI on a majority of the tasks, indicating faster learning compared to MuMMI-b and competing approaches (Dreamer and CVRL).

TABLE II: Table Wiping Performance measured by Mean Total Episodic Reward (averaged over 30 episodes, with standard deviations)

Modalities MuMMI MuMMI-b MSSM-e
All Modalities (Medium Missing Data) 61.4 £70.4 48.8+40.5 60.9 £ 56.1
All Modalities (Full Observed) 60.6 £69.9 479+37.2 64.9+85.3
Robot Camera (Medium Missing Data) 57.8 £69.8 62.1 £93.7 64.04+95.9
Robot Camera (Full Observed) 65.9+76.9 69.2+97.2 60.4+98.2

Results. The final performance of the different models
is summarized in Table . On all of the tasks, MuMMI
outperforms all other competing approaches by a significant
margin. The poorer performance of the ablated MuMMI-
ab indicates the importance of a common latent space for
PoE fusion. We observed that MuMMI degrades gracefully
with greater amount of missing data, but remains robust
compared to the other methods. Between the concatenation
fusion methods (Dreamer and CVRL), Dreamer has poorer
performance, despite given access to the clean depth imagesﬂ
In comparison, CVRL was better able to learn from mul-
tiple modalities; we posit that Dreamer reconstruction loss
does not permit the model to neglect the irrelevant inputs,
which hampered learning of a good latent code. Finally, we
observed that MuMMI learns faster than other methods, as
indicated by the steeper learning curves in Fig. [3]

VI. CASE STUDY: TABLE WIPING

In this section, we describe preliminary experiments us-
ing MuMMI to train a Franka-Emika Panda arm on the
challenging Table Wiping benchmark task [10]. Due to
space constraints, we describe the essentials; please see the
online appendix for additional information. We compared
three methods: MuMMI, MuMMI-b and MSSM-e. MSSM-
e is trained using a reconstruction-based ELBO (similar to
Dreamer), but uses PoE instead of concatenation to fuse the
modalities. We trained MSSM-e using a similar approach as
[3] where missing input modalities are dropped.

In the Table Wiping task, the Panda robot has to clean a
table by erasing markings on its surface. The markings are
randomized at the start of each episode. This task is one of
the more challenging benchmarks in Robosuite and previous
work using the state-of-the-art model-free soft-actor critic
(SAC) [22] failed solve the task [10]. Here, the robot can
access two modalities: a RGB camera mounted on the top
of the robot and a workspace RGB camera (Fig. [6).

!Given a single modality of clean image data, Dreamer is generally able
to achieve high rewards on the tasks tested [5], [9].

Workspace Camera Robot Camera

1) Y A

Fig. 6: Views from the two RGB cameras used for Table Wiping.

We trained each method for 1 million episodes with do-
main randomization and moderate data loss (37.5%) during
training. In the testing stage, we compared each method’s ac-
cumulated rewards per-episode (averaged over 30 episodes).
Our results are summarized in Table [l We see that the
methods were robust to removal of the workspace camera;
performance was not drastically affected by the removal.
Interestingly, we see that MSSM-e was also able to perform
well for this particular problem. These preliminary results
are promising; they show MuMMI and MSSM can be ap-
plied towards robotics problems in scenarios with unreliable
Sensors.

VII. CONCLUSIONS

This work presents the MSSM and MuMMI. Together,
they can be used to learn robust world-models from multi-
modal sensory streams, even with significant amounts of
missing data. Moving forward, we plan to apply MuMMI
beyond self-supervised RL to other robot tasks including
planning, human modeling, and imitation learning.
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APPENDIX
A. Latent Imagination and Actor-Critic

Following [5], after training, the agent generates the imag-
ined trajectories using the learnt world model. Specifically,
given a current state z;, the agent sample the next imag-
ined state by Z;11 ~ po(2t4+1|2t—1,a:—1) and associated
reward 7ry1 ~ pg(rir1]|ze41) and the next action a; ~
Ty(@i+1]2e41). This process is repeated until an imagined
trajectory {Z, as, ft}:;H is generated. Then, the agent learns
the action and value models by optimizing:

T+H
max E Z Va(zt)
Tn,Po

T+ (18)
min E Z v (z) = Valzo) |
i (Zj 3 low(z0) = VAl »n)
where
V)\(Et) <Z An Trn>
7\'7, Do
19)
Va(Z) Z)\” Wiz) + MW (z)
T+H
The objective max, <Z Wa( zt> optimizes
7"777170
the policy m, under current critic and the objective
T+H
1
ming E | Y >llve(z) — Valz)|? |  optimizes the
TnPo P 2

value estimation. We also use latent guided model predictive
control as in [9].

All in all, in each iteration, MuMMI first learns the world
model by using samples in replay buffers. Then, MuMMI
use latent imagination to optimize the actor and critic. By
iterating this process, the agent is able to learn behaviors in
complex environments. To assist policy optimization, latent-
guided MPC [9] was also used.

B. Multi-Modal State-Space Model

We use the similar model architectures similar to [5].

1) Transition Network: We use a GRU module to model
the deterministic transition function gy. The dimension of
ht is 200 in both Multi-Modal Natural Mujoco and for
Table Wiping tasks. We use a multi-layer perceptrons to
model py(s§|he). po(s§|ht) is modeled as a Gaussian with a
diagonal covariance matrix. The multi-layer perceptron takes
in hy as an input and outputs the mean and variance of the

po(silhe) (Fig.

SoftPlus

Fig. 7: The network modeling po (s§|h:).

2) Inference Networks: We model ¢(s{|2™) as Gaussian
distributions with a diagonal covariance matrix. For each
modality, we first use a network to extract features from raw
data (Fig. [8] or Fig.0) and then use another network to map
this features to the mean and variance of ¢(s |xt (Fig.[1
The dimension of st is 1024 in Multi- Modal Natural Mu—
joco tasks and 256 in the Table Wiping task. q(s§|s], hy)
is modeled as multl -layer perceptron, which takes in the
concatenation of st , ht as an input and outputs the mean
and variance of ¢(s¢|s!, hy) (Figll1). The dimension of ¢
is 30 in both Multi-Modal Natural Mujoco and for Table

Wiping tasks.
- L

Fig. 10: Network that maps extracted features to mean and
variance of q(s!|z7)

Fig. 11: Network that takes in the concatenatlon of st s P
and outputs the mean and variance of q(s¢|s!, hy)

3) Actor and Value Networks: We used a multi-layer
perceptron to model actor m(a|z) and value function. We
modelled the actor 7(a|z) as a Gaussian distribution with a
diagonal covariance matrix. The actor networks takes latent
states z as input and outputs the mean and variance for
m(alz) (Fig[12). Similarly, the value network takes latent
states z as input and outputs the values for value function

(Fig[T3).
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Fig. 12: Actor network that models 7(alz).

FC ELU FC ELU FC ELU FC

Fig. 13: Value network that models value function V) (z).

FC RelU  FC ReLU  FC

Fig. 14: Networks that extract features from RGB image or
depth image.

FC ReLU FC ReLU FC ReLU
Fig. 15: Networks that extract features from tactile.

C. Baseline Models

Similar network structures were used in the baseline
models. However, instead the product-of-experts (PoE), we
use the networks in Fig.[T4]and Fig. [T3]to first extract features
from different modalities, which are contacted and fed into
another network (Fig[TT) to obtain the mean and variance of
q(s5|sf, hy). The dimension of h; and s/ are the same as
in MuMMIL. In Multi-Modal Natural Mujoco tasks, the s{ is
of dimension 3072 = 1024 x 3 (the concatenation of feature
vectors extracted from three modalities—RGB image, depth
image and tactile). In the Table Wiping task, the s{ is of
dimension 512 = 256 x 2, which is the concatenation of
feature vectors extracted from two modalities (RGB image
from workspace camera and RGB image from robot camera).

[

ConvIranspose  ConyTvanspose  ConvTranspc

FC

Fig. 16: Decoder network for RGB image.

For Dreamer [5], we use decoder networks to model
po(x}*|2t), which is assumed to be Gaussian with diagonal
covariance in our experiments. The decoder networks takes
in latent state as an input and outputs the mean py(x}*|z;)

(Fig. [16] Fig. [17] and Fig. [18). The variance of py(z}"|z¢) is
set as 1.0 for all modalities.

FC

Fig. 17: Decoder network for depth image.

D. Additional Results

Additional results for the toy example can be seen in
Fig. [I9) and Fig. 20} In Fig. [I9] we can see that using
MuMMI results in a consistent representation among two
camera but using the reconstruction loss does not. Also, if
the two modalities are independent (the = and y positions of
the robot), MuMMI can still learn a structured latent space.

(Fig20).

S S S S S S v

FC

FC ELU FC ELU FC ReLU

Fig. 18: Decoder network for tactile with 2 channel.

Reconstruction MuMMI

Fused (PoE)

Camera 1

Camera 2

Fig. 19: The robot in a 2D world with two sensory modal-
ities: a camera mounted in the front and a camera mounted
behind. The figures show the latent space learnt by recon-
struction and MuMMIL.
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Fig. 20: The robot in a 2D world with two independent
sensory modalities:  position of the robot and y position.
The figures show the latent space learnt by reconstruction
and MuMML
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