Loading [MathJax]/extensions/MathZoom.js
Distributed Rendezvous Control of Networked Uncertain Robotic Systems with Bearing Measurements | IEEE Conference Publication | IEEE Xplore

Distributed Rendezvous Control of Networked Uncertain Robotic Systems with Bearing Measurements


Abstract:

In this paper, the distributed rendezvous control problem of networked uncertain robotic systems with bearing measurements is investigated. The network topology of the mu...Show More

Abstract:

In this paper, the distributed rendezvous control problem of networked uncertain robotic systems with bearing measurements is investigated. The network topology of the multi-robot systems is described by an undirected graph. The dynamics of robots is modeled by Euler-Lagrange equation with unknown inertial parameters, which is more general than simple kinematics considered in existing works on rendezvous problem of multi-robot systems. To achieve rendezvous, a distributed adaptive force/torque control law is developed for each robot, which uses bearings with respect to its neighbors instead of relative displacements or distances. It is shown that the resulting closed-loop multi-robot systems are globally asymptotically stable. Then, the rendezvous control problem of multiple wheeled mobile robots is further solved by the proposed approach. Finally, on-site experiment on networked TurtleBot3 Burger mobile robots is conducted and the results demonstrate effectiveness of the proposed approach.
Date of Conference: 30 May 2021 - 05 June 2021
Date Added to IEEE Xplore: 18 October 2021
ISBN Information:

ISSN Information:

Conference Location: Xi'an, China

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.